aboutsummaryrefslogtreecommitdiff
path: root/src/lib/ecl/attitude_fw/ecl_yaw_controller.cpp
blob: 82ba2c6c7e63b66a65b1e906c77249927de7f62e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/****************************************************************************
 *
 *   Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name ECL nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file ecl_yaw_controller.cpp
 * Implementation of a simple orthogonal coordinated turn yaw PID controller.
 *
 * Authors and acknowledgements in header.
 */

#include "ecl_yaw_controller.h"
#include <stdint.h>
#include <float.h>
#include <geo/geo.h>
#include <ecl/ecl.h>
#include <mathlib/mathlib.h>
#include <systemlib/err.h>

ECL_YawController::ECL_YawController() :
	ECL_Controller("yaw"),
	_coordinated_min_speed(1.0f)
{
}

ECL_YawController::~ECL_YawController()
{
}

float ECL_YawController::control_attitude(const struct ECL_ControlData &ctl_data)
{
	/* Do not calculate control signal with bad inputs */
	if (!(isfinite(ctl_data.roll) &&
				isfinite(ctl_data.pitch) &&
				isfinite(ctl_data.speed_body_u) &&
				isfinite(ctl_data.speed_body_v) &&
				isfinite(ctl_data.speed_body_w) &&
				isfinite(ctl_data.roll_rate_setpoint) &&
				isfinite(ctl_data.pitch_rate_setpoint))) {
		perf_count(_nonfinite_input_perf);
		return _rate_setpoint;
	}

//	static int counter = 0;
	/* Calculate desired yaw rate from coordinated turn constraint / (no side forces) */
	_rate_setpoint = 0.0f;
	if (sqrtf(ctl_data.speed_body_u * ctl_data.speed_body_u + ctl_data.speed_body_v * ctl_data.speed_body_v +
				ctl_data.speed_body_w * ctl_data.speed_body_w) > _coordinated_min_speed) {
		float denumerator = (ctl_data.speed_body_u * cosf(ctl_data.roll) * cosf(ctl_data.pitch) +
				ctl_data.speed_body_w * sinf(ctl_data.pitch));

		if(fabsf(denumerator) > FLT_EPSILON) {
			_rate_setpoint = (ctl_data.speed_body_w * ctl_data.roll_rate_setpoint +
					9.81f * sinf(ctl_data.roll) * cosf(ctl_data.pitch) +
					ctl_data.speed_body_u * ctl_data.pitch_rate_setpoint * sinf(ctl_data.roll)) /
				denumerator;

//			warnx("yaw: speed_body_u %.f speed_body_w %1.f roll %.1f pitch %.1f denumerator %.1f _rate_setpoint %.1f", speed_body_u, speed_body_w, denumerator, _rate_setpoint);
		}

//		if(counter % 20 == 0) {
//			warnx("denumerator: %.4f, speed_body_u: %.4f, speed_body_w: %.4f, cosf(roll): %.4f, cosf(pitch): %.4f, sinf(pitch): %.4f", (double)denumerator, (double)speed_body_u, (double)speed_body_w, (double)cosf(roll), (double)cosf(pitch), (double)sinf(pitch));
//		}
	}

	/* limit the rate */ //XXX: move to body angluar rates
	if (_max_rate > 0.01f) {
	_rate_setpoint = (_rate_setpoint > _max_rate) ? _max_rate : _rate_setpoint;
	_rate_setpoint = (_rate_setpoint < -_max_rate) ? -_max_rate : _rate_setpoint;
	}


//	counter++;

	if(!isfinite(_rate_setpoint)){
		warnx("yaw rate sepoint not finite");
		_rate_setpoint = 0.0f;
	}

	return _rate_setpoint;
}

float ECL_YawController::control_bodyrate(const struct ECL_ControlData &ctl_data)
{
	/* Do not calculate control signal with bad inputs */
	if (!(isfinite(ctl_data.roll) && isfinite(ctl_data.pitch) && isfinite(ctl_data.pitch_rate) &&
				isfinite(ctl_data.yaw_rate) && isfinite(ctl_data.pitch_rate_setpoint) &&
				isfinite(ctl_data.airspeed_min) && isfinite(ctl_data.airspeed_max) &&
				isfinite(ctl_data.scaler))) {
		perf_count(_nonfinite_input_perf);
		return math::constrain(_last_output, -1.0f, 1.0f);
	}

	/* get the usual dt estimate */
	uint64_t dt_micros = ecl_elapsed_time(&_last_run);
	_last_run = ecl_absolute_time();
	float dt = (float)dt_micros * 1e-6f;

	/* lock integral for long intervals */
	bool lock_integrator = ctl_data.lock_integrator;
	if (dt_micros > 500000)
		lock_integrator = true;

	/* input conditioning */
	float airspeed = ctl_data.airspeed;
	if (!isfinite(airspeed)) {
	/* airspeed is NaN, +- INF or not available, pick center of band */
	airspeed = 0.5f * (ctl_data.airspeed_min + ctl_data.airspeed_max);
	} else if (airspeed < ctl_data.airspeed_min) {
	airspeed = ctl_data.airspeed_min;
	}


	/* Transform setpoint to body angular rates (jacobian) */
	_bodyrate_setpoint = -sinf(ctl_data.roll) * ctl_data.pitch_rate_setpoint +
		cosf(ctl_data.roll)*cosf(ctl_data.pitch) * _rate_setpoint;

	/* Transform estimation to body angular rates (jacobian) */
	float yaw_bodyrate = -sinf(ctl_data.roll) * ctl_data.pitch_rate +
		cosf(ctl_data.roll)*cosf(ctl_data.pitch) * ctl_data.yaw_rate;

	/* Calculate body angular rate error */
	_rate_error = _bodyrate_setpoint - yaw_bodyrate; //body angular rate error

	if (!lock_integrator && _k_i > 0.0f && airspeed > 0.5f * ctl_data.airspeed_min) {

	float id = _rate_error * dt;

	/*
	 * anti-windup: do not allow integrator to increase if actuator is at limit
	 */
	if (_last_output < -1.0f) {
		/* only allow motion to center: increase value */
		id = math::max(id, 0.0f);
	} else if (_last_output > 1.0f) {
		/* only allow motion to center: decrease value */
		id = math::min(id, 0.0f);
	}

	_integrator += id;
	}

	/* integrator limit */
	//xxx: until start detection is available: integral part in control signal is limited here
	float integrator_constrained = math::constrain(_integrator * _k_i, -_integrator_max, _integrator_max);

	/* Apply PI rate controller and store non-limited output */
	_last_output = (_bodyrate_setpoint * _k_ff + _rate_error * _k_p + integrator_constrained) * ctl_data.scaler * ctl_data.scaler;  //scaler is proportional to 1/airspeed
	//warnx("yaw:_last_output: %.4f, _integrator: %.4f, _integrator_max: %.4f, airspeed %.4f, _k_i %.4f, _k_p: %.4f", (double)_last_output, (double)_integrator, (double)_integrator_max, (double)airspeed, (double)_k_i, (double)_k_p);


	return math::constrain(_last_output, -1.0f, 1.0f);
}