aboutsummaryrefslogtreecommitdiff
path: root/nuttx-configs/px4io-v1/src/drv_i2c_device.c
blob: 1f5931ae5e60c45adea8bd372bc20f4837b420f5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/****************************************************************************
 *
 *   Copyright (C) 2012 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

 /**
  * @file A simple, polled I2C slave-mode driver.
  *
  * The master writes to and reads from a byte buffer, which the caller 
  * can update inbetween calls to the FSM.
  */

#include <stdbool.h>

#include "stm32_i2c.h"

#include <string.h>

/*
 * I2C register definitions.
 */
#define I2C_BASE	STM32_I2C1_BASE

#define REG(_reg)	(*(volatile uint32_t *)(I2C_BASE + _reg))

#define rCR1		REG(STM32_I2C_CR1_OFFSET)
#define rCR2		REG(STM32_I2C_CR2_OFFSET)
#define rOAR1		REG(STM32_I2C_OAR1_OFFSET)
#define rOAR2		REG(STM32_I2C_OAR2_OFFSET)
#define rDR		REG(STM32_I2C_DR_OFFSET)
#define rSR1		REG(STM32_I2C_SR1_OFFSET)
#define rSR2		REG(STM32_I2C_SR2_OFFSET)
#define rCCR		REG(STM32_I2C_CCR_OFFSET)
#define rTRISE		REG(STM32_I2C_TRISE_OFFSET)

/*
 * "event" values (cr2 << 16 | cr1) as described in the ST DriverLib
 */
#define  I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED          ((uint32_t)0x00020002) /* BUSY and ADDR flags */
#define  I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED       ((uint32_t)0x00060082) /* TRA, BUSY, TXE and ADDR flags */
#define  I2C_EVENT_SLAVE_BYTE_RECEIVED                     ((uint32_t)0x00020040) /* BUSY and RXNE flags */
#define  I2C_EVENT_SLAVE_STOP_DETECTED                     ((uint32_t)0x00000010) /* STOPF flag */
#define  I2C_EVENT_SLAVE_BYTE_TRANSMITTED                  ((uint32_t)0x00060084) /* TRA, BUSY, TXE and BTF flags */
#define  I2C_EVENT_SLAVE_BYTE_TRANSMITTING                 ((uint32_t)0x00060080) /* TRA, BUSY and TXE flags */
#define  I2C_EVENT_SLAVE_ACK_FAILURE                       ((uint32_t)0x00000400) /* AF flag */

/**
 * States implemented by the I2C FSM.
 */
enum fsm_state {
	BAD_PHASE,	 // must be zero, default exit on a bad state transition

	WAIT_FOR_MASTER,

	/* write from master */
	WAIT_FOR_COMMAND,
	RECEIVE_COMMAND,
	RECEIVE_DATA,
	HANDLE_COMMAND,

	/* read from master */
	WAIT_TO_SEND,
	SEND_STATUS,
	SEND_DATA,

	NUM_STATES
};

/**
 * Events recognised by the I2C FSM.
 */
enum fsm_event {
	/* automatic transition */
	AUTO,

	/* write from master */
	ADDRESSED_WRITE,
	BYTE_RECEIVED,
	STOP_RECEIVED,

	/* read from master */
	ADDRESSED_READ,
	BYTE_SENDABLE,
	ACK_FAILED,

	NUM_EVENTS
};

/**
 * Context for the I2C FSM
 */
static struct fsm_context {
	enum fsm_state		state;

	/* XXX want to eliminate these */
	uint8_t			command;
	uint8_t			status;

	uint8_t			*data_ptr;
	uint32_t		data_count;

	size_t			buffer_size;
	uint8_t			*buffer;
} context;

/**
 * Structure defining one FSM state and its outgoing transitions.
 */
struct fsm_transition {
		void (*handler)(void);
		enum fsm_state next_state[NUM_EVENTS];
};

static bool	i2c_command_received;

static void	fsm_event(enum fsm_event event);

static void	go_bad(void);
static void	go_wait_master(void);

static void	go_wait_command(void);
static void	go_receive_command(void);
static void	go_receive_data(void);
static void	go_handle_command(void);

static void	go_wait_send(void);
static void	go_send_status(void);
static void	go_send_buffer(void);

/**
 * The FSM state graph.
 */
static const struct fsm_transition fsm[NUM_STATES] = {
		[BAD_PHASE] = {
				.handler = go_bad,
				.next_state = {
						[AUTO] = WAIT_FOR_MASTER,
				},
		},

		[WAIT_FOR_MASTER] = {
				.handler = go_wait_master,
				.next_state = {
						[ADDRESSED_WRITE] = WAIT_FOR_COMMAND,
						[ADDRESSED_READ] = WAIT_TO_SEND,
				},
		},

		/* write from master*/
		[WAIT_FOR_COMMAND] = {
				.handler = go_wait_command,
				.next_state = {
						[BYTE_RECEIVED] = RECEIVE_COMMAND,
						[STOP_RECEIVED] = WAIT_FOR_MASTER,
				},
		},
		[RECEIVE_COMMAND] = {
				.handler = go_receive_command,
				.next_state = {
						[BYTE_RECEIVED] = RECEIVE_DATA,
						[STOP_RECEIVED] = HANDLE_COMMAND,
				},
		},
		[RECEIVE_DATA] = {
				.handler = go_receive_data,
				.next_state = {
						[BYTE_RECEIVED] = RECEIVE_DATA,
						[STOP_RECEIVED] = HANDLE_COMMAND,
				},
		},
		[HANDLE_COMMAND] = {
				.handler = go_handle_command,
				.next_state = {
						[AUTO] = WAIT_FOR_MASTER,
				},
		},

		/* buffer send */
		[WAIT_TO_SEND] = {
			.handler = go_wait_send,
			.next_state = {
					[BYTE_SENDABLE] = SEND_STATUS,
			},
		},
		[SEND_STATUS] = {
				.handler = go_send_status,
				.next_state = {
						[BYTE_SENDABLE] = SEND_DATA,
						[ACK_FAILED] = WAIT_FOR_MASTER,
				},
		},
		[SEND_DATA] = {
				.handler = go_send_buffer,
				.next_state = {
						[BYTE_SENDABLE] = SEND_DATA,
						[ACK_FAILED] = WAIT_FOR_MASTER,
				},
		},
};


/* debug support */
#if 1
struct fsm_logentry {
	char		kind;
	uint32_t	code;
};

#define LOG_ENTRIES	32
static struct fsm_logentry fsm_log[LOG_ENTRIES];
int	fsm_logptr;
#define LOG_NEXT(_x)	(((_x) + 1) % LOG_ENTRIES)
#define LOGx(_kind, _code)		\
		do {					\
			fsm_log[fsm_logptr].kind = _kind; \
			fsm_log[fsm_logptr].code = _code; \
			fsm_logptr = LOG_NEXT(fsm_logptr); \
			fsm_log[fsm_logptr].kind = 0; \
		} while(0)

#define LOG(_kind, _code) \
		do {\
			if (fsm_logptr < LOG_ENTRIES) { \
				fsm_log[fsm_logptr].kind = _kind; \
				fsm_log[fsm_logptr].code = _code; \
				fsm_logptr++;\
			}\
		}while(0)

#else
#define LOG(_kind, _code)
#endif


static void i2c_setclock(uint32_t frequency);

/**
 * Initialise I2C
 *
 */
void
i2c_fsm_init(uint8_t *buffer, size_t buffer_size)
{
	/* save the buffer */
	context.buffer = buffer;
	context.buffer_size = buffer_size;

	// initialise the FSM
	context.status = 0;
	context.command = 0;
	context.state = BAD_PHASE;
	fsm_event(AUTO);

#if 0
	// enable the i2c block clock and reset it
	modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_I2C1EN);
	modifyreg32(STM32_RCC_APB1RSTR, 0, RCC_APB1RSTR_I2C1RST);
	modifyreg32(STM32_RCC_APB1RSTR, RCC_APB1RSTR_I2C1RST, 0);

	// configure the i2c GPIOs
	stm32_configgpio(GPIO_I2C1_SCL);
	stm32_configgpio(GPIO_I2C1_SDA);

	// set the peripheral clock to match the APB clock
	rCR2 = STM32_PCLK1_FREQUENCY / 1000000;

	// configure for 100kHz operation
	i2c_setclock(100000);

	// enable i2c
	rCR1 = I2C_CR1_PE;
#endif
}

/**
 * Run the I2C FSM for some period.
 *
 * @return True if the buffer has been updated by a command.
 */
bool
i2c_fsm(void)
{
	uint32_t	event;
	int		idle_iterations = 0;

	for (;;) {
		// handle bus error states by discarding the current operation
		if (rSR1 & I2C_SR1_BERR) {
			context.state = WAIT_FOR_MASTER;
			rSR1 = ~I2C_SR1_BERR;
		}

		// we do not anticipate over/underrun errors as clock-stretching is enabled

		// fetch the most recent event
		event = ((rSR2 << 16) | rSR1) & 0x00ffffff;

		// generate FSM events based on I2C events
		switch (event) {
		case I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED:
			LOG('w', 0);
			fsm_event(ADDRESSED_WRITE);
			break;

		case I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED:
			LOG('r', 0);
			fsm_event(ADDRESSED_READ);
			break;

		case I2C_EVENT_SLAVE_BYTE_RECEIVED:
			LOG('R', 0);
			fsm_event(BYTE_RECEIVED);
			break;

		case I2C_EVENT_SLAVE_STOP_DETECTED:
			LOG('s', 0);
			fsm_event(STOP_RECEIVED);
			break;

		case I2C_EVENT_SLAVE_BYTE_TRANSMITTING:
		//case I2C_EVENT_SLAVE_BYTE_TRANSMITTED:
			LOG('T', 0);
			fsm_event(BYTE_SENDABLE);
			break;

		case I2C_EVENT_SLAVE_ACK_FAILURE:
			LOG('a', 0);
			fsm_event(ACK_FAILED);
			break;

		default:
			idle_iterations++;
//			if ((event) && (event != 0x00020000))
//				LOG('e', event);
			break;
		}

		/* if we have just received something, drop out and let the caller handle it */
		if (i2c_command_received) {
			i2c_command_received = false;
			return true;
		}

		/* if we have done nothing recently, drop out and let the caller have a slice */
		if (idle_iterations > 1000)
			return false;
	}
}

/**
 * Update the FSM with an event
 *
 * @param event	New event.
 */
static void
fsm_event(enum fsm_event event)
{
	// move to the next state
	context.state = fsm[context.state].next_state[event];

	LOG('f', context.state);

	// call the state entry handler
	if (fsm[context.state].handler) {
		fsm[context.state].handler();
	}
}

static void
go_bad()
{
	LOG('B', 0);
	fsm_event(AUTO);
}

/**
 * Wait for the master to address us.
 *
 */
static void
go_wait_master()
{
	// We currently don't have a command byte.
	//
	context.command = '\0';

	// The data pointer starts pointing to the start of the data buffer.
	//
	context.data_ptr = context.buffer;

	// The data count is either:
	// - the size of the data buffer
	// - some value less than or equal the size of the data buffer during a write or a read
	//
	context.data_count = context.buffer_size;

	// (re)enable the peripheral, clear the stop event flag in
	// case we just finished receiving data
	rCR1 |= I2C_CR1_PE;

	// clear the ACK failed flag in case we just finished sending data
	rSR1 = ~I2C_SR1_AF;
}

/**
 * Prepare to receive a command byte.
 *
 */
static void
go_wait_command()
{
	// NOP
}

/**
 * Command byte has been received, save it and prepare to handle the data.
 *
 */
static void
go_receive_command()
{

	// fetch the command byte
	context.command = (uint8_t)rDR;
	LOG('c', context.command);

}

/**
 * Receive a data byte.
 *
 */
static void
go_receive_data()
{
	uint8_t	d;

	// fetch the byte
	d = (uint8_t)rDR;
	LOG('d', d);

	// if we have somewhere to put it, do so
	if (context.data_count) {
		*context.data_ptr++ = d;
		context.data_count--;
	}
}

/**
 * Handle a command once the host is done sending it to us.
 *
 */
static void
go_handle_command()
{
	// presume we are happy with the command
	context.status = 0;

	// make a note that the buffer contains a fresh command
	i2c_command_received = true;

	// kick along to the next state
	fsm_event(AUTO);
}

/**
 * Wait to be able to send the status byte.
 *
 */
static void
go_wait_send()
{
	// NOP
}

/**
 * Send the status byte.
 *
 */
static void
go_send_status()
{
	rDR = context.status;
	LOG('?', context.status);
}

/**
 * Send a data or pad byte.
 *
 */
static void
go_send_buffer()
{
	if (context.data_count) {
		LOG('D', *context.data_ptr);
		rDR = *(context.data_ptr++);
		context.data_count--;
	} else {
		LOG('-', 0);
		rDR = 0xff;
	}
}

/* cribbed directly from the NuttX master driver */
static void 
i2c_setclock(uint32_t frequency)
{
	uint16_t cr1;
	uint16_t ccr;
	uint16_t trise;
	uint16_t freqmhz;
	uint16_t speed;

	/* Disable the selected I2C peripheral to configure TRISE */

	cr1 = rCR1;
	rCR1 &= ~I2C_CR1_PE;

	/* Update timing and control registers */

	freqmhz = (uint16_t)(STM32_PCLK1_FREQUENCY / 1000000);
	ccr = 0;

	/* Configure speed in standard mode */

	if (frequency <= 100000) {
		/* Standard mode speed calculation */

		speed = (uint16_t)(STM32_PCLK1_FREQUENCY / (frequency << 1));

		/* The CCR fault must be >= 4 */

		if (speed < 4) {
			/* Set the minimum allowed value */

			speed = 4;  
		}
		ccr |= speed;

		/* Set Maximum Rise Time for standard mode */

		trise = freqmhz + 1; 
				
	/* Configure speed in fast mode */
	} else { /* (frequency <= 400000) */
		/* Fast mode speed calculation with Tlow/Thigh = 16/9 */

#ifdef CONFIG_I2C_DUTY16_9
	      speed = (uint16_t)(STM32_PCLK1_FREQUENCY / (frequency * 25));

		/* Set DUTY and fast speed bits */

		ccr |= (I2C_CCR_DUTY|I2C_CCR_FS);
#else
		/* Fast mode speed calculation with Tlow/Thigh = 2 */

		speed = (uint16_t)(STM32_PCLK1_FREQUENCY / (frequency * 3));

		/* Set fast speed bit */

		ccr |= I2C_CCR_FS;
#endif

		/* Verify that the CCR speed value is nonzero */

		if (speed < 1) {
	        	/* Set the minimum allowed value */

	        	speed = 1;  
	        }
		ccr |= speed;

		/* Set Maximum Rise Time for fast mode */

		trise = (uint16_t)(((freqmhz * 300) / 1000) + 1);  
	}

	/* Write the new values of the CCR and TRISE registers */

	rCCR = ccr;
	rTRISE = trise;

	/* Bit 14 of OAR1 must be configured and kept at 1 */

	rOAR1 = I2C_OAR1_ONE);

	/* Re-enable the peripheral (or not) */

	rCR1 = cr1;
}