aboutsummaryrefslogtreecommitdiff
path: root/src/modules/fw_att_pos_estimator/fw_att_pos_estimator_main.cpp
blob: b32b3686fdf8a79adf2be512297785d24fa18410 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/****************************************************************************
 *
 *   Copyright (c) 2013, 2014 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file fw_att_pos_estimator_main.cpp
 * Implementation of the attitude and position estimator.
 *
 * @author Paul Riseborough <p_riseborough@live.com.au>
 * @author Lorenz Meier <lm@inf.ethz.ch>
 */

#include <nuttx/config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <poll.h>
#include <time.h>
#include <drivers/drv_hrt.h>

#define SENSOR_COMBINED_SUB


#include <drivers/drv_gyro.h>
#include <drivers/drv_accel.h>
#include <drivers/drv_mag.h>
#include <drivers/drv_baro.h>
#ifdef SENSOR_COMBINED_SUB
#include <uORB/topics/sensor_combined.h>
#endif
#include <arch/board/board.h>
#include <uORB/uORB.h>
#include <uORB/topics/airspeed.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/vehicle_local_position.h>
#include <uORB/topics/vehicle_gps_position.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/vehicle_status.h>
#include <uORB/topics/parameter_update.h>
#include <systemlib/param/param.h>
#include <systemlib/err.h>
#include <geo/geo.h>
#include <systemlib/perf_counter.h>
#include <systemlib/systemlib.h>
#include <mathlib/mathlib.h>

#include "estimator.h"



/**
 * estimator app start / stop handling function
 *
 * @ingroup apps
 */
extern "C" __EXPORT int fw_att_pos_estimator_main(int argc, char *argv[]);

__EXPORT uint32_t millis();

static uint64_t last_run = 0;
static uint64_t IMUmsec = 0;

uint32_t millis()
{
	return IMUmsec;
}

static void print_status();

class FixedwingEstimator
{
public:
	/**
	 * Constructor
	 */
	FixedwingEstimator();

	/**
	 * Destructor, also kills the sensors task.
	 */
	~FixedwingEstimator();

	/**
	 * Start the sensors task.
	 *
	 * @return		OK on success.
	 */
	int		start();

private:

	bool		_task_should_exit;		/**< if true, sensor task should exit */
	int		_estimator_task;			/**< task handle for sensor task */
#ifndef SENSOR_COMBINED_SUB
	int		_gyro_sub;			/**< gyro sensor subscription */
	int		_accel_sub;			/**< accel sensor subscription */
	int		_mag_sub;			/**< mag sensor subscription */
	#else
	int		_sensor_combined_sub;
	#endif
	int		_airspeed_sub;			/**< airspeed subscription */
	int		_baro_sub;			/**< barometer subscription */
	int		_gps_sub;			/**< GPS subscription */
	int		_vstatus_sub;			/**< vehicle status subscription */
	int 		_params_sub;			/**< notification of parameter updates */
	int 		_manual_control_sub;		/**< notification of manual control updates */
	int		_mission_sub;

	orb_advert_t	_att_pub;			/**< vehicle attitude */
	orb_advert_t	_global_pos_pub;		/**< global position */
	orb_advert_t	_local_pos_pub;			/**< position in local frame */

	struct vehicle_attitude_s			_att;			/**< vehicle attitude */
	struct gyro_report				_gyro;
	struct accel_report				_accel;
	struct mag_report				_mag;
	struct airspeed_s				_airspeed;		/**< airspeed */
	struct baro_report				_baro;			/**< baro readings */
	struct vehicle_status_s				_vstatus;		/**< vehicle status */
	struct vehicle_global_position_s		_global_pos;		/**< global vehicle position */
	struct vehicle_local_position_s			_local_pos;		/**< local vehicle position */
	struct vehicle_gps_position_s			_gps;			/**< GPS position */

	struct gyro_scale				_gyro_offsets;
	struct accel_scale				_accel_offsets;
	struct mag_scale				_mag_offsets;

#ifdef SENSOR_COMBINED_SUB
	struct sensor_combined_s			_sensor_combined;
#endif

	perf_counter_t	_loop_perf;			/**< loop performance counter */
	perf_counter_t	_perf_gyro;			///<local performance counter for gyro updates
	perf_counter_t	_perf_accel;			///<local performance counter for accel updates
	perf_counter_t	_perf_mag;			///<local performance counter for mag updates
	perf_counter_t	_perf_gps;			///<local performance counter for gps updates
	perf_counter_t	_perf_baro;			///<local performance counter for baro updates
	perf_counter_t	_perf_airspeed;			///<local performance counter for airspeed updates

	bool						_initialized;

	struct {
		float		throttle_cruise;
		uint32_t	vel_delay_ms;
		uint32_t	pos_delay_ms;
		uint32_t	height_delay_ms;
		uint32_t	mag_delay_ms;
		uint32_t	tas_delay_ms;
	}		_parameters;			/**< local copies of interesting parameters */

	struct {
		param_t throttle_cruise;

	}		_parameter_handles;		/**< handles for interesting parameters */


	/**
	 * Update our local parameter cache.
	 */
	int		parameters_update();

	/**
	 * Update control outputs
	 *
	 */
	void		control_update();

	/**
	 * Check for changes in vehicle status.
	 */
	void		vehicle_status_poll();

	/**
	 * Shim for calling task_main from task_create.
	 */
	static void	task_main_trampoline(int argc, char *argv[]);

	/**
	 * Main sensor collection task.
	 */
	void		task_main() __attribute__((noreturn));
};

namespace estimator
{

/* oddly, ERROR is not defined for c++ */
#ifdef ERROR
# undef ERROR
#endif
static const int ERROR = -1;

FixedwingEstimator	*g_estimator;
}

FixedwingEstimator::FixedwingEstimator() :

	_task_should_exit(false),
	_estimator_task(-1),

/* subscriptions */
	#ifndef SENSOR_COMBINED_SUB
	_gyro_sub(-1),
	_accel_sub(-1),
	_mag_sub(-1),
	#else
	_sensor_combined_sub(-1),
	#endif
	_airspeed_sub(-1),
	_baro_sub(-1),
	_gps_sub(-1),
	_vstatus_sub(-1),
	_params_sub(-1),
	_manual_control_sub(-1),

/* publications */
	_att_pub(-1),
	_global_pos_pub(-1),
	_local_pos_pub(-1),

/* performance counters */
	_loop_perf(perf_alloc(PC_COUNT, "fw_att_pos_estimator")),
	_perf_gyro(perf_alloc(PC_COUNT, "fw_ekf_gyro_upd")),
	_perf_accel(perf_alloc(PC_COUNT, "fw_ekf_accel_upd")),
	_perf_mag(perf_alloc(PC_COUNT, "fw_ekf_mag_upd")),
	_perf_gps(perf_alloc(PC_COUNT, "fw_ekf_gps_upd")),
	_perf_baro(perf_alloc(PC_COUNT, "fw_ekf_baro_upd")),
	_perf_airspeed(perf_alloc(PC_COUNT, "fw_ekf_aspd_upd")),

/* states */
	_initialized(false)
{

	_parameter_handles.throttle_cruise = param_find("NAV_DUMMY");

	/* fetch initial parameter values */
	parameters_update();

	/* get offsets */

	int fd, res;

	fd = open(GYRO_DEVICE_PATH, O_RDONLY);

	if (fd > 0) {
		res = ioctl(fd, GYROIOCGSCALE, (long unsigned int)&_gyro_offsets);
		close(fd);
	}

	fd = open(ACCEL_DEVICE_PATH, O_RDONLY);

	if (fd > 0) {
		res = ioctl(fd, ACCELIOCGSCALE, (long unsigned int)&_accel_offsets);
		close(fd);
	}

	fd = open(MAG_DEVICE_PATH, O_RDONLY);

	if (fd > 0) {
		res = ioctl(fd, MAGIOCGSCALE, (long unsigned int)&_mag_offsets);
		close(fd);
	}
}

FixedwingEstimator::~FixedwingEstimator()
{
	if (_estimator_task != -1) {

		/* task wakes up every 100ms or so at the longest */
		_task_should_exit = true;

		/* wait for a second for the task to quit at our request */
		unsigned i = 0;

		do {
			/* wait 20ms */
			usleep(20000);

			/* if we have given up, kill it */
			if (++i > 50) {
				task_delete(_estimator_task);
				break;
			}
		} while (_estimator_task != -1);
	}

	estimator::g_estimator = nullptr;
}

int
FixedwingEstimator::parameters_update()
{

	// XXX NEED TO GET HANDLES FIRST! NEEDS PARAM INIT
	//param_get(_parameter_handles.throttle_cruise, &(_parameters.throttle_cruise));

	_parameters.vel_delay_ms = 230;
	_parameters.pos_delay_ms = 210;
	_parameters.height_delay_ms = 350;
	_parameters.mag_delay_ms = 30;
	_parameters.tas_delay_ms = 210;

	return OK;
}

void
FixedwingEstimator::vehicle_status_poll()
{
	bool vstatus_updated;

	/* Check HIL state if vehicle status has changed */
	orb_check(_vstatus_sub, &vstatus_updated);

	if (vstatus_updated) {

		orb_copy(ORB_ID(vehicle_status), _vstatus_sub, &_vstatus);
	}
}

void
FixedwingEstimator::task_main_trampoline(int argc, char *argv[])
{
	estimator::g_estimator->task_main();
}

static float dt = 0.0f; // time lapsed since last covariance prediction

void
FixedwingEstimator::task_main()
{

	/* inform about start */
	warnx("Initializing..");
	fflush(stdout);

	/*
	 * do subscriptions
	 */
	_baro_sub = orb_subscribe(ORB_ID(sensor_baro));
	_airspeed_sub = orb_subscribe(ORB_ID(airspeed));
	_gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
	_vstatus_sub = orb_subscribe(ORB_ID(vehicle_status));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));

	/* rate limit vehicle status updates to 5Hz */
	orb_set_interval(_vstatus_sub, 200);

	#ifndef SENSOR_COMBINED_SUB

	_gyro_sub = orb_subscribe(ORB_ID(sensor_gyro));
	_accel_sub = orb_subscribe(ORB_ID(sensor_accel));
	_mag_sub = orb_subscribe(ORB_ID(sensor_mag));

	/* rate limit gyro updates to 50 Hz */
	/* XXX remove this!, BUT increase the data buffer size! */
	orb_set_interval(_gyro_sub, 4);
	#else
	_sensor_combined_sub = orb_subscribe(ORB_ID(sensor_combined));
	/* XXX remove this!, BUT increase the data buffer size! */
	orb_set_interval(_sensor_combined_sub, 4);
	#endif

	parameters_update();

	/* set initial filter state */
	fuseVelData = false;
	fusePosData = false;
	fuseHgtData = false;
	fuseMagData = false;
	fuseVtasData = false;
	statesInitialised = false;

	/* initialize measurement data */
	VtasMeas = 0.0f;
	Vector3f lastAngRate = {0.0f, 0.0f, 0.0f};
	Vector3f lastAccel = {0.0f, 0.0f, 0.0f};

	/* wakeup source(s) */
	struct pollfd fds[2];

	/* Setup of loop */
	fds[0].fd = _params_sub;
	fds[0].events = POLLIN;
	#ifndef SENSOR_COMBINED_SUB
	fds[1].fd = _gyro_sub;
	fds[1].events = POLLIN;
	#else
	fds[1].fd = _sensor_combined_sub;
	fds[1].events = POLLIN;
	#endif

	hrt_abstime start_time = hrt_absolute_time();

	while (!_task_should_exit) {

		/* wait for up to 500ms for data */
		int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);

		/* timed out - periodic check for _task_should_exit, etc. */
		if (pret == 0)
			continue;

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			continue;
		}

		perf_begin(_loop_perf);

		/* only update parameters if they changed */
		if (fds[0].revents & POLLIN) {
			/* read from param to clear updated flag */
			struct parameter_update_s update;
			orb_copy(ORB_ID(parameter_update), _params_sub, &update);

			/* update parameters from storage */
			parameters_update();
		}

		/* only run estimator if gyro updated */
		if (fds[1].revents & POLLIN) {

			/* check vehicle status for changes to publication state */
			vehicle_status_poll();

			bool accel_updated;
			bool mag_updated;

			perf_count(_perf_gyro);

			/**
			 *    PART ONE: COLLECT ALL DATA
			 **/

			hrt_abstime last_sensor_timestamp;

			/* load local copies */
			#ifndef SENSOR_COMBINED_SUB
			orb_copy(ORB_ID(sensor_gyro), _gyro_sub, &_gyro);
			

			orb_check(_accel_sub, &accel_updated);

			if (accel_updated) {
				perf_count(_perf_accel);
				orb_copy(ORB_ID(sensor_accel), _accel_sub, &_accel);
			}

			last_sensor_timestamp = _gyro.timestamp;
			IMUmsec = _gyro.timestamp / 1e3f;

			float deltaT = (_gyro.timestamp - last_run) / 1e6f;
			last_run = _gyro.timestamp;

			/* guard against too large deltaT's */
			if (deltaT > 1.0f)
				deltaT = 0.01f;


			// Always store data, independent of init status
			/* fill in last data set */
			dtIMU = deltaT;

			angRate.x = _gyro.x;
			angRate.y = _gyro.y;
			angRate.z = _gyro.z;

			accel.x = _accel.x;
			accel.y = _accel.y;
			accel.z = _accel.z;

			dAngIMU = 0.5f * (angRate + lastAngRate) * dtIMU;
			lastAngRate = angRate;
			dVelIMU = 0.5f * (accel + lastAccel) * dtIMU;
			lastAccel = accel;


			#else
			orb_copy(ORB_ID(sensor_combined), _sensor_combined_sub, &_sensor_combined);

			static hrt_abstime last_accel = 0;
			static hrt_abstime last_mag = 0;

			if (last_accel != _sensor_combined.accelerometer_timestamp) {
				accel_updated = true;
			}
			last_accel = _sensor_combined.accelerometer_timestamp;


			// Copy gyro and accel
			last_sensor_timestamp = _sensor_combined.timestamp;
			IMUmsec = _sensor_combined.timestamp / 1e3f;

			float deltaT = (_sensor_combined.timestamp - last_run) / 1e6f;
			last_run = _sensor_combined.timestamp;

			/* guard against too large deltaT's */
			if (deltaT > 1.0f || deltaT < 0.000001f)
				deltaT = 0.01f;

			// Always store data, independent of init status
			/* fill in last data set */
			dtIMU = deltaT;

			angRate.x = _sensor_combined.gyro_rad_s[0];
			angRate.y = _sensor_combined.gyro_rad_s[1];
			angRate.z = _sensor_combined.gyro_rad_s[2];

			accel.x = _sensor_combined.accelerometer_m_s2[0];
			accel.y = _sensor_combined.accelerometer_m_s2[1];
			accel.z = _sensor_combined.accelerometer_m_s2[2];

			dAngIMU = 0.5f * (angRate + lastAngRate) * dtIMU;
			lastAngRate = angRate;
			dVelIMU = 0.5f * (accel + lastAccel) * dtIMU;
			lastAccel = accel;

			if (last_mag != _sensor_combined.magnetometer_timestamp) {
				mag_updated = true;
			}
			last_mag = _sensor_combined.magnetometer_timestamp;

			#endif

			bool airspeed_updated;
			orb_check(_airspeed_sub, &airspeed_updated);
			if (airspeed_updated) {
				orb_copy(ORB_ID(airspeed), _airspeed_sub, &_airspeed);
				perf_count(_perf_airspeed);

				VtasMeas = _airspeed.true_airspeed_m_s;
			}

			bool gps_updated;
			orb_check(_gps_sub, &gps_updated);
			if (gps_updated) {
				orb_copy(ORB_ID(vehicle_gps_position), _gps_sub, &_gps);
				perf_count(_perf_gps);

				if (_gps.fix_type < 3) {
					gps_updated = false;
				} else {
					/* fuse GPS updates */

					//_gps.timestamp / 1e3;
					GPSstatus = _gps.fix_type;
					velNED[0] = _gps.vel_n_m_s;
					velNED[1] = _gps.vel_e_m_s;
					velNED[2] = _gps.vel_d_m_s;

					// warnx("GPS updated: status: %d, vel: %8.4f %8.4f %8.4f", (int)GPSstatus, velNED[0], velNED[1], velNED[2]);

					gpsLat = math::radians(_gps.lat / (double)1e7);
					gpsLon = math::radians(_gps.lon / (double)1e7) - M_PI;
					gpsHgt = _gps.alt / 1e3f;

				}

			}

			bool baro_updated;
			orb_check(_baro_sub, &baro_updated);
			if (baro_updated) {
				orb_copy(ORB_ID(sensor_baro), _baro_sub, &_baro);

				baroHgt = _baro.altitude;

				// Could use a blend of GPS and baro alt data if desired
				hgtMea = 1.0f*baroHgt + 0.0f*gpsHgt;
			}

			#ifndef SENSOR_COMBINED_SUB
			orb_check(_mag_sub, &mag_updated);
			#endif
			if (mag_updated) {

				perf_count(_perf_mag);

				#ifndef SENSOR_COMBINED_SUB
				orb_copy(ORB_ID(sensor_mag), _mag_sub, &_mag);

				// XXX we compensate the offsets upfront - should be close to zero.
				// 0.001f
				magData.x = _mag.x;
				magBias.x = 0.000001f; // _mag_offsets.x_offset

				magData.y = _mag.y;
				magBias.y = 0.000001f; // _mag_offsets.y_offset

				magData.z = _mag.z;
				magBias.z = 0.000001f; // _mag_offsets.y_offset
				
				#else

				// XXX we compensate the offsets upfront - should be close to zero.
				// 0.001f
				magData.x = _sensor_combined.magnetometer_ga[0];
				magBias.x = 0.000001f; // _mag_offsets.x_offset

				magData.y = _sensor_combined.magnetometer_ga[1];
				magBias.y = 0.000001f; // _mag_offsets.y_offset

				magData.z = _sensor_combined.magnetometer_ga[2];
				magBias.z = 0.000001f; // _mag_offsets.y_offset

				#endif

			}


			/**
			 *    PART TWO: EXECUTE THE FILTER
			 **/

			if (hrt_elapsed_time(&start_time) > 500000 && !_initialized && (GPSstatus == 3)) {
				InitialiseFilter(velNED);
				_initialized = true;

				warnx("init done.");
			}

			if (_initialized) {

				/* predict states and covariances */

				/* run the strapdown INS every sensor update */
				UpdateStrapdownEquationsNED();

				/* store the predictions */
				StoreStates(IMUmsec);

				/* evaluate if on ground */
				// OnGroundCheck();
				onGround = false;

				/* prepare the delta angles and time used by the covariance prediction */
				summedDelAng = summedDelAng + correctedDelAng;
				summedDelVel = summedDelVel + correctedDelVel;
				
				dt += dtIMU;

				/* predict the covairance if the total delta angle has exceeded the threshold
				 * or the time limit will be exceeded on the next measurement update
				 */
				if ((dt >= (covTimeStepMax - dtIMU)) || (summedDelAng.length() > covDelAngMax)) {
					CovariancePrediction(dt);
					summedDelAng = summedDelAng.zero();
					summedDelVel = summedDelVel.zero();
					dt = 0.0f;
				}

			}


			if (gps_updated && _initialized) {

				/* convert GPS measurements to horizontal NE, altitude and 3D velocity NED */
				calcposNED(posNED, gpsLat, gpsLon, gpsHgt, latRef, lonRef, hgtRef);

				posNE[0] = posNED[0];
				posNE[1] = posNED[1];

				// set flags for further processing 
				fuseVelData = true;
				fusePosData = true;

				/* recall states after adjusting for delays */
				RecallStates(statesAtVelTime, (IMUmsec - _parameters.vel_delay_ms));
				RecallStates(statesAtPosTime, (IMUmsec - _parameters.pos_delay_ms));

				/* run the actual fusion */
				FuseVelposNED();
			} else {
				fuseVelData = false;
				fusePosData = false;
			}

			if (baro_updated && _initialized) {

				fuseHgtData = true;
				// recall states stored at time of measurement after adjusting for delays
				RecallStates(statesAtHgtTime, (IMUmsec - _parameters.height_delay_ms));
				// run the fusion step
				FuseVelposNED();
			} else {
				fuseHgtData = false;
			}

			if (mag_updated && _initialized) {
				fuseMagData = true;
				RecallStates(statesAtMagMeasTime, (IMUmsec - _parameters.mag_delay_ms));

			} else {
				fuseMagData = false;
			}

			if (_initialized) {
				FuseMagnetometer();
			}

			if (airspeed_updated && _initialized
				&& _airspeed.true_airspeed_m_s > 6.0f /* XXX magic number */) {

				fuseVtasData = true;
				RecallStates(statesAtVtasMeasTime, (IMUmsec - _parameters.tas_delay_ms)); // assume 100 msec avg delay for airspeed data
				FuseAirspeed();
			} else {
				fuseVtasData = false;
			}

			// Publish results
			if (_initialized) {



				// State vector:
				// 0-3: quaternions (q0, q1, q2, q3)
				// 4-6: Velocity - m/sec (North, East, Down)
				// 7-9: Position - m (North, East, Down)
				// 10-12: Delta Angle bias - rad (X,Y,Z)
				// 13-14: Wind Vector  - m/sec (North,East)
				// 15-17: Earth Magnetic Field Vector - milligauss (North, East, Down)
				// 18-20: Body Magnetic Field Vector - milligauss (X,Y,Z)

				math::Quaternion q(states[0], states[1], states[2], states[3]);
				math::Dcm R(q);
				math::EulerAngles euler(R);

				for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++)
					_att.R[i][j] = R(i, j);

				_att.timestamp = last_sensor_timestamp;
				_att.q[0] = states[0];
				_att.q[1] = states[1];
				_att.q[2] = states[2];
				_att.q[3] = states[3];
				_att.q_valid = true;
				_att.R_valid = true;

				_att.timestamp = last_sensor_timestamp;
				_att.roll = euler.getPhi();
				_att.pitch = euler.getTheta();
				_att.yaw = euler.getPsi();

				_att.rollspeed = angRate.x - states[10];
				_att.pitchspeed = angRate.y - states[11];
				_att.yawspeed = angRate.z - states[12];
				// gyro offsets
				_att.rate_offsets[0] = states[10];
				_att.rate_offsets[1] = states[11];
				_att.rate_offsets[2] = states[12];

				/* lazily publish the attitude only once available */
				if (_att_pub > 0) {
					/* publish the attitude setpoint */
					orb_publish(ORB_ID(vehicle_attitude), _att_pub, &_att);

				} else {
					/* advertise and publish */
					_att_pub = orb_advertise(ORB_ID(vehicle_attitude), &_att);
				}

				_local_pos.timestamp = last_sensor_timestamp;
				_local_pos.x = states[7];
				_local_pos.y = states[8];
				_local_pos.z = states[9];

				_local_pos.vx = states[4];
				_local_pos.vy = states[5];
				_local_pos.vz = states[6];

				_local_pos.xy_valid = true;
				_local_pos.z_valid = true;
				_local_pos.v_xy_valid = true;
				_local_pos.v_z_valid = true;

				/* lazily publish the local position only once available */
				if (_local_pos_pub > 0) {
					/* publish the attitude setpoint */
					orb_publish(ORB_ID(vehicle_local_position), _local_pos_pub, &_local_pos);

				} else {
					/* advertise and publish */
					_local_pos_pub = orb_advertise(ORB_ID(vehicle_local_position), &_local_pos);
				}

				_global_pos.timestamp = _gyro.timestamp;

				// /* lazily publish the global position only once available */
				// if (_global_pos_pub > 0) {
				// 	/* publish the attitude setpoint */
				// 	orb_publish(ORB_ID(vehicle_global_position), _global_pos_pub, &_global_pos);

				// } else {
				// 	/* advertise and publish */
				// 	_global_pos_pub = orb_advertise(ORB_ID(vehicle_global_position), &_global_pos);
				// }
			}

		}

		perf_end(_loop_perf);
	}

	warnx("exiting.\n");

	_estimator_task = -1;
	_exit(0);
}

int
FixedwingEstimator::start()
{
	ASSERT(_estimator_task == -1);

	/* start the task */
	_estimator_task = task_spawn_cmd("fw_att_pos_estimator",
					 SCHED_DEFAULT,
					 SCHED_PRIORITY_MAX - 40,
					 6000,
					 (main_t)&FixedwingEstimator::task_main_trampoline,
					 nullptr);

	if (_estimator_task < 0) {
		warn("task start failed");
		return -errno;
	}

	return OK;
}

void print_status()
{
	math::Quaternion q(states[0], states[1], states[2], states[3]);
	math::EulerAngles euler(q);

	printf("attitude: roll: %8.4f, pitch %8.4f, yaw: %8.4f degrees\n",
		(double)math::degrees(euler.getPhi()), (double)math::degrees(euler.getTheta()), (double)math::degrees(euler.getPsi()));

	// State vector:
	// 0-3: quaternions (q0, q1, q2, q3)
	// 4-6: Velocity - m/sec (North, East, Down)
	// 7-9: Position - m (North, East, Down)
	// 10-12: Delta Angle bias - rad (X,Y,Z)
	// 13-14: Wind Vector  - m/sec (North,East)
	// 15-17: Earth Magnetic Field Vector - milligauss (North, East, Down)
	// 18-20: Body Magnetic Field Vector - milligauss (X,Y,Z)

	printf("dtIMU: %8.6f dt: %8.6f IMUmsec: %d\n", dtIMU, dt, (int)IMUmsec);
	printf("dvel: %8.6f %8.6f %8.6f accel: %8.6f %8.6f %8.6f\n", (double)dVelIMU.x, (double)dVelIMU.y, (double)dVelIMU.z, (double)accel.x, (double)accel.y, (double)accel.z);
	printf("dang: %8.4f %8.4f %8.4f dang corr: %8.4f %8.4f %8.4f\n" , (double)dAngIMU.x, (double)dAngIMU.y, (double)dAngIMU.z, (double)correctedDelAng.x, (double)correctedDelAng.y, (double)correctedDelAng.z);
	printf("states (quat)        [1-4]: %8.4f, %8.4f, %8.4f, %8.4f\n", (double)states[0], (double)states[1], (double)states[2], (double)states[3]);
	printf("states (vel m/s)     [5-7]: %8.4f, %8.4f, %8.4f\n", (double)states[4], (double)states[5], (double)states[6]);
	printf("states (pos m)      [8-10]: %8.4f, %8.4f, %8.4f\n", (double)states[7], (double)states[8], (double)states[9]);
	printf("states (delta ang) [11-13]: %8.4f, %8.4f, %8.4f\n", (double)states[10], (double)states[11], (double)states[12]);
	printf("states (wind)      [14-15]: %8.4f, %8.4f\n", (double)states[13], (double)states[14]);
	printf("states (earth mag) [16-18]: %8.4f, %8.4f, %8.4f\n", (double)states[15], (double)states[16], (double)states[17]);
	printf("states (body mag)  [19-21]: %8.4f, %8.4f, %8.4f\n", (double)states[18], (double)states[19], (double)states[20]);
	printf("states: %s %s %s %s %s %s %s %s %s\n",
		(statesInitialised) ? "INITIALIZED" : "NON_INIT",
		(onGround) ? "ON_GROUND" : "AIRBORNE",
		(fuseVelData) ? "FUSE_VEL" : "INH_VEL",
		(fusePosData) ? "FUSE_POS" : "INH_POS",
		(fuseHgtData) ? "FUSE_HGT" : "INH_HGT",
		(fuseMagData) ? "FUSE_MAG" : "INH_MAG",
		(fuseVtasData) ? "FUSE_VTAS" : "INH_VTAS",
		(useAirspeed) ? "USE_AIRSPD" : "IGN_AIRSPD",
		(useCompass) ? "USE_COMPASS" : "IGN_COMPASS");
}

int fw_att_pos_estimator_main(int argc, char *argv[])
{
	if (argc < 1)
		errx(1, "usage: fw_att_pos_estimator {start|stop|status}");

	if (!strcmp(argv[1], "start")) {

		if (estimator::g_estimator != nullptr)
			errx(1, "already running");

		estimator::g_estimator = new FixedwingEstimator;

		if (estimator::g_estimator == nullptr)
			errx(1, "alloc failed");

		if (OK != estimator::g_estimator->start()) {
			delete estimator::g_estimator;
			estimator::g_estimator = nullptr;
			err(1, "start failed");
		}

		exit(0);
	}

	if (!strcmp(argv[1], "stop")) {
		if (estimator::g_estimator == nullptr)
			errx(1, "not running");

		delete estimator::g_estimator;
		estimator::g_estimator = nullptr;
		exit(0);
	}

	if (!strcmp(argv[1], "status")) {
		if (estimator::g_estimator) {
			warnx("running");

			print_status();

			exit(0);

		} else {
			errx(1, "not running");
		}
	}

	warnx("unrecognized command");
	return 1;
}