aboutsummaryrefslogtreecommitdiff
path: root/src/modules/mc_att_control_multiplatform/mc_att_control_base.cpp
blob: 1f0d88bcd793a69dc158a5b56962072669c3db86 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/* Copyright (c) 2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/

/**
 * @file mc_att_control_base.cpp
 *
 * MC Attitude Controller : Control and math code
 *
 * @author Tobias Naegeli <naegelit@student.ethz.ch>
 * @author Lorenz Meier <lm@inf.ethz.ch>
 * @author Anton Babushkin <anton.babushkin@me.com>
 * @author Thomas Gubler <thomasgubler@gmail.com>
 * @author Julian Oes <julian@oes.ch>
 * @author Roman Bapst <bapstr@ethz.ch>
 *
 */

#include "mc_att_control_base.h"
#include <geo/geo.h>
#include <math.h>
#include <lib/mathlib/mathlib.h>

#ifdef CONFIG_ARCH_ARM
#else
#include <cmath>
using namespace std;
#endif

MulticopterAttitudeControlBase::MulticopterAttitudeControlBase() :
	_v_att_sp_mod(),
	_v_rates_sp_mod(),
	_actuators(),
	_publish_att_sp(false)

{
	_params.att_p.zero();
	_params.rate_p.zero();
	_params.rate_i.zero();
	_params.rate_d.zero();
	_params.yaw_ff = 0.0f;
	_params.yaw_rate_max = 0.0f;
	_params.man_roll_max = 0.0f;
	_params.man_pitch_max = 0.0f;
	_params.man_yaw_max = 0.0f;
	_params.acro_rate_max.zero();

	_rates_prev.zero();
	_rates_sp.zero();
	_rates_int.zero();
	_thrust_sp = 0.0f;
	_att_control.zero();

	_I.identity();
}

MulticopterAttitudeControlBase::~MulticopterAttitudeControlBase()
{
}

void MulticopterAttitudeControlBase::control_attitude(float dt)
{
	float yaw_sp_move_rate = 0.0f;
	_publish_att_sp = false;


	if (_v_control_mode->data().flag_control_manual_enabled) {
		/* manual input, set or modify attitude setpoint */

		if (_v_control_mode->data().flag_control_velocity_enabled
		    || _v_control_mode->data().flag_control_climb_rate_enabled) {
			/* in assisted modes poll 'vehicle_attitude_setpoint' topic and modify it */
			//XXX get rid of memcpy
			memcpy(&(_v_att_sp_mod.data()), &_v_att_sp->data(), sizeof(_v_att_sp_mod.data()));
		}

		if (!_v_control_mode->data().flag_control_climb_rate_enabled) {
			/* pass throttle directly if not in altitude stabilized mode */
			_v_att_sp_mod.data().thrust = _manual_control_sp->data().z;
			_publish_att_sp = true;
		}

		if (!_armed->data().armed) {
			/* reset yaw setpoint when disarmed */
			_reset_yaw_sp = true;
		}

		/* move yaw setpoint in all modes */
		if (_v_att_sp_mod.data().thrust < 0.1f) {
			// TODO
			//if (_status.condition_landed) {
			/* reset yaw setpoint if on ground */
			//	reset_yaw_sp = true;
			//}
		} else {
			/* move yaw setpoint */
			yaw_sp_move_rate = _manual_control_sp->data().r * _params.man_yaw_max;
			_v_att_sp_mod.data().yaw_body = _wrap_pi(
						     _v_att_sp_mod.data().yaw_body + yaw_sp_move_rate * dt);
			float yaw_offs_max = _params.man_yaw_max / _params.att_p(2);
			float yaw_offs = _wrap_pi(_v_att_sp_mod.data().yaw_body - _v_att->data().yaw);

			if (yaw_offs < -yaw_offs_max) {
				_v_att_sp_mod.data().yaw_body = _wrap_pi(_v_att->data().yaw - yaw_offs_max);

			} else if (yaw_offs > yaw_offs_max) {
				_v_att_sp_mod.data().yaw_body = _wrap_pi(_v_att->data().yaw + yaw_offs_max);
			}

			_v_att_sp_mod.data().R_valid = false;
			// _publish_att_sp = true;
		}

		/* reset yaw setpoint to current position if needed */
		if (_reset_yaw_sp) {
			_reset_yaw_sp = false;
			_v_att_sp_mod.data().yaw_body = _v_att->data().yaw;
			_v_att_sp_mod.data().R_valid = false;
			// _publish_att_sp = true;
		}

		if (!_v_control_mode->data().flag_control_velocity_enabled) {
			/* update attitude setpoint if not in position control mode */
			_v_att_sp_mod.data().roll_body = _manual_control_sp->data().y * _params.man_roll_max;
			_v_att_sp_mod.data().pitch_body = -_manual_control_sp->data().x
					       * _params.man_pitch_max;
			_v_att_sp_mod.data().R_valid = false;
			// _publish_att_sp = true;
		}

	} else {
		/* in non-manual mode use 'vehicle_attitude_setpoint' topic */
		//XXX get rid of memcpy
		memcpy(&(_v_att_sp_mod.data()), &_v_att_sp->data(), sizeof(_v_att_sp_mod.data()));

		/* reset yaw setpoint after non-manual control mode */
		_reset_yaw_sp = true;
	}

	_thrust_sp = _v_att_sp_mod.data().thrust;

	/* construct attitude setpoint rotation matrix */
	math::Matrix<3, 3> R_sp;

	if (_v_att_sp_mod.data().R_valid) {
		/* rotation matrix in _att_sp is valid, use it */
		R_sp.set(&_v_att_sp_mod.data().R_body[0]);

	} else {
		/* rotation matrix in _att_sp is not valid, use euler angles instead */
		R_sp.from_euler(_v_att_sp_mod.data().roll_body, _v_att_sp_mod.data().pitch_body,
				_v_att_sp_mod.data().yaw_body);

		/* copy rotation matrix back to setpoint struct */
		memcpy(&_v_att_sp_mod.data().R_body[0], &R_sp.data[0][0],
		       sizeof(_v_att_sp_mod.data().R_body));
		_v_att_sp_mod.data().R_valid = true;
	}

	/* rotation matrix for current state */
	math::Matrix<3, 3> R;
	R.set(_v_att->data().R);

	/* all input data is ready, run controller itself */

	/* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */
	math::Vector < 3 > R_z(R(0, 2), R(1, 2), R(2, 2));
	math::Vector < 3 > R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2));

	/* axis and sin(angle) of desired rotation */
	math::Vector < 3 > e_R = R.transposed() * (R_z % R_sp_z);

	/* calculate angle error */
	float e_R_z_sin = e_R.length();
	float e_R_z_cos = R_z * R_sp_z;

	/* calculate weight for yaw control */
	float yaw_w = R_sp(2, 2) * R_sp(2, 2);

	/* calculate rotation matrix after roll/pitch only rotation */
	math::Matrix<3, 3> R_rp;

	if (e_R_z_sin > 0.0f) {
		/* get axis-angle representation */
		float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos);
		math::Vector < 3 > e_R_z_axis = e_R / e_R_z_sin;

		e_R = e_R_z_axis * e_R_z_angle;

		/* cross product matrix for e_R_axis */
		math::Matrix<3, 3> e_R_cp;
		e_R_cp.zero();
		e_R_cp(0, 1) = -e_R_z_axis(2);
		e_R_cp(0, 2) = e_R_z_axis(1);
		e_R_cp(1, 0) = e_R_z_axis(2);
		e_R_cp(1, 2) = -e_R_z_axis(0);
		e_R_cp(2, 0) = -e_R_z_axis(1);
		e_R_cp(2, 1) = e_R_z_axis(0);

		/* rotation matrix for roll/pitch only rotation */
		R_rp = R
		       * (_I + e_R_cp * e_R_z_sin
			  + e_R_cp * e_R_cp * (1.0f - e_R_z_cos));

	} else {
		/* zero roll/pitch rotation */
		R_rp = R;
	}

	/* R_rp and R_sp has the same Z axis, calculate yaw error */
	math::Vector < 3 > R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0));
	math::Vector < 3 > R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0));
	e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w;

	if (e_R_z_cos < 0.0f) {
		/* for large thrust vector rotations use another rotation method:
		 * calculate angle and axis for R -> R_sp rotation directly */
		math::Quaternion q;
		q.from_dcm(R.transposed() * R_sp);
		math::Vector < 3 > e_R_d = q.imag();
		e_R_d.normalize();
		e_R_d *= 2.0f * atan2f(e_R_d.length(), q(0));

		/* use fusion of Z axis based rotation and direct rotation */
		float direct_w = e_R_z_cos * e_R_z_cos * yaw_w;
		e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w;
	}

	/* calculate angular rates setpoint */
	_rates_sp = _params.att_p.emult(e_R);

	/* limit yaw rate */
	_rates_sp(2) = math::constrain(_rates_sp(2), -_params.yaw_rate_max,
				       _params.yaw_rate_max);

	/* feed forward yaw setpoint rate */
	_rates_sp(2) += yaw_sp_move_rate * yaw_w * _params.yaw_ff;
}

void MulticopterAttitudeControlBase::control_attitude_rates(float dt)
{
	/* reset integral if disarmed */
	if (!_armed->data().armed || !_v_status->data().is_rotary_wing) {
		_rates_int.zero();
	}

	/* current body angular rates */
	math::Vector < 3 > rates;
	rates(0) = _v_att->data().rollspeed;
	rates(1) = _v_att->data().pitchspeed;
	rates(2) = _v_att->data().yawspeed;

	/* angular rates error */
	math::Vector < 3 > rates_err = _rates_sp - rates;
	_att_control = _params.rate_p.emult(rates_err)
		       + _params.rate_d.emult(_rates_prev - rates) / dt + _rates_int;
	_rates_prev = rates;

	/* update integral only if not saturated on low limit */
	if (_thrust_sp > MIN_TAKEOFF_THRUST) {
		for (int i = 0; i < 3; i++) {
			if (fabsf(_att_control(i)) < _thrust_sp) {
				float rate_i = _rates_int(i)
					       + _params.rate_i(i) * rates_err(i) * dt;

				if (isfinite(
					    rate_i) && rate_i > -RATES_I_LIMIT && rate_i < RATES_I_LIMIT &&
				    _att_control(i) > -RATES_I_LIMIT && _att_control(i) < RATES_I_LIMIT) {
					_rates_int(i) = rate_i;
				}
			}
		}
	}

}

void MulticopterAttitudeControlBase::set_actuator_controls()
{
	_actuators.data().control[0] = (isfinite(_att_control(0))) ? _att_control(0) : 0.0f;
	_actuators.data().control[1] = (isfinite(_att_control(1))) ? _att_control(1) : 0.0f;
	_actuators.data().control[2] = (isfinite(_att_control(2))) ? _att_control(2) : 0.0f;
	_actuators.data().control[3] = (isfinite(_thrust_sp)) ? _thrust_sp : 0.0f;
}