aboutsummaryrefslogtreecommitdiff
path: root/src/modules/mathlib/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_dot_prod_f32.c
blob: 4f265d69029e575537a7c6b011e77e1f487428ca (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/* ----------------------------------------------------------------------    
* Copyright (C) 2010 ARM Limited. All rights reserved.    
*    
* $Date:        15. February 2012  
* $Revision: 	V1.1.0  
*    
* Project: 	    CMSIS DSP Library    
* Title:		arm_cmplx_dot_prod_f32.c    
*    
* Description:	Floating-point complex dot product    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.1.0 2012/02/15 
*    Updated with more optimizations, bug fixes and minor API changes.  
*   
* Version 1.0.10 2011/7/15  
*    Big Endian support added and Merged M0 and M3/M4 Source code.   
*    
* Version 1.0.3 2010/11/29   
*    Re-organized the CMSIS folders and updated documentation.    
*     
* Version 1.0.2 2010/11/11    
*    Documentation updated.     
*    
* Version 1.0.1 2010/10/05     
*    Production release and review comments incorporated.    
*    
* Version 1.0.0 2010/09/20     
*    Production release and review comments incorporated.    
* ---------------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupCmplxMath    
 */

/**    
 * @defgroup cmplx_dot_prod Complex Dot Product    
 *    
 * Computes the dot product of two complex vectors.    
 * The vectors are multiplied element-by-element and then summed.    
 *   
 * The <code>pSrcA</code> points to the first complex input vector and    
 * <code>pSrcB</code> points to the second complex input vector.    
 * <code>numSamples</code> specifies the number of complex samples    
 * and the data in each array is stored in an interleaved fashion    
 * (real, imag, real, imag, ...).    
 * Each array has a total of <code>2*numSamples</code> values.    
 *    
 * The underlying algorithm is used:    
 * <pre>    
 * realResult=0;    
 * imagResult=0;    
 * for(n=0; n<numSamples; n++) {    
 *     realResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+0] - pSrcA[(2*n)+1]*pSrcB[(2*n)+1];    
 *     imagResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+1] + pSrcA[(2*n)+1]*pSrcB[(2*n)+0];    
 * }    
 * </pre>    
 *    
 * There are separate functions for floating-point, Q15, and Q31 data types.    
 */

/**    
 * @addtogroup cmplx_dot_prod    
 * @{    
 */

/**    
 * @brief  Floating-point complex dot product    
 * @param  *pSrcA points to the first input vector    
 * @param  *pSrcB points to the second input vector    
 * @param  numSamples number of complex samples in each vector    
 * @param  *realResult real part of the result returned here    
 * @param  *imagResult imaginary part of the result returned here    
 * @return none.    
 */

void arm_cmplx_dot_prod_f32(
  float32_t * pSrcA,
  float32_t * pSrcB,
  uint32_t numSamples,
  float32_t * realResult,
  float32_t * imagResult)
{
  float32_t real_sum = 0.0f, imag_sum = 0.0f;    /* Temporary result storage */

#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */
  uint32_t blkCnt;                               /* loop counter */

  /*loop Unrolling */
  blkCnt = numSamples >> 2u;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
    /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
    real_sum += (*pSrcA++) * (*pSrcB++);
    /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
    imag_sum += (*pSrcA++) * (*pSrcB++);

    real_sum += (*pSrcA++) * (*pSrcB++);
    imag_sum += (*pSrcA++) * (*pSrcB++);

    real_sum += (*pSrcA++) * (*pSrcB++);
    imag_sum += (*pSrcA++) * (*pSrcB++);

    real_sum += (*pSrcA++) * (*pSrcB++);
    imag_sum += (*pSrcA++) * (*pSrcB++);

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the numSamples is not a multiple of 4, compute any remaining output samples here.    
   ** No loop unrolling is used. */
  blkCnt = numSamples % 0x4u;

  while(blkCnt > 0u)
  {
    /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
    real_sum += (*pSrcA++) * (*pSrcB++);
    /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
    imag_sum += (*pSrcA++) * (*pSrcB++);


    /* Decrement the loop counter */
    blkCnt--;
  }

#else

  /* Run the below code for Cortex-M0 */

  while(numSamples > 0u)
  {
    /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
    real_sum += (*pSrcA++) * (*pSrcB++);
    /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
    imag_sum += (*pSrcA++) * (*pSrcB++);


    /* Decrement the loop counter */
    numSamples--;
  }

#endif /* #ifndef ARM_MATH_CM0 */

  /* Store the real and imaginary results in the destination buffers */
  *realResult = real_sum;
  *imagResult = imag_sum;
}

/**    
 * @} end of cmplx_dot_prod group    
 */