aboutsummaryrefslogtreecommitdiff
path: root/src/modules/position_estimator/position_estimator_main.c
blob: e849452993ca7f9776f233afe30702657d00e85e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/****************************************************************************
 *
 *   Copyright (C) 2008-2012 PX4 Development Team. All rights reserved.
 *   Author: Tobias Naegeli <naegelit@student.ethz.ch>
 *			 Thomas Gubler <thomasgubler@student.ethz.ch>
 *           Julian Oes <joes@student.ethz.ch>
 *           Lorenz Meier <lm@inf.ethz.ch>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file position_estimator_main.c
 * Model-identification based position estimator for multirotors
 */

#include <nuttx/config.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <fcntl.h>
#include <float.h>
#include <nuttx/sched.h>
#include <sys/prctl.h>
#include <termios.h>
#include <errno.h>
#include <limits.h>
#include <math.h>
#include <uORB/uORB.h>
#include <uORB/topics/vehicle_status.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_gps_position.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/vehicle_local_position.h>
#include <poll.h>

#define N_STATES 6
#define ERROR_COVARIANCE_INIT 3
#define R_EARTH 6371000.0

#define PROJECTION_INITIALIZE_COUNTER_LIMIT 5000
#define REPROJECTION_COUNTER_LIMIT 125

__EXPORT int position_estimator_main(int argc, char *argv[]);

static uint16_t position_estimator_counter_position_information;

/* values for map projection */
static double phi_1;
static double sin_phi_1;
static double cos_phi_1;
static double lambda_0;
static double scale;

/**
 * Initializes the map transformation.
 *
 * Initializes the transformation between the geographic coordinate system and the azimuthal equidistant plane
 * @param lat in degrees (47.1234567°, not 471234567°)
 * @param lon in degrees (8.1234567°, not 81234567°)
 */
static void map_projection_init(double lat_0, double lon_0) //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
{
	/* notation and formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */
	phi_1 = lat_0 / 180.0 * M_PI;
	lambda_0 = lon_0 / 180.0 * M_PI;

	sin_phi_1 = sin(phi_1);
	cos_phi_1 = cos(phi_1);

	/* calculate local scale by using the relation of true distance and the distance on plane */ //TODO: this is a quick solution, there are probably easier ways to determine the scale

	/* 1) calculate true distance d on sphere to a point: http://www.movable-type.co.uk/scripts/latlong.html */
	const double r_earth = 6371000;

	double lat1 = phi_1;
	double lon1 = lambda_0;

	double lat2 = phi_1 + 0.5 / 180 * M_PI;
	double lon2 = lambda_0 + 0.5 / 180 * M_PI;
	double sin_lat_2 = sin(lat2);
	double cos_lat_2 = cos(lat2);
	double d = acos(sin(lat1) * sin_lat_2 + cos(lat1) * cos_lat_2 * cos(lon2 - lon1)) * r_earth;

	/* 2) calculate distance rho on plane */
	double k_bar = 0;
	double c =  acos(sin_phi_1 * sin_lat_2 + cos_phi_1 * cos_lat_2 * cos(lon2 - lambda_0));

	if (0 != c)
		k_bar = c / sin(c);

	double x2 = k_bar * (cos_lat_2 * sin(lon2 - lambda_0)); //Projection of point 2 on plane
	double y2 = k_bar * ((cos_phi_1 * sin_lat_2 - sin_phi_1 * cos_lat_2 * cos(lon2 - lambda_0)));
	double rho = sqrt(pow(x2, 2) + pow(y2, 2));

	scale = d / rho;

}

/**
 * Transforms a point in the geographic coordinate system to the local azimuthal equidistant plane
 * @param x north
 * @param y east
 * @param lat in degrees (47.1234567°, not 471234567°)
 * @param lon in degrees (8.1234567°, not 81234567°)
 */
static void map_projection_project(double lat, double lon, float *x, float *y)
{
	/* notation and formulas accoring to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */
	double phi = lat / 180.0 * M_PI;
	double lambda = lon / 180.0 * M_PI;

	double sin_phi = sin(phi);
	double cos_phi = cos(phi);

	double k_bar = 0;
	/* using small angle approximation (formula in comment is without aproximation) */
	double c =  acos(sin_phi_1 * sin_phi + cos_phi_1 * cos_phi * (1 - pow((lambda - lambda_0), 2) / 2)); //double c =  acos( sin_phi_1 * sin_phi + cos_phi_1 * cos_phi * cos(lambda - lambda_0) );

	if (0 != c)
		k_bar = c / sin(c);

	/* using small angle approximation (formula in comment is without aproximation) */
	*y = k_bar * (cos_phi * (lambda - lambda_0)) * scale;//*y = k_bar * (cos_phi * sin(lambda - lambda_0)) * scale;
	*x = k_bar * ((cos_phi_1 * sin_phi - sin_phi_1 * cos_phi * (1 - pow((lambda - lambda_0), 2) / 2))) * scale; //	*x = k_bar * ((cos_phi_1 * sin_phi - sin_phi_1 * cos_phi * cos(lambda - lambda_0))) * scale;

//	printf("%phi_1=%.10f, lambda_0 =%.10f\n", phi_1, lambda_0);
}

/**
 * Transforms a point in the local azimuthal equidistant plane to the geographic coordinate system
 *
 * @param x north
 * @param y east
 * @param lat in degrees (47.1234567°, not 471234567°)
 * @param lon in degrees (8.1234567°, not 81234567°)
 */
static void map_projection_reproject(float x, float y, double *lat, double *lon)
{
	/* notation and formulas accoring to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */

	double x_descaled = x / scale;
	double y_descaled = y / scale;

	double c = sqrt(pow(x_descaled, 2) + pow(y_descaled, 2));
	double sin_c = sin(c);
	double cos_c = cos(c);

	double lat_sphere = 0;

	if (c != 0)
		lat_sphere = asin(cos_c * sin_phi_1 + (x_descaled * sin_c * cos_phi_1) / c);
	else
		lat_sphere = asin(cos_c * sin_phi_1);

//	printf("lat_sphere = %.10f\n",lat_sphere);

	double lon_sphere = 0;

	if (phi_1  == M_PI / 2) {
		//using small angle approximation (formula in comment is without aproximation)
		lon_sphere = (lambda_0 - y_descaled / x_descaled); //lon_sphere = (lambda_0 + atan2(-y_descaled, x_descaled));

	} else if (phi_1 == -M_PI / 2) {
		//using small angle approximation (formula in comment is without aproximation)
		lon_sphere = (lambda_0 + y_descaled / x_descaled); //lon_sphere = (lambda_0 + atan2(y_descaled, x_descaled));

	} else {

		lon_sphere = (lambda_0 + atan2(y_descaled * sin_c , c * cos_phi_1 * cos_c - x_descaled * sin_phi_1 * sin_c));
		//using small angle approximation
//    	double denominator = (c * cos_phi_1 * cos_c - x_descaled * sin_phi_1 * sin_c);
//    	if(denominator != 0)
//    	{
//    		lon_sphere = (lambda_0 + (y_descaled * sin_c) / denominator);
//    	}
//    	else
//    	{
//    	...
//    	}
	}

//	printf("lon_sphere = %.10f\n",lon_sphere);

	*lat = lat_sphere * 180.0 / M_PI;
	*lon = lon_sphere * 180.0 / M_PI;

}

/****************************************************************************
 * main
 ****************************************************************************/

int position_estimator_main(int argc, char *argv[])
{

	/* welcome user */
	printf("[multirotor position_estimator] started\n");

	/* initialize values */
	static float u[2] = {0, 0};
	static float z[3] = {0, 0, 0};
	static float xapo[N_STATES] = {0, 0, 0, 0, 0, 0};
	static float Papo[N_STATES * N_STATES] = {ERROR_COVARIANCE_INIT, 0, 0, 0, 0, 0,
			ERROR_COVARIANCE_INIT, 0, 0, 0, 0, 0,
			ERROR_COVARIANCE_INIT, 0, 0, 0, 0, 0,
			ERROR_COVARIANCE_INIT, 0, 0, 0, 0, 0,
			ERROR_COVARIANCE_INIT, 0, 0, 0, 0, 0,
			ERROR_COVARIANCE_INIT, 0, 0, 0, 0, 0
						 };

	static float xapo1[N_STATES];
	static float Papo1[36];

	static float gps_covariance[3] = {0.0f, 0.0f, 0.0f};

	static uint16_t counter = 0;
	position_estimator_counter_position_information = 0;

	uint8_t predict_only = 1;

	bool gps_valid = false;

	bool new_initialization = true;

	static double lat_current = 0.0d;//[°]] --> 47.0
	static double lon_current = 0.0d; //[°]] -->8.5
	float alt_current = 0.0f;


	//TODO: handle flight without gps but with estimator

	/* subscribe to vehicle status, attitude, gps */
	struct vehicle_gps_position_s gps;
	gps.fix_type = 0;
	struct vehicle_status_s vstatus;
	struct vehicle_attitude_s att;

	int vehicle_gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
	int vehicle_status_sub = orb_subscribe(ORB_ID(vehicle_status));

	/* subscribe to attitude at 100 Hz */
	int vehicle_attitude_sub = orb_subscribe(ORB_ID(vehicle_attitude));

	/* wait until gps signal turns valid, only then can we initialize the projection */
	while (gps.fix_type < 3) {
		struct pollfd fds[1] = { {.fd = vehicle_gps_sub, .events = POLLIN} };

		/* wait for GPS updates, BUT READ VEHICLE STATUS (!)
		 * this choice is critical, since the vehicle status might not
		 * actually change, if this app is started after GPS lock was
		 * aquired.
		 */
		if (poll(fds, 1, 5000)) {
			/* Wait for the GPS update to propagate (we have some time) */
			usleep(5000);
			/* Read wether the vehicle status changed */
			orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_sub, &gps);
			gps_valid = (gps.fix_type > 2);
		}
	}

	/* get gps value for first initialization */
	orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_sub, &gps);
	lat_current = ((double)(gps.lat)) * 1e-7;
	lon_current = ((double)(gps.lon)) * 1e-7;
	alt_current = gps.alt * 1e-3;

	/* initialize coordinates */
	map_projection_init(lat_current, lon_current);

	/* publish global position messages only after first GPS message */
	struct vehicle_local_position_s local_pos = {
		.x = 0,
		.y = 0,
		.z = 0
	};
	orb_advert_t local_pos_pub = orb_advertise(ORB_ID(vehicle_local_position), &local_pos);

	printf("[multirotor position estimator] initialized projection with: lat: %.10f,  lon:%.10f\n", lat_current, lon_current);

	while (1) {

		/*This runs at the rate of the sensors, if we have also a new gps update this is used in the position_estimator function */
		struct pollfd fds[1] = { {.fd = vehicle_attitude_sub, .events = POLLIN} };

		if (poll(fds, 1, 5000) <= 0) {
			/* error / timeout */
		} else {

			orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att);
			/* got attitude, updating pos as well */
			orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_sub, &gps);
			orb_copy(ORB_ID(vehicle_status), vehicle_status_sub, &vstatus);

			/*copy attitude */
			u[0] = att.roll;
			u[1] = att.pitch;

			/* initialize map projection with the last estimate (not at full rate) */
			if (gps.fix_type > 2) {
				/* Project gps lat lon (Geographic coordinate system) to plane*/
				map_projection_project(((double)(gps.lat)) * 1e-7, ((double)(gps.lon)) * 1e-7, &(z[0]), &(z[1]));

				local_pos.x = z[0];
				local_pos.y = z[1];
				/* negative offset from initialization altitude */
				local_pos.z = alt_current - (gps.alt) * 1e-3;


				orb_publish(ORB_ID(vehicle_local_position), local_pos_pub, &local_pos);
			}


			// 	gps_covariance[0] = gps.eph; //TODO: needs scaling
			// 	gps_covariance[1] = gps.eph;
			// 	gps_covariance[2] = gps.epv;

			// } else {
			// 	/* we can not use the gps signal (it is of low quality) */
			// 	predict_only = 1;
			// }

			// //		predict_only = 0;																//TODO: only for testing, removeme, XXX
			// //		z[0] = sinf(((float)counter)/180.0f*3.14159265f);								//TODO: only for testing, removeme, XXX
			// //		usleep(100000);																	//TODO: only for testing, removeme, XXX


			// /*Get new estimation (this is calculated in the plane) */
			// //TODO: if new_initialization == true: use 0,0,0, else use xapo
			// if (true == new_initialization) {																								//TODO,XXX: uncomment!
			// 	xapo[0] = 0; //we have a new plane initialization. the current estimate is in the center of the plane
			// 	xapo[2] = 0;
			// 	xapo[4] = 0;
			// 	position_estimator(u, z, xapo, Papo, gps_covariance, predict_only, xapo1, Papo1);

			// } else {
			// 	position_estimator(u, z, xapo, Papo, gps_covariance, predict_only, xapo1, Papo1);
			// }



			// /* Copy values from xapo1 to xapo */
			// int i;

			// for (i = 0; i < N_STATES; i++) {
			// 	xapo[i] = xapo1[i];
			// }

			// if ((counter % REPROJECTION_COUNTER_LIMIT == 0) || (counter % (PROJECTION_INITIALIZE_COUNTER_LIMIT - 1) == 0)) {
			// 	/* Reproject from plane to geographic coordinate system */
			// 	//		map_projection_reproject(xapo1[0], xapo1[2], map_scale, phi_1, lambda_0, &lat_current, &lon_current) //TODO,XXX: uncomment!
			// 	map_projection_reproject(z[0], z[1], &lat_current, &lon_current); //do not use estimator for projection testing, removeme
			// 	//		//DEBUG
			// 	//			if(counter%500 == 0)
			// 	//			{
			// 	//				printf("phi_1: %.10f\n", phi_1);
			// 	//				printf("lambda_0: %.10f\n", lambda_0);
			// 	//				printf("lat_estimated: %.10f\n", lat_current);
			// 	//				printf("lon_estimated: %.10f\n", lon_current);
			// 	//				printf("z[0]=%.10f, z[1]=%.10f, z[2]=%f\n", z[0], z[1], z[2]);
			// 	//				fflush(stdout);
			// 	//
			// 	//			}

			// 	//			if(!isnan(lat_current) && !isnan(lon_current))// && !isnan(xapo1[4]) && !isnan(xapo1[1]) && !isnan(xapo1[3]) && !isnan(xapo1[5]))
			// 	//			{
			// 	/* send out */

			// 	global_pos.lat = lat_current;
			// 	global_pos.lon = lon_current;
			// 	global_pos.alt = xapo1[4];
			// 	global_pos.vx = xapo1[1];
			// 	global_pos.vy = xapo1[3];
			// 	global_pos.vz = xapo1[5];

				/* publish current estimate */
				// orb_publish(ORB_ID(vehicle_global_position), global_pos_pub, &global_pos);
				//			}
				//			else
				//			{
				//				printf("[position estimator] ERROR: nan values, lat_current=%.4f, lon_current=%.4f, z[0]=%.4f z[1]=%.4f\n", lat_current, lon_current, z[0], z[1]);
				//				fflush(stdout);
				//			}

			// }

			counter++;
		}

	}

	return 0;
}