aboutsummaryrefslogtreecommitdiff
path: root/mavlink/include/mavlink/v1.0/common/mavlink_msg_omnidirectional_flow.h
blob: 9bb1e336972c231ec225f069917fb55c9f94fb1d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// MESSAGE OMNIDIRECTIONAL_FLOW PACKING

#define MAVLINK_MSG_ID_OMNIDIRECTIONAL_FLOW 106

typedef struct __mavlink_omnidirectional_flow_t
{
 uint64_t time_usec; ///< Timestamp (microseconds, synced to UNIX time or since system boot)
 float front_distance_m; ///< Front distance in meters. Positive value (including zero): distance known. Negative value: Unknown distance
 int16_t left[10]; ///< Flow in deci pixels (1 = 0.1 pixel) on left hemisphere
 int16_t right[10]; ///< Flow in deci pixels (1 = 0.1 pixel) on right hemisphere
 uint8_t sensor_id; ///< Sensor ID
 uint8_t quality; ///< Optical flow quality / confidence. 0: bad, 255: maximum quality
} mavlink_omnidirectional_flow_t;

#define MAVLINK_MSG_ID_OMNIDIRECTIONAL_FLOW_LEN 54
#define MAVLINK_MSG_ID_106_LEN 54

#define MAVLINK_MSG_OMNIDIRECTIONAL_FLOW_FIELD_LEFT_LEN 10
#define MAVLINK_MSG_OMNIDIRECTIONAL_FLOW_FIELD_RIGHT_LEN 10

#define MAVLINK_MESSAGE_INFO_OMNIDIRECTIONAL_FLOW { \
	"OMNIDIRECTIONAL_FLOW", \
	6, \
	{  { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_omnidirectional_flow_t, time_usec) }, \
         { "front_distance_m", NULL, MAVLINK_TYPE_FLOAT, 0, 8, offsetof(mavlink_omnidirectional_flow_t, front_distance_m) }, \
         { "left", NULL, MAVLINK_TYPE_INT16_T, 10, 12, offsetof(mavlink_omnidirectional_flow_t, left) }, \
         { "right", NULL, MAVLINK_TYPE_INT16_T, 10, 32, offsetof(mavlink_omnidirectional_flow_t, right) }, \
         { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 52, offsetof(mavlink_omnidirectional_flow_t, sensor_id) }, \
         { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 53, offsetof(mavlink_omnidirectional_flow_t, quality) }, \
         } \
}


/**
 * @brief Pack a omnidirectional_flow message
 * @param system_id ID of this system
 * @param component_id ID of this component (e.g. 200 for IMU)
 * @param msg The MAVLink message to compress the data into
 *
 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
 * @param sensor_id Sensor ID
 * @param left Flow in deci pixels (1 = 0.1 pixel) on left hemisphere
 * @param right Flow in deci pixels (1 = 0.1 pixel) on right hemisphere
 * @param quality Optical flow quality / confidence. 0: bad, 255: maximum quality
 * @param front_distance_m Front distance in meters. Positive value (including zero): distance known. Negative value: Unknown distance
 * @return length of the message in bytes (excluding serial stream start sign)
 */
static inline uint16_t mavlink_msg_omnidirectional_flow_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
						       uint64_t time_usec, uint8_t sensor_id, const int16_t *left, const int16_t *right, uint8_t quality, float front_distance_m)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
	char buf[54];
	_mav_put_uint64_t(buf, 0, time_usec);
	_mav_put_float(buf, 8, front_distance_m);
	_mav_put_uint8_t(buf, 52, sensor_id);
	_mav_put_uint8_t(buf, 53, quality);
	_mav_put_int16_t_array(buf, 12, left, 10);
	_mav_put_int16_t_array(buf, 32, right, 10);
        memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, 54);
#else
	mavlink_omnidirectional_flow_t packet;
	packet.time_usec = time_usec;
	packet.front_distance_m = front_distance_m;
	packet.sensor_id = sensor_id;
	packet.quality = quality;
	mav_array_memcpy(packet.left, left, sizeof(int16_t)*10);
	mav_array_memcpy(packet.right, right, sizeof(int16_t)*10);
        memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, 54);
#endif

	msg->msgid = MAVLINK_MSG_ID_OMNIDIRECTIONAL_FLOW;
	return mavlink_finalize_message(msg, system_id, component_id, 54, 211);
}

/**
 * @brief Pack a omnidirectional_flow message on a channel
 * @param system_id ID of this system
 * @param component_id ID of this component (e.g. 200 for IMU)
 * @param chan The MAVLink channel this message was sent over
 * @param msg The MAVLink message to compress the data into
 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
 * @param sensor_id Sensor ID
 * @param left Flow in deci pixels (1 = 0.1 pixel) on left hemisphere
 * @param right Flow in deci pixels (1 = 0.1 pixel) on right hemisphere
 * @param quality Optical flow quality / confidence. 0: bad, 255: maximum quality
 * @param front_distance_m Front distance in meters. Positive value (including zero): distance known. Negative value: Unknown distance
 * @return length of the message in bytes (excluding serial stream start sign)
 */
static inline uint16_t mavlink_msg_omnidirectional_flow_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
							   mavlink_message_t* msg,
						           uint64_t time_usec,uint8_t sensor_id,const int16_t *left,const int16_t *right,uint8_t quality,float front_distance_m)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
	char buf[54];
	_mav_put_uint64_t(buf, 0, time_usec);
	_mav_put_float(buf, 8, front_distance_m);
	_mav_put_uint8_t(buf, 52, sensor_id);
	_mav_put_uint8_t(buf, 53, quality);
	_mav_put_int16_t_array(buf, 12, left, 10);
	_mav_put_int16_t_array(buf, 32, right, 10);
        memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, 54);
#else
	mavlink_omnidirectional_flow_t packet;
	packet.time_usec = time_usec;
	packet.front_distance_m = front_distance_m;
	packet.sensor_id = sensor_id;
	packet.quality = quality;
	mav_array_memcpy(packet.left, left, sizeof(int16_t)*10);
	mav_array_memcpy(packet.right, right, sizeof(int16_t)*10);
        memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, 54);
#endif

	msg->msgid = MAVLINK_MSG_ID_OMNIDIRECTIONAL_FLOW;
	return mavlink_finalize_message_chan(msg, system_id, component_id, chan, 54, 211);
}

/**
 * @brief Encode a omnidirectional_flow struct into a message
 *
 * @param system_id ID of this system
 * @param component_id ID of this component (e.g. 200 for IMU)
 * @param msg The MAVLink message to compress the data into
 * @param omnidirectional_flow C-struct to read the message contents from
 */
static inline uint16_t mavlink_msg_omnidirectional_flow_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_omnidirectional_flow_t* omnidirectional_flow)
{
	return mavlink_msg_omnidirectional_flow_pack(system_id, component_id, msg, omnidirectional_flow->time_usec, omnidirectional_flow->sensor_id, omnidirectional_flow->left, omnidirectional_flow->right, omnidirectional_flow->quality, omnidirectional_flow->front_distance_m);
}

/**
 * @brief Send a omnidirectional_flow message
 * @param chan MAVLink channel to send the message
 *
 * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot)
 * @param sensor_id Sensor ID
 * @param left Flow in deci pixels (1 = 0.1 pixel) on left hemisphere
 * @param right Flow in deci pixels (1 = 0.1 pixel) on right hemisphere
 * @param quality Optical flow quality / confidence. 0: bad, 255: maximum quality
 * @param front_distance_m Front distance in meters. Positive value (including zero): distance known. Negative value: Unknown distance
 */
#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS

static inline void mavlink_msg_omnidirectional_flow_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, const int16_t *left, const int16_t *right, uint8_t quality, float front_distance_m)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
	char buf[54];
	_mav_put_uint64_t(buf, 0, time_usec);
	_mav_put_float(buf, 8, front_distance_m);
	_mav_put_uint8_t(buf, 52, sensor_id);
	_mav_put_uint8_t(buf, 53, quality);
	_mav_put_int16_t_array(buf, 12, left, 10);
	_mav_put_int16_t_array(buf, 32, right, 10);
	_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OMNIDIRECTIONAL_FLOW, buf, 54, 211);
#else
	mavlink_omnidirectional_flow_t packet;
	packet.time_usec = time_usec;
	packet.front_distance_m = front_distance_m;
	packet.sensor_id = sensor_id;
	packet.quality = quality;
	mav_array_memcpy(packet.left, left, sizeof(int16_t)*10);
	mav_array_memcpy(packet.right, right, sizeof(int16_t)*10);
	_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OMNIDIRECTIONAL_FLOW, (const char *)&packet, 54, 211);
#endif
}

#endif

// MESSAGE OMNIDIRECTIONAL_FLOW UNPACKING


/**
 * @brief Get field time_usec from omnidirectional_flow message
 *
 * @return Timestamp (microseconds, synced to UNIX time or since system boot)
 */
static inline uint64_t mavlink_msg_omnidirectional_flow_get_time_usec(const mavlink_message_t* msg)
{
	return _MAV_RETURN_uint64_t(msg,  0);
}

/**
 * @brief Get field sensor_id from omnidirectional_flow message
 *
 * @return Sensor ID
 */
static inline uint8_t mavlink_msg_omnidirectional_flow_get_sensor_id(const mavlink_message_t* msg)
{
	return _MAV_RETURN_uint8_t(msg,  52);
}

/**
 * @brief Get field left from omnidirectional_flow message
 *
 * @return Flow in deci pixels (1 = 0.1 pixel) on left hemisphere
 */
static inline uint16_t mavlink_msg_omnidirectional_flow_get_left(const mavlink_message_t* msg, int16_t *left)
{
	return _MAV_RETURN_int16_t_array(msg, left, 10,  12);
}

/**
 * @brief Get field right from omnidirectional_flow message
 *
 * @return Flow in deci pixels (1 = 0.1 pixel) on right hemisphere
 */
static inline uint16_t mavlink_msg_omnidirectional_flow_get_right(const mavlink_message_t* msg, int16_t *right)
{
	return _MAV_RETURN_int16_t_array(msg, right, 10,  32);
}

/**
 * @brief Get field quality from omnidirectional_flow message
 *
 * @return Optical flow quality / confidence. 0: bad, 255: maximum quality
 */
static inline uint8_t mavlink_msg_omnidirectional_flow_get_quality(const mavlink_message_t* msg)
{
	return _MAV_RETURN_uint8_t(msg,  53);
}

/**
 * @brief Get field front_distance_m from omnidirectional_flow message
 *
 * @return Front distance in meters. Positive value (including zero): distance known. Negative value: Unknown distance
 */
static inline float mavlink_msg_omnidirectional_flow_get_front_distance_m(const mavlink_message_t* msg)
{
	return _MAV_RETURN_float(msg,  8);
}

/**
 * @brief Decode a omnidirectional_flow message into a struct
 *
 * @param msg The message to decode
 * @param omnidirectional_flow C-struct to decode the message contents into
 */
static inline void mavlink_msg_omnidirectional_flow_decode(const mavlink_message_t* msg, mavlink_omnidirectional_flow_t* omnidirectional_flow)
{
#if MAVLINK_NEED_BYTE_SWAP
	omnidirectional_flow->time_usec = mavlink_msg_omnidirectional_flow_get_time_usec(msg);
	omnidirectional_flow->front_distance_m = mavlink_msg_omnidirectional_flow_get_front_distance_m(msg);
	mavlink_msg_omnidirectional_flow_get_left(msg, omnidirectional_flow->left);
	mavlink_msg_omnidirectional_flow_get_right(msg, omnidirectional_flow->right);
	omnidirectional_flow->sensor_id = mavlink_msg_omnidirectional_flow_get_sensor_id(msg);
	omnidirectional_flow->quality = mavlink_msg_omnidirectional_flow_get_quality(msg);
#else
	memcpy(omnidirectional_flow, _MAV_PAYLOAD(msg), 54);
#endif
}