summaryrefslogtreecommitdiff
path: root/nuttx/drivers/wireless/cc3000/spi.c
blob: 78582cc62f248ed4e242b95db9fc8d4b6dde389b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
/**************************************************************************
*
*  spi. - SPI functions to connect an Arduidno to the TI CC3000
*
*  This code uses the Arduino hardware SPI library (or a bit-banged
*  SPI for the Teensy 3.0) to send & receive data between the library
*  API calls and the CC3000 hardware. Every
*
*  Version 1.0.1b
*
*  Copyright (C) 2013 Chris Magagna - cmagagna@yahoo.com
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*  Don't sue me if my code blows up your board and burns down your house
*
****************************************************************************/

#include <stdio.h>
#include <debug.h>
#include <string.h>
#include <unistd.h>
#include <nuttx/config.h>
#include <nuttx/spi/spi.h>
#include <arch/board/kl_wifi.h>
#include <nuttx/wireless/cc3000/hci.h>
#include <nuttx/wireless/cc3000/spi.h>
//#include <nuttx/wireless/cc3000/ArduinoCC3000Core.h>

// This flag lets the interrupt handler know if it should respond to
// the WL_SPI_IRQ pin going low or not
int16_t SPIInterruptsEnabled=0;


#define READ                    3
#define WRITE                   1

#define HI(value)               (((value) & 0xFF00) >> 8)
#define LO(value)               ((value) & 0x00FF)

#define HEADERS_SIZE_EVNT       (SPI_HEADER_SIZE + 5)

#define SPI_HEADER_SIZE         (5)

#define eSPI_STATE_POWERUP              (0)
#define eSPI_STATE_INITIALIZED          (1)
#define eSPI_STATE_IDLE                 (2)
#define eSPI_STATE_WRITE_IRQ            (3)
#define eSPI_STATE_WRITE_FIRST_PORTION  (4)
#define eSPI_STATE_WRITE_EOT            (5)
#define eSPI_STATE_READ_IRQ             (6)
#define eSPI_STATE_READ_FIRST_PORTION   (7)
#define eSPI_STATE_READ_EOT             (8)

/* !!!HACK!!!*/
#define KL_PORTA_ISFR 0x400490a0
#define PIN16 16
#define getreg32(a)          (*(volatile uint32_t *)(a))
#define putreg32(v,a)        (*(volatile uint32_t *)(a) = (v))

#undef SPI_DEBUG   /* Define to enable debug */
#undef SPI_VERBOSE /* Define to enable verbose debug */

#ifdef SPI_DEBUG
#  define spidbg  lldbg
#  ifdef SPI_VERBOSE
#    define spivdbg lldbg
#  else
#    define spivdbg(x...)
#  endif
#else
#  undef SPI_VERBOSE
#  define spidbg(x...)
#  define spivdbg(x...)
#endif

#ifdef CONFIG_KL_SPI0
void kl_spi0select(FAR struct spi_dev_s *dev, enum spi_dev_e devid,
                   bool selected)
{
  spivdbg("devid: %d CS: %s\n",
           (int)devid, selected ? "assert" : "de-assert");
}
#endif

#ifdef CONFIG_KL_SPI1
void kl_spi1select(FAR struct spi_dev_s *dev, enum spi_dev_e devid,
                   bool selected)
{
  spivdbg("devid: %d CS: %s\n",
           (int)devid, selected ? "assert" : "de-assert");
}
#endif

#ifdef CONFIG_KL_SPI0
uint8_t kl_spi0status(FAR struct spi_dev_s *dev, enum spi_dev_e devid)
{
  return 0;
}
#endif

#ifdef CONFIG_KL_SPI1
uint8_t kl_spi1status(FAR struct spi_dev_s *dev, enum spi_dev_e devid)
{
  return 0;
}
#endif

typedef struct
{
  gcSpiHandleRx  SPIRxHandler;

  uint16_t usTxPacketLength;
  uint16_t usRxPacketLength;
  unsigned long  ulSpiState;
  uint8_t *pTxPacket;
  uint8_t *pRxPacket;

} tSpiInformation;

tSpiInformation sSpiInformation;

//
// Static buffer for 5 bytes of SPI HEADER
//
uint8_t tSpiReadHeader[] = {READ, 0, 0, 0, 0};

// The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
// for the purpose of detection of the overrun. The location of the memory where the magic number
// resides shall never be written. In case it is written - the overrun occured and either recevie function
// or send function will stuck forever.
#define CC3000_BUFFER_MAGIC_NUMBER (0xDE)

char spi_buffer[CC3000_RX_BUFFER_SIZE];
uint8_t wlan_tx_buffer[CC3000_TX_BUFFER_SIZE];

struct spi_dev_s *spi = NULL;

unsigned int SPIPump(uint8_t data)
{
  uint8_t rx;

  printf("SPIPump tx = 0x%X ", data);

  if (!spi)
    {
      spi = up_spiinitialize(1);
      SPI_SETBITS(spi, 8);
      SPI_SETMODE(spi, SPIDEV_MODE1);
    }

  SPI_EXCHANGE(spi, &data, &rx, 1);

  printf(" rx = 0x%X\n", rx);

  return rx;
}

//*****************************************************************************
//
//! This function enter point for write flow
//!
//!  \param  SpiPauseSpi
//!
//!  \return none
//!
//!  \brief  The function triggers a user provided callback for
//
//*****************************************************************************

void SpiPauseSpi(void)
{
  SPIInterruptsEnabled = 0;
}

//*****************************************************************************
//
//! This function enter point for write flow
//!
//!  \param  SpiResumeSpi
//!
//!  \return none
//!
//!  \brief  The function triggers a user provided callback for
//
//*****************************************************************************

void SpiResumeSpi(void)
{
  SPIInterruptsEnabled = 1;
}

//*****************************************************************************
//
//! This function enter point for write flow
//!
//!  \param  SpiTriggerRxProcessing
//!
//!  \return none
//!
//!  \brief  The function triggers a user provided callback for
//
//*****************************************************************************
void SpiTriggerRxProcessing(void)
{
  //
  // Trigger Rx processing
  //
  SpiPauseSpi();
  DeassertWlanCS();

  // The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
  // for the purpose of detection of the overrun. If the magic number is overriten - buffer overrun
  // occurred - and we will stuck here forever!

  if (sSpiInformation.pRxPacket[CC3000_RX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
    {
      while (1)
        ;
    }

  sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
  sSpiInformation.SPIRxHandler(sSpiInformation.pRxPacket + SPI_HEADER_SIZE);
}

//*****************************************************************************
//
//! This function enter point for write flow
//!
//!  \param  buffer
//!
//!  \return none
//!
//!  \brief  ...
//
//*****************************************************************************

void SpiReadDataSynchronous(uint8_t *data, uint16_t size)
{
  long i = 0;
    uint8_t *data_to_send = tSpiReadHeader;

  for (i = 0; i < size; i ++)
    {
      data[i] = SPIPump(data_to_send[0]);
    }
}

//*****************************************************************************
//
//! This function enter point for write flow
//!
//!  \param  buffer
//!
//!  \return none
//!
//!  \brief  ...
//
//*****************************************************************************

void SpiWriteDataSynchronous(uint8_t *data, uint16_t size)
{
  while (size)
    {
      SPIPump(*data);
      size --;
      data++;
    }
}

//*****************************************************************************
//
//! This function enter point for write flow
//!
//!  \param  buffer
//!
//!  \return none
//!
//!  \brief  ...
//
//*****************************************************************************
long SpiFirstWrite(uint8_t *ucBuf, uint16_t usLength)
{
  //
  // workaround for first transaction
  //

  AssertWlanCS();

  usleep(70);

  // SPI writes first 4 bytes of data

  SpiWriteDataSynchronous(ucBuf, 4);

  usleep(70);

  SpiWriteDataSynchronous(ucBuf + 4, usLength - 4);

  sSpiInformation.ulSpiState = eSPI_STATE_IDLE;

  DeassertWlanCS();

  //printf("Executed SpiFirstWrite!\n");

  return(0);
}

//*****************************************************************************
//
//! This function enter point for write flow
//!
//!  \param  buffer
//!
//!  \return none
//!
//!  \brief  ...
//
//*****************************************************************************

long SpiWrite(uint8_t *pUserBuffer, uint16_t usLength)
{
  uint8_t ucPad = 0;

  //
  // Figure out the total length of the packet in order to figure out if there is padding or not
  //

  if(!(usLength & 0x0001))
    {
      ucPad++;
    }

  pUserBuffer[0] = WRITE;
  pUserBuffer[1] = HI(usLength + ucPad);
  pUserBuffer[2] = LO(usLength + ucPad);
  pUserBuffer[3] = 0;
  pUserBuffer[4] = 0;

  usLength += (SPI_HEADER_SIZE + ucPad);

  // The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
  // for the purpose of overrun detection. If the magic number is overwritten - buffer overrun
  // occurred - and we will be stuck here forever!

  if (wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
    {
      while (1)
        ;
    }

  if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
    {
      while (sSpiInformation.ulSpiState != eSPI_STATE_INITIALIZED)
        {
        }
    }

  if (sSpiInformation.ulSpiState == eSPI_STATE_INITIALIZED)
    {
      //
      // This is time for first TX/RX transactions over SPI:
      // the IRQ is down - so need to send read buffer size command
      //

      SpiFirstWrite(pUserBuffer, usLength);
    }
  else
    {
      //
      // We need to prevent here race that can occur in case two back to back packets are sent to the
      // device, so the state will move to IDLE and once again to not IDLE due to IRQ
      //

      tSLInformation.WlanInterruptDisable();

      while (sSpiInformation.ulSpiState != eSPI_STATE_IDLE)
       {
         ;
       }

      sSpiInformation.ulSpiState = eSPI_STATE_WRITE_IRQ;
      sSpiInformation.pTxPacket = pUserBuffer;
      sSpiInformation.usTxPacketLength = usLength;

      //
      // Assert the CS line and wait till SSI IRQ line is active and then initialize write operation
      //

      AssertWlanCS();

      //
      // Re-enable IRQ - if it was not disabled - this is not a problem...
      //

      tSLInformation.WlanInterruptEnable();

      //
      // check for a missing interrupt between the CS assertion and enabling back the interrupts
      //

      if (tSLInformation.ReadWlanInterruptPin() == 0)
        {
          SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);

          sSpiInformation.ulSpiState = eSPI_STATE_IDLE;

          DeassertWlanCS();
        }
    }


  //
  // Due to the fact that we are currently implementing a blocking situation
  // here we will wait till end of transaction
  //

  while (eSPI_STATE_IDLE != sSpiInformation.ulSpiState)
    ;

  return(0);
}

//*****************************************************************************
//
//! This function processes received SPI Header and in accordance with it - continues reading
//!  the packet
//!
//!  \param  None
//!
//!  \return None
//!
//!  \brief  ...
//
//*****************************************************************************

long SpiReadDataCont(void)
{
  long data_to_recv;
  uint8_t *evnt_buff, type;

  //
  //determine what type of packet we have
  //

  evnt_buff =  sSpiInformation.pRxPacket;
  data_to_recv = 0;
  STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_PACKET_TYPE_OFFSET, type);

  switch(type)
    {
      case HCI_TYPE_DATA:
        {
          //
          // We need to read the rest of data..
          //

          STREAM_TO_UINT16((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_DATA_LENGTH_OFFSET, data_to_recv);

          if (!((HEADERS_SIZE_EVNT + data_to_recv) & 1))
            {
              data_to_recv++;
            }

          if (data_to_recv)
            {
              SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
            }
          break;
        }

      case HCI_TYPE_EVNT:
        {
          //
          // Calculate the rest length of the data
          //

          STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_EVENT_LENGTH_OFFSET, data_to_recv);

          data_to_recv -= 1;

          //
          // Add padding byte if needed
          //

          if ((HEADERS_SIZE_EVNT + data_to_recv) & 1)
            {
              data_to_recv++;
            }

          if (data_to_recv)
           {
              SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
           }

          sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
          break;
        }
    }

    return (0);
}

//*****************************************************************************
//
//! This function enter point for write flow
//!
//!  \param  SSIContReadOperation
//!
//!  \return none
//!
//!  \brief  The function triggers a user provided callback for
//
//*****************************************************************************

void SSIContReadOperation(void)
{
  //
  // The header was read - continue with  the payload read
  //
  if (!SpiReadDataCont())
    {
      //
      // All the data was read - finalize handling by switching to teh task
      //  and calling from task Event Handler
      //

      SpiTriggerRxProcessing();
    }
}

//*****************************************************************************
//
//! This function enter point for read flow: first we read minimal 5 SPI header bytes and 5 Event
//!  Data bytes
//!
//!  \param  buffer
//!
//!  \return none
//!
//!  \brief  ...
//
//*****************************************************************************
void SpiReadHeader(void)
{
  SpiReadDataSynchronous(sSpiInformation.pRxPacket, 10);
}

//*****************************************************************************
//
//!  The IntSpiGPIOHandler interrupt handler
//!
//!  \param  none
//!
//!  \return none
//!
//!  \brief  GPIO A interrupt handler. When the external SSI WLAN device is
//!          ready to interact with Host CPU it generates an interrupt signal.
//!          After that Host CPU has registrated this interrupt request
//!          it set the corresponding /CS in active state.
//
//*****************************************************************************
//#pragma vector=PORT2_VECTOR
//__interrupt void IntSpiGPIOHandler(void)
int CC3000InterruptHandler(int irq, void *context)
{
  uint32_t regval = 0;

  regval = getreg32(KL_PORTA_ISFR);
  if (regval & (1 << PIN16))
    {
      //printf("\nAn interrupt was issued!\n");

      if (!SPIInterruptsEnabled)
        {
          goto out;
        }

      //printf("\nSPIInterrupt was enabled!\n");

      if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
        {
          /* This means IRQ line was low call a callback of HCI Layer to inform on event */

          sSpiInformation.ulSpiState = eSPI_STATE_INITIALIZED;
        }
      else if (sSpiInformation.ulSpiState == eSPI_STATE_IDLE)
        {
          sSpiInformation.ulSpiState = eSPI_STATE_READ_IRQ;

         /* IRQ line goes down - start reception */

         AssertWlanCS();

         //
         // Wait for TX/RX Complete which will come as DMA interrupt
         //

         SpiReadHeader();

         sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;

         SSIContReadOperation();
        }
      else if (sSpiInformation.ulSpiState == eSPI_STATE_WRITE_IRQ)
        {
          SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);

          sSpiInformation.ulSpiState = eSPI_STATE_IDLE;

          DeassertWlanCS();
        }
      else
        {
        }

out:
      regval = (1 << PIN16);
      putreg32(regval, KL_PORTA_ISFR);
    }

  return 0;
}

//*****************************************************************************
//
//!  SpiClose
//!
//!  \param  none
//!
//!  \return none
//!
//!  \brief  Cofigure the SSI
//
//*****************************************************************************

void SpiOpen(gcSpiHandleRx pfRxHandler)
{
  sSpiInformation.ulSpiState = eSPI_STATE_POWERUP;

  memset(spi_buffer, 0, sizeof(spi_buffer));
  memset(wlan_tx_buffer, 0, sizeof(spi_buffer));

  sSpiInformation.SPIRxHandler = pfRxHandler;
  sSpiInformation.usTxPacketLength = 0;
  sSpiInformation.pTxPacket = NULL;
  sSpiInformation.pRxPacket = (uint8_t *)spi_buffer;
  sSpiInformation.usRxPacketLength = 0;
  spi_buffer[CC3000_RX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
  wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;

  //
  // Enable interrupt on the GPIO pin of WLAN IRQ
  //
  tSLInformation.WlanInterruptEnable();
}

//*****************************************************************************
//
//!  SpiClose
//!
//!  \param  none
//!
//!  \return none
//!
//!  \brief  Cofigure the SSI
//
//*****************************************************************************

void SpiClose(void)
{
  if (sSpiInformation.pRxPacket)
    {
      sSpiInformation.pRxPacket = 0;
    }

  //
  //  Disable Interrupt in GPIOA module...
  //

  tSLInformation.WlanInterruptDisable();
}