aboutsummaryrefslogtreecommitdiff
path: root/nuttx/graphics/nxglib/nxglib_splitline.c
blob: fa2ccc1a0dac2f7dab10d67f1741bf21c26d5b06 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/****************************************************************************
 * graphics/nxglib/nxglib_splitline.c
 *
 *   Copyright (C) 2011-2012 Gregory Nutt. All rights reserved.
 *   Author: Gregory Nutt <gnutt@nuttx.org>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name NuttX nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/****************************************************************************
 * Included Files
 ****************************************************************************/

#include <nuttx/config.h>

#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <debug.h>

#include <nuttx/nx/nxglib.h>

/****************************************************************************
 * Pre-Processor Definitions
 ****************************************************************************/

/****************************************************************************
 * Private Types
 ****************************************************************************/

struct b16point_s
{
  b16_t x;
  b16_t y;
};

/****************************************************************************
 * Private Data
 ****************************************************************************/

/****************************************************************************
 * Public Data
 ****************************************************************************/

/****************************************************************************
 * Private Functions
 ****************************************************************************/

static b16_t nxgl_interpolate(b16_t x, b16_t dy, b16_t dxdy)
{
  b16_t dx = b16mulb16(dy, dxdy);
  return x + dx;
}

/****************************************************************************
 * Public Functions
 ****************************************************************************/

/****************************************************************************
 * Name: nxgl_splitline
 *
 * Description:
 *   In the general case, a line with width can be represented as a
 *   parallelogram with a triangle at the top and bottom.  Triangles and
 *   parallelograms are both degenerate versions of a trapeziod.  This
 *   function breaks a wide line into triangles and trapezoids.  This
 *   function also detects other degenerate cases:
 *
 *   1. If y1 == y2 then the line is horizontal and is better represented
 *      as a rectangle.
 *   2. If x1 == x2 then the line is vertical and also better represented
 *      as a rectangle.
 *   3. If the width of the line is 1, then there are no triangles at the
 *      top and bottome (this may also be the case if the width is narrow
 *      and the line is near vertical).
 *   4. If the line is oriented is certain angles, it may consist only of
 *      the upper and lower triangles with no trapezoid in between.  In
 *      this case, 3 trapezoids will be returned, but traps[1] will be
 *      degenerate.
 *
 * Input parameters:
 *   vector - A pointer to the vector described the line to be drawn.
 *   traps  - A pointer to a array of trapezoids (size 3).
 *   rect   - A pointer to a rectangle.
 *
 * Returned value:
 *   0: Line successfully broken up into three trapezoids.  Values in
 *      traps[0], traps[1], and traps[2] are valid.
 *   1: Line successfully represented by one trapezoid. Value in traps[1]
 *      is valid.
 *   2: Line successfully represented by one rectangle. Value in rect is
 *      valid
 *  <0: On errors, a negated errno value is returned.
 *
 ****************************************************************************/

int nxgl_splitline(FAR struct nxgl_vector_s *vector,
                   FAR struct nxgl_trapezoid_s *traps,
                   FAR struct nxgl_rect_s *rect,
                   nxgl_coord_t linewidth)
{
  struct nxgl_vector_s line;
  nxgl_coord_t iheight;
  nxgl_coord_t iwidth;
  nxgl_coord_t iyoffset;
  struct b16point_s quad[4];
  b16_t b16xoffset;
  b16_t b16yoffset;
  b16_t b16dxdy;
  b16_t angle;
  b16_t cosangle;
  b16_t sinangle;
  b16_t b16x;
  b16_t b16y;

  gvdbg("vector: (%d,%d)->(%d,%d) linewidth: %d\n",
        vector->pt1.x, vector->pt1.y, vector->pt2.x, vector->pt2.y, linewidth);

  /* First, check the linewidth */

  if (linewidth < 1)
    {
      return -EINVAL;
    }

  /* Then make sure that the start position of the line is above the end
   * position of the line... in raster order.
   */

  if (vector->pt1.y < vector->pt2.y)
    {
      /* Vector is already in raster order */

      memcpy(&line, vector, sizeof(struct nxgl_vector_s));
    }
  else if (vector->pt1.y > vector->pt2.y)
    {
      /* Swap the top and bottom */

      line.pt1.x = vector->pt2.x;
      line.pt1.y = vector->pt2.y;
      line.pt2.x = vector->pt1.x;
      line.pt2.y = vector->pt1.y;
    }
  else /* if (vector->pt1.y == vector->pt2.y) */
    {
      /* First degenerate case:  The line is horizontal. */

      if (vector->pt1.x < vector->pt2.x)
        {
          rect->pt1.x = vector->pt1.x;
          rect->pt2.x = vector->pt2.x;
        }
      else
        {
          rect->pt1.x = vector->pt2.x;
          rect->pt2.x = vector->pt1.x;
        }

      /* The height of the rectangle is the width of the line, half above
       * and half below.
       */

      rect->pt1.y = vector->pt1.y - (linewidth >> 1);
      rect->pt2.y = rect->pt1.y + linewidth - 1;

      gvdbg("Horizontal rect: (%d,%d),(%d,%d)\n",
            rect->pt1.x, rect->pt1.y, rect->pt2.x, rect->pt2.y);

      return 2;
    }

  /* Check if the line is vertical */

  if (line.pt1.x == line.pt2.x)
    {
      /* Second degenerate case:  The line is vertical. */

      rect->pt1.y = line.pt1.y;
      rect->pt2.y = line.pt2.y;

      rect->pt1.x = line.pt1.x - (linewidth >> 1);
      rect->pt2.x = rect->pt1.x + linewidth - 1;

      gvdbg("Vertical rect: (%d,%d),(%d,%d)\n",
            rect->pt1.x, rect->pt1.y, rect->pt2.x, rect->pt2.y);

      return 2;
    }

  /* The final degenerate case */

  if (linewidth == 1 &&
      abs(line.pt2.x - line.pt1.x) < (line.pt2.y - line.pt1.y))
    {
      /* A close to vertical line of width 1 is basically
       * a single parallelogram of width 1.
       */

      traps[1].top.x1 = itob16(line.pt1.x);
      traps[1].top.x2 = traps[1].top.x1;
      traps[1].top.y  = line.pt1.y;

      traps[1].bot.x1 = itob16(line.pt2.x);
      traps[1].bot.x2 = traps[1].bot.x1;
      traps[1].bot.y  = line.pt2.y;

      gvdbg("Vertical traps[1]: (%08x,%08x,%d),(%08x,%08x, %d)\n",
            traps[1].top.x1, traps[1].top.x2, traps[1].top.y,
            traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y);

      return 1;
    }

  /* Okay, then what remains is interesting.
   *
   * iheight = |y2 - y1|
   * iwidth  = |x2 - x1|
   */

  iheight = line.pt2.y - line.pt1.y + 1;
  if (line.pt1.x < line.pt2.x)
    {
      iwidth  = line.pt2.x - line.pt1.x + 1;
    }
  else
    {
      iwidth  = line.pt1.x - line.pt2.x + 1;
    }

  /* Applying the line width to the line results in a rotated, rectangle.
   * Get the Y offset from an end of the original thin line to a corner of the fat line.
   *
   *   Angle of line:      angle      = atan2(iheight, iwidth)
   *   Y offset from line: b16yoffset = linewidth * cos(angle)
   *
   * For near verical lines, b16yoffset is be nearly zero.  For near horizontal
   * lines, b16yOffset is be about the same as linewidth.
   */

  angle      = b16atan2(itob16(iheight), itob16(iwidth));
  cosangle   = b16cos(angle);
  b16yoffset = (linewidth * cosangle + 1) >> 1;

  /* Get the X offset from an end of the original thin line to a corner of the fat line.
   *
   * For near vertical lines, b16xoffset is about the same as linewidth.  For near
   * horizontal lines, b16xoffset is nearly zero.
   */

  sinangle   =  b16sin(angle);
  b16xoffset = (linewidth * sinangle + 1) >> 1;

  gvdbg("height: %d width: %d angle: %08x b16yoffset: %08x b16xoffset: %08x\n",
        iheight, iwidth, angle, b16yoffset, b16xoffset);

  /* Now we know all four points of the rotated rectangle */

  iyoffset   = b16toi(b16yoffset + b16HALF);
  if (iyoffset > 0)
    {
      /* Get the Y positions of each point */

      b16y      = itob16(line.pt1.y);
      quad[0].y = b16y - b16yoffset;
      quad[1].y = b16y + b16yoffset;

      b16y      = itob16(line.pt2.y);
      quad[2].y = b16y - b16yoffset;
      quad[3].y = b16y + b16yoffset;

      if (line.pt1.x < line.pt2.x)
        {
          /* Line is going "south east". Get the X positions of each point */

          b16x      = itob16(line.pt1.x);
          quad[0].x = b16x + b16xoffset;
          quad[1].x = b16x - b16xoffset;

          b16x      = itob16(line.pt2.x);
          quad[2].x = b16x + b16xoffset;
          quad[3].x = b16x - b16xoffset;

          gvdbg("Southeast: quad (%08x,%08x),(%08x,%08x),(%08x,%08x),(%08x,%08x)\n",
                quad[0].x, quad[0].y, quad[1].x, quad[1].y,
                quad[2].x, quad[2].y, quad[3].x, quad[3].y);

          /* Now we can form the trapezoids.  The top of the first trapezoid
           * (triangle) is at quad[0]
           */

          traps[0].top.x1 = quad[0].x;
          traps[0].top.x2 = quad[0].x;
          traps[0].top.y  = b16toi(quad[0].y + b16HALF);

          /* The bottom of the first trapezoid (triangle) may be either at
           * quad[1] or quad[2], depending upon orientation.
           */

          if (quad[1]. y < quad[2].y)
            {
              /* quad[1] is at the bottom left of the triangle. Interpolate
               * to get the corresponding point on the right side.
               *
               * Interpolation is from quad[0] along the line quad[0]->quad[2]
               * which as the same slope as the line (positive)
               */

              b16dxdy = itob16(iwidth) / iheight;

              traps[0].bot.x1 = quad[1].x;
              traps[0].bot.x2 = nxgl_interpolate(quad[0].x, quad[1].y -  quad[0].y, b16dxdy);
              traps[0].bot.y  = b16toi(quad[1].y + b16HALF);

              /* quad[1] is at the top left of the second trapezoid.  quad[2} is
               * at the bottom right of the second trapezoid. Interpolate to get
               * corresponding point on the left side.
               *
               * Interpolation is from quad[1] along the line quad[1]->quad[3]
               * which as the same slope as the line (positive)
               */

              traps[1].top.x1 = traps[0].bot.x1;
              traps[1].top.x2 = traps[0].bot.x2;
              traps[1].top.y  = traps[0].bot.y;

              traps[1].bot.x1 = nxgl_interpolate(traps[1].top.x1, quad[2].y - quad[1].y, b16dxdy);
              traps[1].bot.x2 = quad[2].x;
              traps[1].bot.y  = b16toi(quad[2].y + b16HALF);
            }
          else
            {
              /* quad[2] is at the bottom right of the triangle. Interpolate
               * to get the corresponding point on the left side.
               *
               * Interpolation is from quad[0] along the line quad[0]->quad[1]
               * which orthogonal to the slope of the line (and negative)
               */

              b16dxdy = -itob16(iheight) / iwidth;

              traps[0].bot.x1 = nxgl_interpolate(quad[0].x, quad[2].y -  quad[0].y, b16dxdy);
              traps[0].bot.x2 = quad[2].x;
              traps[0].bot.y  = b16toi(quad[2].y + b16HALF);

              /* quad[2] is at the top right of the second trapezoid.  quad[1} is
               * at the bottom left of the second trapezoid. Interpolate to get
               * corresponding point on the right side.
               *
               * Interpolation is from quad[2] along the line quad[2]->quad[3]
               * which as the same slope as the previous interpolation.
               */

              traps[1].top.x1 = traps[0].bot.x1;
              traps[1].top.x2 = traps[0].bot.x2;
              traps[1].top.y  = traps[0].bot.y;

              traps[1].bot.x1 = quad[1].x;
              traps[1].bot.x2 = nxgl_interpolate(traps[1].top.x2, quad[1].y - quad[2].y, b16dxdy);
              traps[1].bot.y  = b16toi(quad[1].y + b16HALF);
            }

          /* The final trapezond (triangle) at the bottom is new well defined */

          traps[2].top.x1 = traps[1].bot.x1;
          traps[2].top.x2 = traps[1].bot.x2;
          traps[2].top.y  = traps[1].bot.y;

          traps[2].bot.x1 = quad[3].x;
          traps[2].bot.x2 = quad[3].x;
          traps[2].bot.y  = b16toi(quad[3].y + b16HALF);
        }
      else
        {
          /* Get the X positions of each point */

          b16x      = itob16(line.pt1.x);
          quad[0].x = b16x - b16xoffset;
          quad[1].x = b16x + b16xoffset;

          b16x      = itob16(line.pt2.x);
          quad[2].x = b16x - b16xoffset;
          quad[3].x = b16x + b16xoffset;

          gvdbg("Southwest: quad (%08x,%08x),(%08x,%08x),(%08x,%08x),(%08x,%08x)\n",
                quad[0].x, quad[0].y, quad[1].x, quad[1].y,
                quad[2].x, quad[2].y, quad[3].x, quad[3].y);

          /* Now we can form the trapezoids.  The top of the first trapezoid
           * (triangle) is at quad[0]
           */

          traps[0].top.x1 = quad[0].x;
          traps[0].top.x2 = quad[0].x;
          traps[0].top.y  = b16toi(quad[0].y + b16HALF);

          /* The bottom of the first trapezoid (triangle) may be either at
           * quad[1] or quad[2], depending upon orientation.
           */

          if (quad[1].y < quad[2].y)
            {
              /* quad[1] is at the bottom right of the triangle. Interpolate
               * to get the corresponding point on the left side.
               *
               * Interpolation is from quad[0] along the line quad[0]->quad[2]
               * which as the same slope as the line (negative)
               */

              b16dxdy = -itob16(iwidth) / iheight;

              traps[0].bot.x1 = nxgl_interpolate(traps[0].top.x1, quad[1].y - quad[0].y, b16dxdy);
              traps[0].bot.x2 = quad[1].x;
              traps[0].bot.y  = b16toi(quad[1].y + b16HALF);

              /* quad[1] is at the top right of the second trapezoid.  quad[2} is
               * at the bottom left of the second trapezoid. Interpolate to get
               * corresponding point on the right side.
               *
               * Interpolation is from quad[1] along the line quad[1]->quad[3]
               * which as the same slope as the line (negative)
               */

              traps[1].top.x1 = traps[0].bot.x1;
              traps[1].top.x2 = traps[0].bot.x2;
              traps[1].top.y  = traps[0].bot.y;

              traps[1].bot.x1 = quad[2].x;
              traps[1].bot.x2 = nxgl_interpolate(traps[1].top.x2, quad[2].y - quad[1].y, b16dxdy);
              traps[1].bot.y  = b16toi(quad[2].y + b16HALF);
            }
          else
            {
              /* quad[2] is at the bottom left of the triangle. Interpolate
               * to get the corresponding point on the right side.
               *
               * Interpolation is from quad[0] along the line quad[0]->quad[1]
               * which orthogonal to the slope of the line (and positive)
               */

              b16dxdy = itob16(iheight) / iwidth;

              traps[0].bot.x1 = quad[2].x;
              traps[0].bot.x2 = nxgl_interpolate(traps[0].top.x2, quad[2].y - quad[0].y, b16dxdy);
              traps[0].bot.y  = b16toi(quad[2].y + b16HALF);

              /* quad[2] is at the top left of the second trapezoid.  quad[1} is
               * at the bottom right of the second trapezoid. Interpolate to get
               * corresponding point on the left side.
               *
               * Interpolation is from quad[2] along the line quad[2]->quad[3]
               * which as the same slope as the previous interpolation.
               */

              traps[1].top.x1 = traps[0].bot.x1;
              traps[1].top.x2 = traps[0].bot.x2;
              traps[1].top.y  = traps[0].bot.y;

              traps[1].bot.x1 = nxgl_interpolate(traps[1].top.x1, quad[1].y - quad[2].y, b16dxdy);
              traps[1].bot.x2 = quad[1].x;
              traps[1].bot.y  = b16toi(quad[1].y + b16HALF);
            }

          /* The final trapezond (triangle) at the bottom is new well defined */

          traps[2].top.x1 = traps[1].bot.x1;
          traps[2].top.x2 = traps[1].bot.x2;
          traps[2].top.y  = traps[1].bot.y;

          traps[2].bot.x1 = quad[3].x;
          traps[2].bot.x2 = quad[3].x;
          traps[2].bot.y  = b16toi(quad[3].y + b16HALF);
        }

      gvdbg("traps[0]: (%08x,%08x,%d),(%08x,%08x,%d)\n",
            traps[0].top.x1, traps[0].top.x2, traps[0].top.y,
            traps[0].bot.x1, traps[0].bot.x2, traps[0].bot.y);
      gvdbg("traps[1]: (%08x,%08x,%d),(%08x,%08x,%d)\n",
            traps[1].top.x1, traps[1].top.x2, traps[1].top.y,
            traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y);
      gvdbg("traps[2]: (%08x,%08x,%d),(%08x,%08x,%d)\n",
            traps[2].top.x1, traps[2].top.x2, traps[2].top.y,
            traps[2].bot.x1, traps[2].bot.x2, traps[2].bot.y);

      return 0;
    }

  /* The line is too vertical to have any significant triangular top or
   * bottom.  Just return the center parallelogram.
   */

  traps[1].top.x1 = itob16(line.pt1.x - (linewidth >> 1));
  traps[1].top.x2 = traps[1].top.x1 + itob16(linewidth - 1);
  traps[1].top.y  = line.pt1.y;

  traps[1].bot.x1 = itob16(line.pt2.x - (linewidth >> 1));
  traps[1].bot.x2 = traps[1].bot.x1 + itob16(linewidth - 1);
  traps[1].bot.y  = line.pt2.y;

  gvdbg("Horizontal traps[1]: (%08x,%08x,%d),(%08x,%08x, %d)\n",
        traps[1].top.x1, traps[1].top.x2, traps[1].top.y,
        traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y);

  return 1;
}