aboutsummaryrefslogblamecommitdiff
path: root/src/dotty/tools/backend/sjs/JSCodeGen.scala
blob: 401e017847771a8728fc9721814777fcc5bd3b43 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409















                                         
                   





                                   




                                         
                                                                             


                        
                  












































                                                                              







                                                                               




















































                                                                                  
                                         




































































































































































































                                                                                                              
















                                                         












































































































































































































                                                                                      
                       






























































                                                                               
                                         





































































                                                                              


                             


                            



















                                                                          


                                                        













































































































                                                                                            

                                            

                                                                                 

                                
 

                           
 
                         



                                                             
                                                                        

















                                                                                                                               











                                                                 

































                                                                             
               

                                                               



                                    

                                             



                             
                                                    
                                      
                                               

















































                                                                              

























                                                                           
                                                         



                                                                                   
            


























                                                                               


















































































































































































































































































































































































                                                                                                                                   






















































































































































                                                                                               
























                                                                       

                                                                              





                                                                                                 








                                                                                







































































































                                                                                    
                                                                           




























































                                                                                


















































































































































                                                                                      



                                                                            






















                                                                                  



                                                                             
















































                                                                                
                               








                                                                                    
            



                                                 












































                                                                                


























                                                                          















































































                                                                                     
















                                                                                 
                                                                           



                                             
                                                                                




























































































































                                                                                    

















                                                                                  

                                       









                                                                              
                        





                                                                  
            
                                                              






















                                                                               


                                                                            








                                                                            






                                                                         
 
package dotty.tools.backend.sjs

import scala.annotation.switch

import scala.collection.mutable

import dotty.tools.FatalError

import dotty.tools.dotc.CompilationUnit
import dotty.tools.dotc.ast.tpd
import dotty.tools.dotc.core.Phases.Phase

import dotty.tools.dotc.core._
import Periods._
import SymDenotations._
import Contexts._
import Decorators._
import Flags._
import dotty.tools.dotc.ast.Trees._
import Types._
import Symbols._
import Denotations._
import Phases._
import StdNames._

import dotty.tools.dotc.transform.Erasure

import org.scalajs.core.ir
import org.scalajs.core.ir.{ClassKind, Position, Trees => js, Types => jstpe}
import js.OptimizerHints

import JSEncoding._
import JSInterop._
import ScopedVar.withScopedVars

/** Main codegen for Scala.js IR.
 *
 *  [[GenSJSIR]] creates one instance of `JSCodeGen` per compilation unit.
 *  The `run()` method processes the whole compilation unit and generates
 *  `.sjsir` files for it.
 *
 *  There are 4 main levels of translation:
 *
 *  - `genCompilationUnit()` iterates through all the type definitions in the
 *    compilation unit. Each generated `js.ClassDef` is serialized to an
 *    `.sjsir` file.
 *  - `genScalaClass()` and other similar methods generate the skeleton of
 *    classes.
 *  - `genMethod()` and similar methods generate the declarations of methods.
 *  - `genStatOrExpr()` and everything else generate the bodies of methods.
 */
class JSCodeGen()(implicit ctx: Context) {
  import tpd._

  private val jsdefn = JSDefinitions.jsdefn
  private val primitives = new JSPrimitives(ctx)

  private val positionConversions = new JSPositions()(ctx)
  import positionConversions.{pos2irPos, implicitPos2irPos}

  // Some state --------------------------------------------------------------

  private val currentClassSym = new ScopedVar[Symbol]
  private val currentMethodSym = new ScopedVar[Symbol]
  private val localNames = new ScopedVar[LocalNameGenerator]
  private val thisLocalVarIdent = new ScopedVar[Option[js.Ident]]
  private val undefinedDefaultParams = new ScopedVar[mutable.Set[Symbol]]

  /** Implicitly materializes the current local name generator. */
  private implicit def implicitLocalNames: LocalNameGenerator = localNames.get

  /* See genSuperCall()
   * TODO Can we avoid this unscoped var?
   */
  private var isModuleInitialized: Boolean = false

  private def currentClassType = encodeClassType(currentClassSym)

  /** Returns a new fresh local identifier. */
  private def freshLocalIdent()(implicit pos: Position): js.Ident =
    localNames.get.freshLocalIdent()

  /** Returns a new fresh local identifier. */
  private def freshLocalIdent(base: String)(implicit pos: Position): js.Ident =
    localNames.get.freshLocalIdent(base)

  // Compilation unit --------------------------------------------------------

  def run(): Unit = {
    genCompilationUnit(ctx.compilationUnit)
  }

  /** Generates the Scala.js IR for a compilation unit
   *  This method iterates over all the class and interface definitions
   *  found in the compilation unit and emits their IR (.sjsir).
   *
   *  Some classes are never actually emitted:
   *  - Classes representing primitive types
   *  - The scala.Array class
   *
   *  TODO Some classes representing anonymous functions are not actually emitted.
   *  Instead, a temporary representation of their `apply` method is built
   *  and recorded, so that it can be inlined as a JavaScript anonymous
   *  function in the method that instantiates it.
   *
   *  Other ClassDefs are emitted according to their nature:
   *  * Scala.js-defined JS class     -> `genScalaJSDefinedJSClass()`
   *  * Other raw JS type (<: js.Any) -> `genRawJSClassData()`
   *  * Interface                     -> `genInterface()`
   *  * Normal class                  -> `genClass()`
   */
  private def genCompilationUnit(cunit: CompilationUnit): Unit = {
    def collectTypeDefs(tree: Tree): List[TypeDef] = {
      tree match {
        case EmptyTree            => Nil
        case PackageDef(_, stats) => stats.flatMap(collectTypeDefs)
        case cd: TypeDef          => cd :: Nil
        case _: ValDef            => Nil // module instance
      }
    }
    val allTypeDefs = collectTypeDefs(cunit.tpdTree)

    val generatedClasses = mutable.ListBuffer.empty[(Symbol, js.ClassDef)]

    // TODO Record anonymous JS function classes

    /* Finally, we emit true code for the remaining class defs. */
    for (td <- allTypeDefs) {
      val sym = td.symbol
      implicit val pos: Position = sym.pos

      /* Do not actually emit code for primitive types nor scala.Array. */
      val isPrimitive =
        sym.isPrimitiveValueClass || sym == defn.ArrayClass

      if (!isPrimitive) {
        withScopedVars(
            currentClassSym := sym
        ) {
          val tree = if (isJSType(sym)) {
            /*assert(!isRawJSFunctionDef(sym),
                s"Raw JS function def should have been recorded: $cd")*/
            if (!sym.is(Trait) && isScalaJSDefinedJSClass(sym))
              genScalaJSDefinedJSClass(td)
            else
              genRawJSClassData(td)
          } else if (sym.is(Trait)) {
            genInterface(td)
          } else {
            genScalaClass(td)
          }

          generatedClasses += ((sym, tree))
        }
      }
    }

    val clDefs = generatedClasses.map(_._2).toList

    for ((sym, tree) <- generatedClasses) {
      val writer = new java.io.PrintWriter(System.err)
      try {
        new ir.Printers.IRTreePrinter(writer).print(tree)
      } finally {
        writer.flush()
      }
      genIRFile(cunit, sym, tree)
    }
  }

  private def genIRFile(cunit: CompilationUnit, sym: Symbol,
      tree: ir.Trees.ClassDef): Unit = {
    val outfile = getFileFor(cunit, sym, ".sjsir")
    val output = outfile.bufferedOutput
    try {
      ir.InfoSerializers.serialize(output, ir.Infos.generateClassInfo(tree))
      ir.Serializers.serialize(output, tree)
    } finally {
      output.close()
    }
  }

  private def getFileFor(cunit: CompilationUnit, sym: Symbol,
      suffix: String) = {
    import scala.reflect.io._

    val outputDirectory: AbstractFile = // TODO Support virtual files
      new PlainDirectory(new Directory(new java.io.File(ctx.settings.d.value)))

    val pathParts = sym.fullName.toString.split("[./]")
    val dir = (outputDirectory /: pathParts.init)(_.subdirectoryNamed(_))

    var filename = pathParts.last
    if (sym.is(ModuleClass))
      filename = filename + nme.MODULE_SUFFIX.toString

    dir fileNamed (filename + suffix)
  }

  // Generate a class --------------------------------------------------------

  /** Gen the IR ClassDef for a Scala class definition (maybe a module class).
   */
  private def genScalaClass(td: TypeDef): js.ClassDef = {
    val sym = td.symbol.asClass
    implicit val pos: Position = sym.pos

    assert(!sym.is(Trait),
        "genScalaClass() must be called only for normal classes: "+sym)
    assert(sym.superClass != NoSymbol, sym)

    /*if (hasDefaultCtorArgsAndRawJSModule(sym)) {
      reporter.error(pos,
          "Implementation restriction: constructors of " +
          "Scala classes cannot have default parameters " +
          "if their companion module is JS native.")
    }*/

    val classIdent = encodeClassFullNameIdent(sym)
    val isHijacked = false //isHijackedBoxedClass(sym)

    // Optimizer hints

    def isStdLibClassWithAdHocInlineAnnot(sym: Symbol): Boolean = {
      val fullName = sym.fullName.toString
      (fullName.startsWith("scala.Tuple") && !fullName.endsWith("$")) ||
      (fullName.startsWith("scala.collection.mutable.ArrayOps$of"))
    }

    val shouldMarkInline = (
        sym.hasAnnotation(jsdefn.InlineAnnot) ||
        (sym.isAnonymousFunction && !sym.isSubClass(defn.PartialFunctionClass)) ||
        isStdLibClassWithAdHocInlineAnnot(sym))

    val optimizerHints = {
      OptimizerHints.empty
        .withInline(shouldMarkInline)
        .withNoinline(sym.hasAnnotation(jsdefn.NoinlineAnnot))
    }

    // Generate members (constructor + methods)

    val generatedMethods = new mutable.ListBuffer[js.MethodDef]
    val exportedSymbols = new mutable.ListBuffer[Symbol]

    val tpl = td.rhs.asInstanceOf[Template]
    for (tree <- tpl.constr :: tpl.body) {
      tree match {
        case EmptyTree => ()

        case _: ValDef =>
          () // fields are added via genClassFields()

        case dd: DefDef =>
          val sym = dd.symbol

          val isExport = false //jsInterop.isExport(sym)
          val isNamedExport = false /*isExport && sym.annotations.exists(
              _.symbol == JSExportNamedAnnotation)*/

          /*if (isNamedExport)
            generatedMethods += genNamedExporterDef(dd)
          else*/
          generatedMethods ++= genMethod(dd)

          if (isExport) {
            // We add symbols that we have to export here. This way we also
            // get inherited stuff that is implemented in this class.
            exportedSymbols += sym
          }

        case _ =>
          throw new FatalError("Illegal tree in body of genScalaClass(): " + tree)
      }
    }

    // Generate fields and add to methods + ctors
    val generatedMembers = genClassFields(td) ++ generatedMethods.toList

    // Generate the exported members, constructors and accessors
    val exports = {
      // Hack to export hello.world
      if (sym.fullName.toString == "hello.world$") {
        List(
          js.ModuleExportDef("hello.world"),
          js.MethodDef(static = false, js.StringLiteral("main"),
              Nil, jstpe.AnyType,
              js.Block(List(
                js.Apply(js.This()(jstpe.ClassType(classIdent.name)), js.Ident("main__V"), Nil)(jstpe.NoType),
                js.Undefined())))(
              OptimizerHints.empty, None))
      } else {
        /*
        // Generate the exported members
        val memberExports = genMemberExports(sym, exportedSymbols.toList)

        // Generate exported constructors or accessors
        val exportedConstructorsOrAccessors =
          if (isStaticModule(sym)) genModuleAccessorExports(sym)
          else genConstructorExports(sym)

        memberExports ++ exportedConstructorsOrAccessors
        */
        Nil
      }
    }

    // Hashed definitions of the class
    val hashedDefs =
      ir.Hashers.hashDefs(generatedMembers ++ exports)

    // The complete class definition
    val kind =
      if (isStaticModule(sym)) ClassKind.ModuleClass
      else if (isHijacked) ClassKind.HijackedClass
      else ClassKind.Class

    val classDefinition = js.ClassDef(
        classIdent,
        kind,
        Some(encodeClassFullNameIdent(sym.superClass)),
        genClassInterfaces(sym),
        None,
        hashedDefs)(
        optimizerHints)

    classDefinition
  }

  /** Gen the IR ClassDef for a Scala.js-defined JS class. */
  private def genScalaJSDefinedJSClass(td: TypeDef): js.ClassDef = {
    ???
  }

  /** Gen the IR ClassDef for a raw JS class or trait.
   */
  private def genRawJSClassData(td: TypeDef): js.ClassDef = {
    val sym = td.symbol.asClass
    implicit val pos: Position = sym.pos

    val classIdent = encodeClassFullNameIdent(sym)
    val superClass =
      if (sym.is(Trait)) None
      else Some(encodeClassFullNameIdent(sym.superClass))
    val jsName =
      if (sym.is(Trait) || sym.is(ModuleClass)) None
      else Some(fullJSNameOf(sym))

    js.ClassDef(classIdent, ClassKind.RawJSType,
        superClass,
        genClassInterfaces(sym),
        jsName,
        Nil)(
        OptimizerHints.empty)
  }

  /** Gen the IR ClassDef for an interface definition.
   */
  private def genInterface(td: TypeDef): js.ClassDef = {
    val sym = td.symbol.asClass
    implicit val pos: Position = sym.pos

    val classIdent = encodeClassFullNameIdent(sym)

    val generatedMethods = new mutable.ListBuffer[js.MethodDef]

    val tpl = td.rhs.asInstanceOf[Template]
    for (tree <- tpl.constr :: tpl.body) {
      tree match {
        case EmptyTree  => ()
        case dd: DefDef => generatedMethods ++= genMethod(dd)
        case _ =>
          throw new FatalError("Illegal tree in gen of genInterface(): " + tree)
      }
    }

    val superInterfaces = genClassInterfaces(sym)

    // Hashed definitions of the interface
    val hashedDefs =
      ir.Hashers.hashDefs(generatedMethods.toList)

    js.ClassDef(classIdent, ClassKind.Interface, None, superInterfaces, None,
        hashedDefs)(OptimizerHints.empty)
  }

  private def genClassInterfaces(sym: ClassSymbol)(
      implicit pos: Position): List[js.Ident] = {
    import dotty.tools.dotc.transform.SymUtils._
    for {
      intf <- sym.directlyInheritedTraits
    } yield {
      encodeClassFullNameIdent(intf)
    }
  }

  // Generate the fields of a class ------------------------------------------

  /** Gen definitions for the fields of a class.
   */
  private def genClassFields(td: TypeDef): List[js.FieldDef] = {
    val classSym = td.symbol.asClass
    assert(currentClassSym.get == classSym,
        "genClassFields called with a ClassDef other than the current one")

    // Non-method term members are fields
    (for {
      f <- classSym.info.decls
      if !f.is(Method) && f.isTerm
    } yield {
      implicit val pos: Position = f.pos

      val name =
        /*if (isExposed(f)) js.StringLiteral(jsNameOf(f))
        else*/ encodeFieldSym(f)

      val irTpe = //if (!isScalaJSDefinedJSClass(classSym)) {
        toIRType(f.info)
      /*} else {
        val tpeEnteringPosterasure =
          enteringPhase(currentRun.posterasurePhase)(f.tpe)
        tpeEnteringPosterasure match {
          case tpe: ErasedValueType =>
            /* Here, we must store the field as the boxed representation of
             * the value class. The default value of that field, as
             * initialized at the time the instance is created, will
             * therefore be null. This will not match the behavior we would
             * get in a Scala class. To match the behavior, we would need to
             * initialized to an instance of the boxed representation, with
             * an underlying value set to the zero of its type. However we
             * cannot implement that, so we live with the discrepancy.
             * Anyway, scalac also has problems with uninitialized value
             * class values, if they come from a generic context.
             *
             * TODO Evaluate how much of this needs to be adapted for dotc,
             * which unboxes `null` to the zero of their underlying.
             */
            jstpe.ClassType(encodeClassFullName(tpe.valueClazz))

          case _ if f.tpe.typeSymbol == CharClass =>
            /* Will be initialized to null, which will unbox to '\0' when
             * read.
             */
            jstpe.ClassType(ir.Definitions.BoxedCharacterClass)

          case _ =>
            /* Other types are not boxed, so we can initialized them to
             * their true zero.
             */
            toIRType(f.tpe)
        }
      }*/

      js.FieldDef(name, irTpe, f.is(Mutable))
    }).toList
  }

  // Generate a method -------------------------------------------------------

  private def genMethod(dd: DefDef): Option[js.MethodDef] = {
    withScopedVars(
        localNames := new LocalNameGenerator
    ) {
      genMethodWithCurrentLocalNameScope(dd)
    }
  }

  /** Gen JS code for a method definition in a class or in an impl class.
   *  On the JS side, method names are mangled to encode the full signature
   *  of the Scala method, as described in `JSEncoding`, to support
   *  overloading.
   *
   *  Some methods are not emitted at all:
   *  - Primitives, since they are never actually called
   *  - Constructors of hijacked classes
   *
   *  Constructors are emitted by generating their body as a statement.
   *
   *  Other (normal) methods are emitted with `genMethodBody()`.
   */
  private def genMethodWithCurrentLocalNameScope(dd: DefDef): Option[js.MethodDef] = {
    implicit val pos: Position = dd.pos
    val sym = dd.symbol
    val vparamss = dd.vparamss
    val rhs = dd.rhs

    isModuleInitialized = false

    withScopedVars(
        currentMethodSym       := sym,
        undefinedDefaultParams := mutable.Set.empty,
        thisLocalVarIdent      := None
    ) {
      assert(vparamss.isEmpty || vparamss.tail.isEmpty,
          "Malformed parameter list: " + vparamss)
      val params = if (vparamss.isEmpty) Nil else vparamss.head.map(_.symbol)

      val isJSClassConstructor =
        sym.isClassConstructor && isScalaJSDefinedJSClass(currentClassSym)

      val methodName: js.PropertyName = encodeMethodSym(sym)

      def jsParams = for (param <- params) yield {
        implicit val pos: Position = param.pos
        js.ParamDef(encodeLocalSym(param), toIRType(param.info),
            mutable = false, rest = false)
      }

      /*if (primitives.isPrimitive(sym)) {
        None
      } else*/ if (sym.is(Deferred)) {
        Some(js.MethodDef(static = false, methodName,
            jsParams, toIRType(patchedResultType(sym)), js.EmptyTree)(
            OptimizerHints.empty, None))
      } else /*if (isJSNativeCtorDefaultParam(sym)) {
        None
      } else if (sym.isClassConstructor && isHijackedBoxedClass(sym.owner)) {
        None
      } else*/ {
        /*def isTraitImplForwarder = dd.rhs match {
          case app: Apply => foreignIsImplClass(app.symbol.owner)
          case _          => false
        }*/

        val shouldMarkInline = {
          sym.hasAnnotation(jsdefn.InlineAnnot) ||
          sym.isAnonymousFunction
        }

        val shouldMarkNoinline = {
          sym.hasAnnotation(jsdefn.NoinlineAnnot) /*&&
          !isTraitImplForwarder*/
        }

        val optimizerHints = {
          OptimizerHints.empty
            .withInline(shouldMarkInline)
            .withNoinline(shouldMarkNoinline)
        }

        val methodDef = {
          /*if (isJSClassConstructor) {
            val body0 = genStat(rhs)
            val body1 =
              if (!sym.isPrimaryConstructor) body0
              else moveAllStatementsAfterSuperConstructorCall(body0)
            js.MethodDef(static = false, methodName,
                jsParams, jstpe.NoType, body1)(optimizerHints, None)
          } else*/ if (sym.isConstructor) {
            js.MethodDef(static = false, methodName,
                jsParams, jstpe.NoType,
                genStat(rhs))(optimizerHints, None)
          } else {
            val resultIRType = toIRType(patchedResultType(sym))
            genMethodDef(static = false, methodName,
                params, resultIRType, rhs, optimizerHints)
          }
        }

        Some(methodDef)
      }
    }
  }

  /** Generates the MethodDef of a (non-constructor) method
   *
   *  Most normal methods are emitted straightforwardly. If the result
   *  type is Unit, then the body is emitted as a statement. Otherwise, it is
   *  emitted as an expression.
   *
   *  Methods Scala.js-defined JS classes are compiled as static methods taking
   *  an explicit parameter for their `this` value.
   */
  private def genMethodDef(static: Boolean, methodName: js.PropertyName,
      paramsSyms: List[Symbol], resultIRType: jstpe.Type,
      tree: Tree, optimizerHints: OptimizerHints): js.MethodDef = {
    implicit val pos: Position = tree.pos

    ctx.debuglog("genMethod " + methodName.name)
    ctx.debuglog("")

    val jsParams = for (param <- paramsSyms) yield {
      implicit val pos: Position = param.pos
      js.ParamDef(encodeLocalSym(param), toIRType(param.info),
          mutable = false, rest = false)
    }

    def genBody() =
      if (resultIRType == jstpe.NoType) genStat(tree)
      else genExpr(tree)

    //if (!isScalaJSDefinedJSClass(currentClassSym)) {
      js.MethodDef(static, methodName, jsParams, resultIRType, genBody())(
          optimizerHints, None)
    /*} else {
      assert(!static, tree.pos)

      withScopedVars(
        thisLocalVarIdent := Some(freshLocalIdent("this"))
      ) {
        val thisParamDef = js.ParamDef(thisLocalVarIdent.get.get,
            jstpe.AnyType, mutable = false, rest = false)

        js.MethodDef(static = true, methodName, thisParamDef :: jsParams,
            resultIRType, genBody())(
            optimizerHints, None)
      }
    }*/
  }

  // Generate statements and expressions -------------------------------------

  /** Gen JS code for a tree in statement position (in the IR).
   */
  private def genStat(tree: Tree): js.Tree = {
    exprToStat(genStatOrExpr(tree, isStat = true))
  }

  /** Turn a JavaScript expression of type Unit into a statement */
  private def exprToStat(tree: js.Tree): js.Tree = {
    /* Any JavaScript expression is also a statement, but at least we get rid
     * of some pure expressions that come from our own codegen.
     */
    implicit val pos: Position = tree.pos
    tree match {
      case js.Block(stats :+ expr)  => js.Block(stats :+ exprToStat(expr))
      case _:js.Literal | js.This() => js.Skip()
      case _                        => tree
    }
  }

  /** Gen JS code for a tree in expression position (in the IR).
   */
  private def genExpr(tree: Tree): js.Tree = {
    val result = genStatOrExpr(tree, isStat = false)
    assert(result.tpe != jstpe.NoType,
        s"genExpr($tree) returned a tree with type NoType at pos ${tree.pos}")
    result
  }

  /** Gen JS code for a tree in statement or expression position (in the IR).
   *
   *  This is the main transformation method. Each node of the Scala AST
   *  is transformed into an equivalent portion of the JS AST.
   */
  private def genStatOrExpr(tree: Tree, isStat: Boolean): js.Tree = {
    implicit val pos: Position = tree.pos

    ctx.debuglog("  " + tree)
    ctx.debuglog("")

    tree match {
      /** LabelDefs (for while and do..while loops) */
      /*case lblDf: LabelDef =>
        genLabelDef(lblDf)*/

      /** Local val or var declaration */
      case tree @ ValDef(name, _, _) =>
        /* Must have been eliminated by the tail call transform performed
         * by genMethodBody(). */
        assert(name != nme.THIS,
            s"ValDef(_, nme.THIS, _, _) found at ${tree.pos}")

        val sym = tree.symbol
        val rhs = tree.rhs
        val rhsTree = genExpr(rhs)

        rhsTree match {
          case js.UndefinedParam() =>
            /* This is an intermediate assignment for default params on a
             * js.Any. Add the symbol to the corresponding set to inform
             * the Ident resolver how to replace it and don't emit the symbol.
             */
            undefinedDefaultParams += sym
            js.Skip()
          case _ =>
            js.VarDef(encodeLocalSym(sym),
                toIRType(sym.info), sym.is(Mutable), rhsTree)
        }

      case If(cond, thenp, elsep) =>
        js.If(genExpr(cond), genStatOrExpr(thenp, isStat),
            genStatOrExpr(elsep, isStat))(toIRType(tree.tpe))

      case Return(expr, from) =>
        // TODO Need to consider `from`?
        js.Return(toIRType(expr.tpe) match {
          case jstpe.NoType => js.Block(genStat(expr), js.Undefined())
          case _            => genExpr(expr)
        })

      /*case t: Try =>
        genTry(t, isStat)*/

      case app: Apply =>
        genApply(app, isStat)

      case app: TypeApply =>
        genTypeApply(app)

      /*case app: ApplyDynamic =>
        genApplyDynamic(app)*/

      case tree: This =>
        if (tree.symbol == currentClassSym.get) {
          genThis()
        } else {
          assert(tree.symbol.is(Module),
              "Trying to access the this of another class: " +
              "tree.symbol = " + tree.symbol +
              ", class symbol = " + currentClassSym.get +
              " pos:" + pos)
          genLoadModule(tree.symbol)
        }

      case Select(qualifier, _) =>
        val sym = tree.symbol
        if (sym.is(Module)) {
          assert(!sym.is(Package), "Cannot use package as value: " + tree)
          genLoadModule(sym)
        } else if (sym.is(JavaStatic)) {
          genLoadStaticField(sym)
        } else /*if (paramAccessorLocals contains sym) {
          paramAccessorLocals(sym).ref
        } else if (isScalaJSDefinedJSClass(sym.owner)) {
          val genQual = genExpr(qualifier)
          val boxed = if (isExposed(sym))
            js.JSBracketSelect(genQual, js.StringLiteral(jsNameOf(sym)))
          else
            js.JSDotSelect(genQual, encodeFieldSym(sym))
          fromAny(boxed,
              enteringPhase(currentRun.posterasurePhase)(sym.tpe))
        } else*/ {
          js.Select(genExpr(qualifier),
              encodeFieldSym(sym))(toIRType(sym.info))
        }

      case tree: Ident =>
        desugarIdent(tree).fold[js.Tree] {
          val sym = tree.symbol
          assert(!sym.is(Package), "Cannot use package as value: " + tree)
          if (sym.is(Module)) {
            genLoadModule(sym)
          } else if (undefinedDefaultParams.contains(sym)) {
            /* This is a default parameter whose assignment was moved to
             * a local variable. Put an undefined param instead.
             */
            js.UndefinedParam()(toIRType(sym.info))
          } else {
            js.VarRef(encodeLocalSym(sym))(toIRType(sym.info))
          }
        } { select =>
          genStatOrExpr(select, isStat)
        }

      case Literal(value) =>
        import Constants._
        value.tag match {
          case UnitTag =>
            js.Skip()
          case BooleanTag =>
            js.BooleanLiteral(value.booleanValue)
          case ByteTag | ShortTag | CharTag | IntTag =>
            js.IntLiteral(value.intValue)
          case LongTag =>
            js.LongLiteral(value.longValue)
          case FloatTag =>
            js.FloatLiteral(value.floatValue)
          case DoubleTag =>
            js.DoubleLiteral(value.doubleValue)
          case StringTag =>
            js.StringLiteral(value.stringValue)
          case NullTag =>
            js.Null()
          case ClazzTag =>
            genClassConstant(value.typeValue)
          /*case EnumTag =>
            genStaticMember(value.symbolValue)*/
        }

      case Block(stats, expr) =>
        js.Block(stats.map(genStat) :+ genStatOrExpr(expr, isStat))

      case Typed(expr, _) =>
        expr match {
          case _: Super => genThis()
          case _        => genExpr(expr)
        }

      case Assign(lhs0, rhs) =>
        val sym = lhs0.symbol
        if (sym.is(JavaStaticTerm))
          throw new FatalError(s"Assignment to static member ${sym.fullName} not supported")
        val genRhs = genExpr(rhs)
        val lhs = lhs0 match {
          case lhs: Ident => desugarIdent(lhs).getOrElse(lhs)
          case lhs => lhs
        }
        lhs match {
          case lhs: Select =>
            val qualifier = lhs.qualifier

            def ctorAssignment = (
                currentMethodSym.get.name == nme.CONSTRUCTOR &&
                currentMethodSym.get.owner == qualifier.symbol &&
                qualifier.isInstanceOf[This]
            )
            if (!sym.is(Mutable) && !ctorAssignment)
              throw new FatalError(s"Assigning to immutable field ${sym.fullName} at $pos")

            val genQual = genExpr(qualifier)

            /*if (isScalaJSDefinedJSClass(sym.owner)) {
              val genLhs = if (isExposed(sym))
                js.JSBracketSelect(genQual, js.StringLiteral(jsNameOf(sym)))
              else
                js.JSDotSelect(genQual, encodeFieldSym(sym))
              val boxedRhs =
                ensureBoxed(genRhs,
                    enteringPhase(currentRun.posterasurePhase)(rhs.tpe))
              js.Assign(genLhs, boxedRhs)
            } else {*/
              js.Assign(
                  js.Select(genQual, encodeFieldSym(sym))(toIRType(sym.info)),
                  genRhs)
            //}
          case _ =>
            js.Assign(
                js.VarRef(encodeLocalSym(sym))(toIRType(sym.info)),
                genRhs)
        }

      /** Array constructor */
      case javaSeqLiteral: JavaSeqLiteral =>
        genJavaSeqLiteral(javaSeqLiteral)

      /** A Match reaching the backend is supposed to be optimized as a switch */
      /*case mtch: Match =>
        genMatch(mtch, isStat)*/

      case tree: Closure =>
        genClosure(tree)

      /*case EmptyTree =>
        js.Skip()*/

      case _ =>
        throw new FatalError("Unexpected tree in genExpr: " +
            tree + "/" + tree.getClass + " at: " + (tree.pos: Position))
    }
  } // end of genStatOrExpr()

  // !!! DUPLICATE code with DottyBackendInterface
  private def desugarIdent(i: Ident): Option[Select] = {
    i.tpe match {
      case TermRef(prefix: TermRef, name) =>
        Some(tpd.ref(prefix).select(i.symbol))
      case TermRef(prefix: ThisType, name) =>
        Some(tpd.This(prefix.cls).select(i.symbol))
      /*case TermRef(NoPrefix, name) =>
        if (i.symbol is Method) Some(This(i.symbol.topLevelClass).select(i.symbol)) // workaround #342 todo: remove after fixed
        else None*/
      case _ =>
        None
    }
  }

  private def qualifierOf(fun: Tree): Tree = fun match {
    case fun: Ident =>
      fun.tpe match {
        case TermRef(prefix: TermRef, _) => tpd.ref(prefix)
        case TermRef(prefix: ThisType, _) => tpd.This(prefix.cls)
      }
    case Select(qualifier, _) =>
      qualifier
    case TypeApply(fun, _) =>
      qualifierOf(fun)
  }

  /** Gen JS this of the current class.
   *  Normally encoded straightforwardly as a JS this.
   *  But must be replaced by the `thisLocalVarIdent` local variable if there
   *  is one.
   */
  private def genThis()(implicit pos: Position): js.Tree = {
    /*if (tryingToGenMethodAsJSFunction) {
      throw new CancelGenMethodAsJSFunction(
          "Trying to generate `this` inside the body")
    }*/

    thisLocalVarIdent.fold[js.Tree] {
      js.This()(currentClassType)
    } { thisLocalIdent =>
      js.VarRef(thisLocalIdent)(currentClassType)
    }
  }

  /** Gen JS code for an Apply node (method call)
   *
   *  There's a whole bunch of varieties of Apply nodes: regular method
   *  calls, super calls, constructor calls, isInstanceOf/asInstanceOf,
   *  primitives, JS calls, etc. They are further dispatched in here.
   */
  private def genApply(tree: Apply, isStat: Boolean): js.Tree = {
    implicit val pos: Position = tree.pos
    val args = tree.args
    val sym = tree.fun.symbol

    val fun = tree.fun match {
      case fun: Ident => desugarIdent(fun).getOrElse(fun)
      case fun => fun
    }

    fun match {
      case _ if isJSDefaultParam(sym) =>
        js.UndefinedParam()(toIRType(sym.info.finalResultType))

      case Select(Super(_, _), _) =>
        genSuperCall(tree, isStat)

      case Select(New(_), nme.CONSTRUCTOR) =>
        genApplyNew(tree)

      case _ =>
        /*if (sym.isLabel) {
          genLabelApply(tree)
        } else*/ if (primitives.isPrimitive(tree)) {
          genPrimitiveOp(tree, isStat)
        } else if (Erasure.Boxing.isBox(sym)) {
          // Box a primitive value (cannot be Unit)
          val arg = args.head
          makePrimitiveBox(genExpr(arg), arg.tpe)
        } else if (Erasure.Boxing.isUnbox(sym)) {
          // Unbox a primitive value (cannot be Unit)
          val arg = args.head
          makePrimitiveUnbox(genExpr(arg), tree.tpe)
        } else {
          genNormalApply(tree, isStat)
        }
    }
  }

  /** Gen JS code for a super call, of the form Class.super[mix].fun(args).
   *
   *  This does not include calls defined in mixin traits, as these are
   *  already desugared by the 'mixin' phase. Only calls to super classes
   *  remain.
   *
   *  Since a class has exactly one direct superclass, and calling a method
   *  two classes above the current one is invalid in Scala, the `mix` item is
   *  irrelevant.
   */
  private def genSuperCall(tree: Apply, isStat: Boolean): js.Tree = {
    implicit val pos: Position = tree.pos
    val Apply(fun @ Select(sup @ Super(_, mix), _), args) = tree
    val sym = fun.symbol

    if (sym == defn.Any_getClass) {
      // The only primitive that is also callable as super call
      js.GetClass(genThis())
    } else /*if (isScalaJSDefinedJSClass(currentClassSym)) {
      genJSSuperCall(tree, isStat)
    } else*/ {
      val superCall = genApplyMethodStatically(
          genThis()(sup.pos), sym, genActualArgs(sym, args))

      // Initialize the module instance just after the super constructor call.
      if (isStaticModule(currentClassSym) && !isModuleInitialized &&
          currentMethodSym.get.isClassConstructor) {
        isModuleInitialized = true
        val thisType = jstpe.ClassType(encodeClassFullName(currentClassSym))
        val initModule = js.StoreModule(thisType, js.This()(thisType))
        js.Block(superCall, initModule)
      } else {
        superCall
      }
    }
  }

  /** Gen JS code for a constructor call (new).
   *  Further refined into:
   *  * new String(...)
   *  * new of a hijacked boxed class
   *  * new of an anonymous function class that was recorded as JS function
   *  * new of a raw JS class
   *  * new Array
   *  * regular new
   */
  private def genApplyNew(tree: Apply): js.Tree = {
    implicit val pos: Position = tree.pos

    val Apply(fun @ Select(New(tpt), nme.CONSTRUCTOR), args) = tree
    val ctor = fun.symbol
    val tpe = tpt.tpe

    assert(ctor.isClassConstructor,
        "'new' call to non-constructor: " + ctor.name)

    if (tpe.isRef(defn.StringClass)) {
      genNewString(ctor, genActualArgs(ctor, args))
    } else /*if (isHijackedBoxedClass(tpe.typeSymbol)) {
      genNewHijackedBoxedClass(tpe.typeSymbol, ctor, args map genExpr)
    } else if (translatedAnonFunctions contains tpe.typeSymbol) {
      val functionMaker = translatedAnonFunctions(tpe.typeSymbol)
      functionMaker(args map genExpr)
    } else*/ if (isJSType(tpe.widenDealias.typeSymbol)) {
      val clsSym = tpe.widenDealias.typeSymbol
      if (clsSym == jsdefn.JSObjectClass && args.isEmpty) js.JSObjectConstr(Nil)
      else if (clsSym == jsdefn.JSArrayClass && args.isEmpty) js.JSArrayConstr(Nil)
      else js.JSNew(genLoadJSConstructor(clsSym), genActualJSArgs(ctor, args))
    } else {
      toIRType(tpe) match {
        case cls: jstpe.ClassType =>
          js.New(cls, encodeMethodSym(ctor), genActualArgs(ctor, args))

        case other =>
          throw new FatalError(s"Non ClassType cannot be instantiated: $other")
      }
    }
  }

  /** Gen JS code for a primitive method call. */
  private def genPrimitiveOp(tree: Apply, isStat: Boolean): js.Tree = {
    import scala.tools.nsc.backend.ScalaPrimitives._

    implicit val pos: Position = tree.pos

    val Apply(fun, args) = tree
    val receiver = qualifierOf(fun)

    val code = primitives.getPrimitive(tree, receiver.tpe)

    if (isArithmeticOp(code) || isLogicalOp(code) || isComparisonOp(code))
      genSimpleOp(tree, receiver :: args, code)
    else if (code == CONCAT)
      genStringConcat(tree, receiver, args)
    else if (code == HASH)
      genScalaHash(tree, receiver)
    else if (isArrayOp(code))
      genArrayOp(tree, code)
    else if (code == SYNCHRONIZED)
      genSynchronized(tree, isStat)
    else if (isCoercion(code))
      genCoercion(tree, receiver, code)
    else if (code == JSPrimitives.THROW)
      genThrow(tree, args)
    else /*if (primitives.isJSPrimitive(code))
      genJSPrimitive(tree, receiver, args, code)
    else*/
      throw new FatalError(s"Unknown primitive: ${tree.symbol.fullName} at: $pos")
  }

  /** Gen JS code for a simple operation (arithmetic, logical, or comparison) */
  private def genSimpleOp(tree: Apply, args: List[Tree], code: Int): js.Tree = {
    args match {
      case List(arg)      => genSimpleUnaryOp(tree, arg, code)
      case List(lhs, rhs) => genSimpleBinaryOp(tree, lhs, rhs, code)
      case _              => throw new FatalError("Incorrect arity for primitive")
    }
  }

  /** Gen JS code for a simple unary operation. */
  private def genSimpleUnaryOp(tree: Apply, arg: Tree, code: Int): js.Tree = {
    import scala.tools.nsc.backend.ScalaPrimitives._

    implicit val pos: Position = tree.pos

    val genArg = genExpr(arg)
    val resultIRType = toIRType(tree.tpe)

    (code: @switch) match {
      case POS =>
        genArg

      case NEG =>
        (resultIRType: @unchecked) match {
          case jstpe.IntType =>
            js.BinaryOp(js.BinaryOp.Int_-, js.IntLiteral(0), genArg)
          case jstpe.LongType =>
            js.BinaryOp(js.BinaryOp.Long_-, js.LongLiteral(0), genArg)
          case jstpe.FloatType =>
            js.BinaryOp(js.BinaryOp.Float_-, js.FloatLiteral(0.0f), genArg)
          case jstpe.DoubleType =>
            js.BinaryOp(js.BinaryOp.Double_-, js.DoubleLiteral(0), genArg)
        }

      case NOT =>
        (resultIRType: @unchecked) match {
          case jstpe.IntType =>
            js.BinaryOp(js.BinaryOp.Int_^, js.IntLiteral(-1), genArg)
          case jstpe.LongType =>
            js.BinaryOp(js.BinaryOp.Long_^, js.LongLiteral(-1), genArg)
        }

      case ZNOT =>
        js.UnaryOp(js.UnaryOp.Boolean_!, genArg)

      case _ =>
        throw new FatalError("Unknown unary operation code: " + code)
    }
  }

  /** Gen JS code for a simple binary operation. */
  private def genSimpleBinaryOp(tree: Apply, lhs: Tree, rhs: Tree, code: Int): js.Tree = {
    import scala.tools.nsc.backend.ScalaPrimitives._
    import js.UnaryOp._

    /* Codes for operation types, in an object so that they can be 'final val'
     * and be used in switch-matches.
     */
    object OpTypes {
      final val DoubleOp = 1
      final val FloatOp = 2
      final val LongOp = 3
      final val IntOp = 4
      final val BooleanOp = 5
      final val AnyOp = 6
    }
    import OpTypes._

    implicit val pos: Position = tree.pos

    val lhsIRType = toIRType(lhs.tpe)
    val rhsIRType = toIRType(rhs.tpe)

    val opType = (lhsIRType, rhsIRType) match {
      case (jstpe.DoubleType, _) | (_, jstpe.DoubleType) => DoubleOp
      case (jstpe.FloatType, _) | (_, jstpe.FloatType)   => FloatOp
      case (jstpe.LongType, _) | (_, jstpe.LongType)     => LongOp
      case (jstpe.IntType, _) | (_, jstpe.IntType)       => IntOp
      case (jstpe.BooleanType, jstpe.BooleanType)        => BooleanOp
      case _                                             => AnyOp
    }

    if (opType == AnyOp && isUniversalEqualityOp(code)) {
      genUniversalEqualityOp(lhs, rhs, code)
    } else if (code == ZOR) {
      js.If(genExpr(lhs), js.BooleanLiteral(true), genExpr(rhs))(jstpe.BooleanType)
    } else if (code == ZAND) {
      js.If(genExpr(lhs), genExpr(rhs), js.BooleanLiteral(false))(jstpe.BooleanType)
    } else {
      import js.BinaryOp._

      def coerce(tree: js.Tree, opType: Int): js.Tree = (opType: @switch) match {
        case DoubleOp =>
          if (tree.tpe == jstpe.LongType) js.UnaryOp(LongToDouble, tree)
          else tree

        case FloatOp =>
          if (tree.tpe == jstpe.FloatType || tree.tpe == jstpe.IntType) tree
          else js.UnaryOp(DoubleToFloat, coerce(tree, DoubleOp))

        case LongOp =>
          if (tree.tpe == jstpe.LongType) tree
          else {
            assert(tree.tpe == jstpe.IntType)
            js.UnaryOp(IntToLong, tree)
          }

        case IntOp =>
          if (tree.tpe == jstpe.IntType) tree
          else {
            assert(tree.tpe == jstpe.LongType)
            js.UnaryOp(LongToInt, tree)
          }

        case BooleanOp | AnyOp =>
          tree
      }

      val rhsOpType = code match {
        case LSL | LSR | ASR => IntOp
        case _               => opType
      }

      val genLhs = coerce(genExpr(lhs), opType)
      val genRhs = coerce(genExpr(rhs), rhsOpType)

      val op = (opType: @switch) match {
        case IntOp =>
          (code: @switch) match {
            case ADD => Int_+
            case SUB => Int_-
            case MUL => Int_*
            case DIV => Int_/
            case MOD => Int_%
            case OR  => Int_|
            case AND => Int_&
            case XOR => Int_^
            case LSL => Int_<<
            case LSR => Int_>>>
            case ASR => Int_>>

            case EQ => Num_==
            case NE => Num_!=
            case LT => Num_<
            case LE => Num_<=
            case GT => Num_>
            case GE => Num_>=
          }

        case FloatOp =>
          (code: @switch) match {
            case ADD => Float_+
            case SUB => Float_-
            case MUL => Float_*
            case DIV => Float_/
            case MOD => Float_%

            case EQ => Num_==
            case NE => Num_!=
            case LT => Num_<
            case LE => Num_<=
            case GT => Num_>
            case GE => Num_>=
          }

        case DoubleOp =>
          (code: @switch) match {
            case ADD => Double_+
            case SUB => Double_-
            case MUL => Double_*
            case DIV => Double_/
            case MOD => Double_%

            case EQ => Num_==
            case NE => Num_!=
            case LT => Num_<
            case LE => Num_<=
            case GT => Num_>
            case GE => Num_>=
          }

        case LongOp =>
          (code: @switch) match {
            case ADD => Long_+
            case SUB => Long_-
            case MUL => Long_*
            case DIV => Long_/
            case MOD => Long_%
            case OR  => Long_|
            case XOR => Long_^
            case AND => Long_&
            case LSL => Long_<<
            case LSR => Long_>>>
            case ASR => Long_>>

            case EQ => Long_==
            case NE => Long_!=
            case LT => Long_<
            case LE => Long_<=
            case GT => Long_>
            case GE => Long_>=
          }

        case BooleanOp =>
          (code: @switch) match {
            case EQ  => Boolean_==
            case NE  => Boolean_!=
            case OR  => Boolean_|
            case AND => Boolean_&
            case XOR => Boolean_!=
          }

        case AnyOp =>
          /* No @switch because some 2.11 version erroneously report a warning
           * for switches with less than 3 non-default cases.
           */
          code match {
            case ID => ===
            case NI => !==
          }
      }

      js.BinaryOp(op, genLhs, genRhs)
    }
  }

  /** Gen JS code for a universal equality test. */
  private def genUniversalEqualityOp(lhs: Tree, rhs: Tree, code: Int)(
      implicit pos: Position): js.Tree = {

    import scala.tools.nsc.backend.ScalaPrimitives._

    val genLhs = genExpr(lhs)
    val genRhs = genExpr(rhs)

    val bypassEqEq = {
      // Do not call equals if we have a literal null at either side.
      genLhs.isInstanceOf[js.Null] ||
      genRhs.isInstanceOf[js.Null]
    }

    if (bypassEqEq) {
      js.BinaryOp(
          if (code == EQ) js.BinaryOp.=== else js.BinaryOp.!==,
          genLhs, genRhs)
    } else {
      val body = genEqEqPrimitive(lhs.tpe, rhs.tpe, genLhs, genRhs)
      if (code == EQ) body
      else js.UnaryOp(js.UnaryOp.Boolean_!, body)
    }
  }

  private lazy val externalEqualsNumNum: Symbol =
    defn.BoxesRunTimeModule.requiredMethod(nme.equalsNumNum)
  private lazy val externalEqualsNumChar: Symbol =
    NoSymbol // ctx.requiredMethod(BoxesRunTimeTypeRef, nme.equalsNumChar) // this method is private
  private lazy val externalEqualsNumObject: Symbol =
    defn.BoxesRunTimeModule.requiredMethod(nme.equalsNumObject)
  private lazy val externalEquals: Symbol =
    defn.BoxesRunTimeClass.info.decl(nme.equals_).suchThat(toDenot(_).info.firstParamTypes.size == 2).symbol

  /** Gen JS code for a call to Any.== */
  private def genEqEqPrimitive(ltpe: Type, rtpe: Type, lsrc: js.Tree, rsrc: js.Tree)(
      implicit pos: Position): js.Tree = {
    ctx.debuglog(s"$ltpe == $rtpe")
    val lsym = ltpe.widenDealias.typeSymbol.asClass
    val rsym = rtpe.widenDealias.typeSymbol.asClass

    /* True if the equality comparison is between values that require the
     * use of the rich equality comparator
     * (scala.runtime.BoxesRunTime.equals).
     * This is the case when either side of the comparison might have a
     * run-time type subtype of java.lang.Number or java.lang.Character,
     * **which includes when either is a JS type**.
     * When it is statically known that both sides are equal and subtypes of
     * Number or Character, not using the rich equality is possible (their
     * own equals method will do ok.)
     */
    val mustUseAnyComparator: Boolean = {
      isJSType(lsym) || isJSType(rsym) || {
        val p = ctx.platform
        val areSameFinals = lsym.is(Final) && rsym.is(Final) && (ltpe =:= rtpe)
        !areSameFinals && p.isMaybeBoxed(lsym) && p.isMaybeBoxed(rsym)
      }
    }

    if (mustUseAnyComparator) {
      val equalsMethod: Symbol = {
        // scalastyle:off line.size.limit
        val ptfm = ctx.platform
        if (lsym.derivesFrom(defn.BoxedNumberClass)) {
          if (rsym.derivesFrom(defn.BoxedNumberClass)) externalEqualsNumNum
          else if (rsym.derivesFrom(defn.BoxedCharClass)) externalEqualsNumObject // will be externalEqualsNumChar in 2.12, SI-9030
          else externalEqualsNumObject
        } else externalEquals
        // scalastyle:on line.size.limit
      }
      genModuleApplyMethod(equalsMethod, List(lsrc, rsrc))
    } else {
      // if (lsrc eq null) rsrc eq null else lsrc.equals(rsrc)
      if (lsym == defn.StringClass) {
        // String.equals(that) === (this eq that)
        js.BinaryOp(js.BinaryOp.===, lsrc, rsrc)
      } else {
        /* This requires to evaluate both operands in local values first.
         * The optimizer will eliminate them if possible.
         */
        val ltemp = js.VarDef(freshLocalIdent(), lsrc.tpe, mutable = false, lsrc)
        val rtemp = js.VarDef(freshLocalIdent(), rsrc.tpe, mutable = false, rsrc)
        js.Block(
            ltemp,
            rtemp,
            js.If(js.BinaryOp(js.BinaryOp.===, ltemp.ref, js.Null()),
                js.BinaryOp(js.BinaryOp.===, rtemp.ref, js.Null()),
                genApplyMethod(ltemp.ref, defn.Any_equals, List(rtemp.ref)))(
                jstpe.BooleanType))
      }
    }
  }

  /** Gen JS code for string concatenation.
   */
  private def genStringConcat(tree: Apply, receiver: Tree,
      args: List[Tree]): js.Tree = {
    implicit val pos: Position = tree.pos

    val arg = args.head

    /* Primitive number types such as scala.Int have a
     *   def +(s: String): String
     * method, which is why we have to box the lhs sometimes.
     * Otherwise, both lhs and rhs are already reference types (Any or String)
     * so boxing is not necessary (in particular, rhs is never a primitive).
     */
    assert(!isPrimitiveValueType(receiver.tpe) || arg.tpe.isRef(defn.StringClass))
    assert(!isPrimitiveValueType(arg.tpe))

    val genLhs = {
      val genLhs0 = genExpr(receiver)
      // Box the receiver if it is a primitive value
      if (!isPrimitiveValueType(receiver.tpe)) genLhs0
      else makePrimitiveBox(genLhs0, receiver.tpe)
    }

    val genRhs = genExpr(arg)

    js.BinaryOp(js.BinaryOp.String_+, genLhs, genRhs)
  }

  /** Gen JS code for a call to Any.## */
  private def genScalaHash(tree: Apply, receiver: Tree): js.Tree = {
    implicit val pos: Position = tree.pos

    genModuleApplyMethod(defn.ScalaRuntimeModule.requiredMethod(nme.hash_),
        List(genExpr(receiver)))
  }

  /** Gen JS code for an array operation (get, set or length) */
  private def genArrayOp(tree: Tree, code: Int): js.Tree = {
    import scala.tools.nsc.backend.ScalaPrimitives._

    implicit val pos: Position = tree.pos

    val Apply(fun, args) = tree
    val arrayObj = qualifierOf(fun)

    val genArray = genExpr(arrayObj)
    val genArgs = args.map(genExpr)

    def elementType: Type = arrayObj.tpe.widenDealias match {
      case defn.ArrayOf(el)  => el
      case JavaArrayType(el) => el
      case tpe =>
        ctx.error(s"expected Array $tpe")
        ErrorType
    }

    def genSelect(): js.Tree =
      js.ArraySelect(genArray, genArgs(0))(toIRType(elementType))

    if (isArrayGet(code)) {
      // get an item of the array
      assert(args.length == 1,
          s"Array get requires 1 argument, found ${args.length} in $tree")
      genSelect()
    } else if (isArraySet(code)) {
      // set an item of the array
      assert(args.length == 2,
          s"Array set requires 2 arguments, found ${args.length} in $tree")
      js.Assign(genSelect(), genArgs(1))
    } else {
      // length of the array
      js.ArrayLength(genArray)
    }
  }

  /** Gen JS code for a call to AnyRef.synchronized */
  private def genSynchronized(tree: Apply, isStat: Boolean): js.Tree = {
    /* JavaScript is single-threaded, so we can drop the
     * synchronization altogether.
     */
    val Apply(fun, List(arg)) = tree
    val receiver = qualifierOf(fun)

    val genReceiver = genExpr(receiver)
    val genArg = genStatOrExpr(arg, isStat)

    genReceiver match {
      case js.This() =>
        // common case for which there is no side-effect nor NPE
        genArg
      case _ =>
        implicit val pos: Position = tree.pos
        /* TODO Check for a null receiver?
         * In theory, it's UB, but that decision should be left for link time.
         */
        js.Block(genReceiver, genArg)
    }
  }

  /** Gen JS code for a coercion */
  private def genCoercion(tree: Apply, receiver: Tree, code: Int): js.Tree = {
    import scala.tools.nsc.backend.ScalaPrimitives._

    implicit val pos: Position = tree.pos

    val source = genExpr(receiver)

    def source2int = (code: @switch) match {
      case F2C | D2C | F2B | D2B | F2S | D2S | F2I | D2I =>
        js.UnaryOp(js.UnaryOp.DoubleToInt, source)
      case L2C | L2B | L2S | L2I =>
        js.UnaryOp(js.UnaryOp.LongToInt, source)
      case _ =>
        source
    }

    (code: @switch) match {
      // To Char, need to crop at unsigned 16-bit
      case B2C | S2C | I2C | L2C | F2C | D2C =>
        js.BinaryOp(js.BinaryOp.Int_&, source2int, js.IntLiteral(0xffff))

      // To Byte, need to crop at signed 8-bit
      case C2B | S2B | I2B | L2B | F2B | D2B =>
        // note: & 0xff would not work because of negative values
        js.BinaryOp(js.BinaryOp.Int_>>,
            js.BinaryOp(js.BinaryOp.Int_<<, source2int, js.IntLiteral(24)),
            js.IntLiteral(24))

      // To Short, need to crop at signed 16-bit
      case C2S | I2S | L2S | F2S | D2S =>
        // note: & 0xffff would not work because of negative values
        js.BinaryOp(js.BinaryOp.Int_>>,
            js.BinaryOp(js.BinaryOp.Int_<<, source2int, js.IntLiteral(16)),
            js.IntLiteral(16))

      // To Int, need to crop at signed 32-bit
      case L2I | F2I | D2I =>
        source2int

      // Any int to Long
      case C2L | B2L | S2L | I2L =>
        js.UnaryOp(js.UnaryOp.IntToLong, source)

      // Any double to Long
      case F2L | D2L =>
        js.UnaryOp(js.UnaryOp.DoubleToLong, source)

      // Long to Double
      case L2D =>
        js.UnaryOp(js.UnaryOp.LongToDouble, source)

      // Any int, or Double, to Float
      case C2F | B2F | S2F | I2F | D2F =>
        js.UnaryOp(js.UnaryOp.DoubleToFloat, source)

      // Long to Float === Long to Double to Float
      case L2F =>
        js.UnaryOp(js.UnaryOp.DoubleToFloat,
            js.UnaryOp(js.UnaryOp.LongToDouble, source))

      // Identities and IR upcasts
      case C2C | B2B | S2S | I2I | L2L | F2F | D2D |
           C2I | C2D |
           B2S | B2I | B2D |
           S2I | S2D |
           I2D |
           F2D =>
        source
    }
  }

  /** Gen a call to the special `throw` method. */
  private def genThrow(tree: Apply, args: List[Tree]): js.Tree = {
    implicit val pos: Position = tree.pos
    val exception = args.head
    val genException = genExpr(exception)
    js.Throw {
      if (exception.tpe.widenDealias.typeSymbol.derivesFrom(jsdefn.JavaScriptExceptionClass)) {
        genModuleApplyMethod(
            jsdefn.RuntimePackage_unwrapJavaScriptException,
            List(genException))
      } else {
        genException
      }
    }
  }

  /** Gen a "normal" apply (to a true method).
   *
   *  But even these are further refined into:
   *  * Methods of java.lang.String, which are redirected to the
   *    RuntimeString trait implementation.
   *  * Calls to methods of raw JS types (Scala.js -> JS interop)
   *  * Calls to methods in impl classes of Scala2 traits.
   *  * Regular method call
   */
  private def genNormalApply(tree: Apply, isStat: Boolean): js.Tree = {
    implicit val pos: Position = tree.pos

    val fun = tree.fun match {
      case fun: Ident => desugarIdent(fun).get
      case fun: Select => fun
    }
    val receiver = fun.qualifier
    val args = tree.args
    val sym = fun.symbol

    def isStringMethodFromObject: Boolean = sym.name match {
      case nme.toString_ | nme.equals_ | nme.hashCode_ => true
      case _                                           => false
    }

    if (sym.owner == defn.StringClass && !isStringMethodFromObject) {
      genApplyMethodOfString(genExpr(receiver), sym, genActualArgs(sym, args))
    } else if (isJSType(sym.owner)) {
      //if (!isScalaJSDefinedJSClass(sym.owner) || isExposed(sym))
        genApplyJSMethodGeneric(tree, sym, genExpr(receiver), genActualJSArgs(sym, args), isStat)
      /*else
        genApplyJSClassMethod(genExpr(receiver), sym, genActualArgs(sym, args))*/
    } else if (foreignIsImplClass(sym.owner)) {
      genTraitImplApply(sym, args.map(genExpr))
    } else if (sym.isClassConstructor) {
      // Calls to constructors are always statically linked
      genApplyMethodStatically(genExpr(receiver), sym, genActualArgs(sym, args))
    } else {
      genApplyMethod(genExpr(receiver), sym, genActualArgs(sym, args))
    }
  }

  /** Gen JS code for a call to a JS method (of a subclass of `js.Any`).
   *
   *  Basically it boils down to calling the method as a `JSBracketSelect`,
   *  without name mangling. But other aspects come into play:
   *
   *  - Operator methods are translated to JS operators (not method calls)
   *  - `apply` is translated as a function call, i.e., `o()` instead of `o.apply()`
   *  - Scala varargs are turned into JS varargs (see `genPrimitiveJSArgs()`)
   *  - Getters and parameterless methods are translated as `JSBracketSelect`
   *  - Setters are translated to `Assign` to `JSBracketSelect`
   */
  private def genApplyJSMethodGeneric(tree: Tree, sym: Symbol,
      receiver: js.Tree, args: List[js.Tree], isStat: Boolean,
      superIn: Option[Symbol] = None)(
      implicit pos: Position): js.Tree = {

    implicit val pos: Position = tree.pos

    def noSpread = !args.exists(_.isInstanceOf[js.JSSpread])
    val argc = args.size // meaningful only for methods that don't have varargs

    def requireNotSuper(): Unit = {
      if (superIn.isDefined)
        ctx.error("Illegal super call in Scala.js-defined JS class", tree.pos)
    }

    def hasExplicitJSEncoding = {
      sym.hasAnnotation(jsdefn.JSNameAnnot) ||
      sym.hasAnnotation(jsdefn.JSBracketAccessAnnot) ||
      sym.hasAnnotation(jsdefn.JSBracketCallAnnot)
    }

    val boxedResult = sym.name match {
      case JSUnaryOpMethodName(code) if argc == 0 =>
        requireNotSuper()
        js.JSUnaryOp(code, receiver)

      case JSBinaryOpMethodName(code) if argc == 1 =>
        requireNotSuper()
        js.JSBinaryOp(code, receiver, args.head)

      case nme.apply if !hasExplicitJSEncoding =>
        requireNotSuper()
        if (jsdefn.isJSThisFunctionClass(sym.owner))
          js.JSBracketMethodApply(receiver, js.StringLiteral("call"), args)
        else
          js.JSFunctionApply(receiver, args)

      case _ =>
        def jsFunName = js.StringLiteral(jsNameOf(sym))

        def genSuperReference(propName: js.Tree): js.Tree = {
          superIn.fold[js.Tree] {
            js.JSBracketSelect(receiver, propName)
          } { superInSym =>
            js.JSSuperBracketSelect(
                jstpe.ClassType(encodeClassFullName(superInSym)),
                receiver, propName)
          }
        }

        def genSelectGet(propName: js.Tree): js.Tree =
          genSuperReference(propName)

        def genSelectSet(propName: js.Tree, value: js.Tree): js.Tree =
          js.Assign(genSuperReference(propName), value)

        def genCall(methodName: js.Tree, args: List[js.Tree]): js.Tree = {
          superIn.fold[js.Tree] {
            js.JSBracketMethodApply(
                receiver, methodName, args)
          } { superInSym =>
            js.JSSuperBracketCall(
                jstpe.ClassType(encodeClassFullName(superInSym)),
                receiver, methodName, args)
          }
        }

        if (isJSGetter(sym)) {
          assert(noSpread && argc == 0)
          genSelectGet(jsFunName)
        } else if (isJSSetter(sym)) {
          assert(noSpread && argc == 1)
          genSelectSet(jsFunName, args.head)
        } else if (isJSBracketAccess(sym)) {
          assert(noSpread && (argc == 1 || argc == 2),
              s"@JSBracketAccess methods should have 1 or 2 non-varargs arguments")
          args match {
            case List(keyArg) =>
              genSelectGet(keyArg)
            case List(keyArg, valueArg) =>
              genSelectSet(keyArg, valueArg)
          }
        } else if (isJSBracketCall(sym)) {
          val (methodName, actualArgs) = extractFirstArg(args)
          genCall(methodName, actualArgs)
        } else {
          genCall(jsFunName, args)
        }
    }

    if (isStat) {
      boxedResult
    } else {
      val tpe = ctx.atPhase(ctx.elimErasedValueTypePhase) { implicit ctx =>
        sym.info.finalResultType
      }
      unbox(boxedResult, tpe)
    }
  }

  private object JSUnaryOpMethodName {
    private val map = Map(
      nme.UNARY_+ -> js.JSUnaryOp.+,
      nme.UNARY_- -> js.JSUnaryOp.-,
      nme.UNARY_~ -> js.JSUnaryOp.~,
      nme.UNARY_! -> js.JSUnaryOp.!
    )

    def unapply(name: Names.TermName): Option[js.JSUnaryOp.Code] =
      map.get(name)
  }

  private object JSBinaryOpMethodName {
    private val map = Map(
      nme.ADD -> js.JSBinaryOp.+,
      nme.SUB -> js.JSBinaryOp.-,
      nme.MUL -> js.JSBinaryOp.*,
      nme.DIV -> js.JSBinaryOp./,
      nme.MOD -> js.JSBinaryOp.%,

      nme.LSL -> js.JSBinaryOp.<<,
      nme.ASR -> js.JSBinaryOp.>>,
      nme.LSR -> js.JSBinaryOp.>>>,
      nme.OR  -> js.JSBinaryOp.|,
      nme.AND -> js.JSBinaryOp.&,
      nme.XOR -> js.JSBinaryOp.^,

      nme.LT -> js.JSBinaryOp.<,
      nme.LE -> js.JSBinaryOp.<=,
      nme.GT -> js.JSBinaryOp.>,
      nme.GE -> js.JSBinaryOp.>=,

      nme.ZAND -> js.JSBinaryOp.&&,
      nme.ZOR  -> js.JSBinaryOp.||
    )

    def unapply(name: Names.TermName): Option[js.JSBinaryOp.Code] =
      map.get(name)
  }

  /** Extract the first argument in a list of actual arguments.
   *
   *  This is nothing else than decomposing into head and tail, except that
   *  we assert that the first element is not a JSSpread.
   */
  private def extractFirstArg(args: List[js.Tree]): (js.Tree, List[js.Tree]) = {
    assert(args.nonEmpty,
        "Trying to extract the first argument of an empty argument list")
    val firstArg = args.head
    assert(!firstArg.isInstanceOf[js.JSSpread],
        "Trying to extract the first argument of an argument list starting " +
        "with a Spread argument: " + firstArg)
    (firstArg, args.tail)
  }

  /** Gen JS code for a call to a polymorphic method.
   *
   *  The only methods that reach the back-end as polymorphic are
   *  `isInstanceOf` and `asInstanceOf`.
   *
   *  (Well, in fact `DottyRunTime.newRefArray` too, but it is handled as a
   *  primitive instead.)
   */
  private def genTypeApply(tree: TypeApply): js.Tree = {
    implicit val pos: Position = tree.pos

    val TypeApply(fun, targs) = tree

    val sym = fun.symbol
    val receiver = qualifierOf(fun)

    val to = targs.head.tpe

    assert(!isPrimitiveValueType(receiver.tpe),
        s"Found receiver of type test with primitive type ${receiver.tpe} at $pos")
    assert(!isPrimitiveValueType(to),
        s"Found target type of type test with primitive type ${receiver.tpe} at $pos")

    val genReceiver = genExpr(receiver)

    if (sym == defn.Any_asInstanceOf) {
      genAsInstanceOf(genReceiver, to)
    } else if (sym == defn.Any_isInstanceOf) {
      genIsInstanceOf(tree, genReceiver, to)
    } else {
      throw new FatalError(
          s"Unexpected type application $fun with symbol ${sym.fullName}")
    }
  }

  /** Gen JS code for a Java Seq literal. */
  private def genJavaSeqLiteral(tree: JavaSeqLiteral): js.Tree = {
    implicit val pos: Position = tree.pos

    val genElems = tree.elems.map(genExpr)
    val arrayType = toReferenceType(tree.tpe).asInstanceOf[jstpe.ArrayType]
    js.ArrayValue(arrayType, genElems)
  }

  /** Gen JS code for a closure.
   *
   *  Input: a `Closure` tree of the form
   *  {{{
   *  Closure(env, call, functionalInterface)
   *  }}}
   *  representing the pseudo-syntax
   *  {{{
   *  { (p1, ..., pm) => call(env1, ..., envn, p1, ..., pm) }: functionInterface
   *  }}}
   *  where `envi` are identifiers in the local scope. The qualifier of `call`
   *  is also implicitly captured.
   *
   *  Output: a `js.Closure` tree of the form
   *  {{{
   *  js.Closure(formalCaptures, formalParams, body, actualCaptures)
   *  }}}
   *  representing the pseudo-syntax
   *  {{{
   *  lambda<formalCapture1 = actualCapture1, ..., formalCaptureN = actualCaptureN>(
   *      formalParam1, ..., formalParamM) = body
   *  }}}
   *  where the `actualCaptures` and `body` are, in general, arbitrary
   *  expressions. But in this case, `actualCaptures` will be identifiers from
   *  `env`, and the `body` will be of the form
   *  {{{
   *  call(formalCapture1.ref, ..., formalCaptureN.ref,
   *      formalParam1.ref, ...formalParamM.ref)
   *  }}}
   *
   *  When the `js.Closure` node is evaluated, i.e., when the closure value is
   *  created, the expressions of the `actualCaptures` are evaluated, and the
   *  results of those evaluations is "stored" in the environment of the
   *  closure as the corresponding `formalCapture`.
   *
   *  When we later *call* the closure, the `formalCaptures` already have their
   *  values from the environment, and they are available in the `body`. The
   *  `formalParams` of the created closure receive their values from the
   *  actual arguments at the call-site of the closure, and they are also
   *  available in the `body`.
   */
  private def genClosure(tree: Closure): js.Tree = {
    implicit val pos: Position = tree.pos
    val Closure(env, call, functionalInterface) = tree

    val envSize = env.size

    val (fun, args) = call match {
      // case Apply(fun, args) => (fun, args) // Conjectured not to happen
      case t @ Select(_, _) => (t, Nil)
      case t @ Ident(_) => (t, Nil)
    }
    val sym = fun.symbol

    val qualifier = qualifierOf(fun)
    val allCaptureValues = qualifier :: env

    val (formalCaptures, actualCaptures) = allCaptureValues.map { value =>
      implicit val pos: Position = value.pos
      val formalIdent = value match {
        case Ident(name) => freshLocalIdent(name.toString)
        case This(_)     => freshLocalIdent("this")
        case _           => freshLocalIdent()
      }
      val formalCapture =
        js.ParamDef(formalIdent, toIRType(value.tpe), mutable = false, rest = false)
      val actualCapture = genExpr(value)
      (formalCapture, actualCapture)
    }.unzip

    val formalParamNames = sym.info.paramNamess.flatten.drop(envSize)
    val formalParamTypes = sym.info.paramTypess.flatten.drop(envSize)
    val (formalParams, actualParams) = formalParamNames.zip(formalParamTypes).map {
      case (name, tpe) =>
        val formalParam = js.ParamDef(freshLocalIdent(name.toString),
            jstpe.AnyType, mutable = false, rest = false)
        val actualParam = unbox(formalParam.ref, tpe)
        (formalParam, actualParam)
    }.unzip

    val genBody = {
      val thisCaptureRef :: argCaptureRefs = formalCaptures.map(_.ref)
      val call = genApplyMethod(thisCaptureRef, sym, argCaptureRefs ::: actualParams)
      box(call, sym.info.finalResultType)
    }

    val closure = js.Closure(formalCaptures, formalParams, genBody, actualCaptures)
    ctx.debuglog(closure.toString)

    val funInterfaceSym = functionalInterface.tpe.widenDealias.typeSymbol
    if (jsdefn.isJSFunctionClass(funInterfaceSym)) {
      closure
    } else {
      assert(!funInterfaceSym.exists || defn.isFunctionClass(funInterfaceSym),
          s"Invalid functional interface $funInterfaceSym reached the back-end")
      val cls = "sjsr_AnonFunction" + formalParams.size
      val ctor = js.Ident("init___sjs_js_Function" + formalParams.size)
      js.New(jstpe.ClassType(cls), ctor, List(closure))
    }
  }

  /** Boxes a value of the given type before `elimErasedValueType`.
   *
   *  This should be used when sending values to a JavaScript context, which
   *  is erased/boxed at the IR level, although it is not erased at the
   *  dotty/JVM level.
   *
   *  @param expr Tree to be boxed if needed.
   *  @param tpeEnteringElimErasedValueType The type of `expr` as it was
   *    entering the `elimErasedValueType` phase.
   */
  private def box(expr: js.Tree, tpeEnteringElimErasedValueType: Type)(
      implicit pos: Position): js.Tree = {

    tpeEnteringElimErasedValueType match {
      case tpe if isPrimitiveValueType(tpe) =>
        makePrimitiveBox(expr, tpe)

      /*case tpe: ErasedValueType =>
        val boxedClass = tpe.valueClazz
        val ctor = boxedClass.primaryConstructor
        genNew(boxedClass, ctor, List(expr))*/

      case _ =>
        expr
    }
  }

  /** Unboxes a value typed as Any to the given type before `elimErasedValueType`.
   *
   *  This should be used when receiving values from a JavaScript context,
   *  which is erased/boxed at the IR level, although it is not erased at the
   *  dotty/JVM level.
   *
   *  @param expr Tree to be extracted.
   *  @param tpeEnteringElimErasedValueType The type of `expr` as it was
   *    entering the `elimErasedValueType` phase.
   */
  private def unbox(expr: js.Tree, tpeEnteringElimErasedValueType: Type)(
      implicit pos: Position): js.Tree = {

    tpeEnteringElimErasedValueType match {
      case tpe if isPrimitiveValueType(tpe) =>
        makePrimitiveUnbox(expr, tpe)

      /*case tpe: ErasedValueType =>
        val boxedClass = tpe.valueClazz
        val unboxMethod = boxedClass.derivedValueClassUnbox
        val content = genApplyMethod(
            genAsInstanceOf(expr, tpe), unboxMethod, Nil)
        if (unboxMethod.tpe.resultType <:< tpe.erasedUnderlying)
          content
        else
          fromAny(content, tpe.erasedUnderlying)*/

      case tpe =>
        genAsInstanceOf(expr, tpe)
    }
  }

  /** Gen JS code for an asInstanceOf cast (for reference types only) */
  private def genAsInstanceOf(value: js.Tree, to: Type)(
      implicit pos: Position): js.Tree = {

    val sym = to.widenDealias.typeSymbol

    if (sym == defn.ObjectClass || isJSType(sym)) {
      /* asInstanceOf[Object] always succeeds, and
       * asInstanceOf to a raw JS type is completely erased.
       */
      value
    } else {
      js.AsInstanceOf(value, toReferenceType(to))
    }
  }

  /** Gen JS code for an isInstanceOf test (for reference types only) */
  private def genIsInstanceOf(tree: Tree, value: js.Tree, to: Type): js.Tree = {
    implicit val pos: Position = tree.pos
    val sym = to.widenDealias.typeSymbol

    if (sym == defn.ObjectClass) {
      js.BinaryOp(js.BinaryOp.!==, value, js.Null())
    } else if (isJSType(sym)) {
      if (sym.is(Trait)) {
        ctx.error(
            s"isInstanceOf[${sym.fullName}] not supported because it is a JS trait",
            tree.pos)
        js.BooleanLiteral(true)
      } else {
        js.Unbox(js.JSBinaryOp(
            js.JSBinaryOp.instanceof, value, genLoadJSConstructor(sym)), 'Z')
      }
    } else {
      js.IsInstanceOf(value, toReferenceType(to))
    }
  }

  /** Gen a dynamically linked call to a Scala method. */
  private def genApplyMethod(receiver: js.Tree,
      methodSym: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    js.Apply(receiver, encodeMethodSym(methodSym), arguments)(
        toIRType(patchedResultType(methodSym)))
  }

  /** Gen a statically linked call to an instance method. */
  private def genApplyMethodStatically(receiver: js.Tree, method: Symbol,
      arguments: List[js.Tree])(implicit pos: Position): js.Tree = {
    val className = encodeClassFullName(method.owner)
    val methodIdent = encodeMethodSym(method)
    val resultType = toIRType(patchedResultType(method))
    js.ApplyStatically(receiver, jstpe.ClassType(className),
        methodIdent, arguments)(resultType)
  }

  /** Gen a call to a static method. */
  private def genApplyStatic(method: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    val cls = jstpe.ClassType(encodeClassFullName(method.owner))
    val methodIdent = encodeMethodSym(method)
    js.ApplyStatic(cls, methodIdent, arguments)(
        toIRType(patchedResultType(method)))
  }

  /** Gen a call to a Scala2 impl class method. */
  private def genTraitImplApply(method: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    genApplyStatic(method, arguments)
  }

  /** Gen a call to a non-exposed method of a non-native JS class. */
  private def genApplyJSClassMethod(receiver: js.Tree, method: Symbol,
      arguments: List[js.Tree])(implicit pos: Position): js.Tree = {
    genApplyStatic(method, receiver :: arguments)
  }

  /** Gen a call to a method of a Scala top-level module. */
  private def genModuleApplyMethod(methodSym: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    genApplyMethod(genLoadModule(methodSym.owner), methodSym, arguments)
  }

  /** Gen JS code for `new java.lang.String(...)`.
   *
   *  Rewires the instantiation to calling the appropriate overload of
   *  `newString` in the object `scala.scalajs.runtime.RuntimeString`.
   */
  private def genNewString(ctor: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    js.Apply(
        genLoadModule(jsdefn.RuntimeStringModuleClass),
        encodeRTStringCtorSym(ctor), arguments)(
        jstpe.ClassType(ir.Definitions.StringClass))
  }

  /** Gen a dynamically linked call to a method of java.lang.String.
   *
   *  Forwards the call to the module scala.scalajs.runtime.RuntimeString.
   */
  private def genApplyMethodOfString(receiver: js.Tree,
      methodSym: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    js.Apply(
        genLoadModule(jsdefn.RuntimeStringModuleClass),
        encodeRTStringMethodSym(methodSym),
        receiver :: arguments)(
        toIRType(patchedResultType(methodSym)))
  }

  /** Gen a boxing operation (tpe is the primitive type) */
  private def makePrimitiveBox(expr: js.Tree, tpe: Type)(
      implicit pos: Position): js.Tree = {
    toReferenceType(tpe) match {
      case jstpe.ClassType(cls) if ir.Definitions.isPrimitiveClass(cls) =>
        assert(cls.length == 1)
        (cls.charAt(0): @switch) match {
          case 'V' =>
            // must be handled at least for JS interop
            js.Block(expr, js.Undefined())
          case 'C' =>
            genModuleApplyMethod(jsdefn.BoxesRunTime_boxToCharacter, List(expr))
          case _ =>
            expr // box is identity for all non-Char types
        }

      case _ =>
        throw new FatalError(
            s"makePrimitiveBox requires a primitive type, found $tpe at $pos")
    }
  }

  /** Gen an unboxing operation (tpe is the primitive type) */
  private def makePrimitiveUnbox(expr: js.Tree, tpe: Type)(
      implicit pos: Position): js.Tree = {
    toReferenceType(tpe) match {
      case jstpe.ClassType(cls) if ir.Definitions.isPrimitiveClass(cls) =>
        assert(cls.length == 1)
        (cls.charAt(0): @switch) match {
          case 'V' =>
            // must be handled at least for JS interop
            expr
          case 'C' =>
            genModuleApplyMethod(jsdefn.BoxesRunTime_unboxToChar, List(expr))
          case primitiveCharCode =>
            js.Unbox(expr, primitiveCharCode)
        }

      case _ =>
        throw new FatalError(
            s"makePrimitiveUnbox requires a primitive type, found $tpe at $pos")
    }
  }

  /** Gen actual actual arguments to Scala method call.
   *  Returns a list of the transformed arguments.
   *
   *  This tries to optimize repeated arguments (varargs) by turning them
   *  into js.WrappedArray instead of Scala wrapped arrays.
   */
  private def genActualArgs(sym: Symbol, args: List[Tree])(
      implicit pos: Position): List[js.Tree] = {
    args.map(genExpr)
    /*val wereRepeated = exitingPhase(currentRun.typerPhase) {
      sym.tpe.params.map(p => isScalaRepeatedParamType(p.tpe))
    }

    if (wereRepeated.size > args.size) {
      // Should not happen, but let's not crash
      args.map(genExpr)
    } else {
      /* Arguments that are in excess compared to the type signature after
       * erasure are lambda-lifted arguments. They cannot be repeated, hence
       * the extension to `false`.
       */
      for ((arg, wasRepeated) <- args.zipAll(wereRepeated, EmptyTree, false)) yield {
        if (wasRepeated) {
          tryGenRepeatedParamAsJSArray(arg, handleNil = false).fold {
            genExpr(arg)
          } { genArgs =>
            genNew(WrappedArrayClass, WrappedArray_ctor,
                List(js.JSArrayConstr(genArgs)))
          }
        } else {
          genExpr(arg)
        }
      }
    }*/
  }

  /** Gen actual actual arguments to a JS method call.
   *  Returns a list of the transformed arguments.
   *
   *  - TODO Repeated arguments (varargs) are expanded
   *  - Default arguments are omitted or replaced by undefined
   *  - All arguments are boxed
   *
   *  Repeated arguments that cannot be expanded at compile time (i.e., if a
   *  Seq is passed to a varargs parameter with the syntax `seq: _*`) will be
   *  wrapped in a [[js.JSSpread]] node to be expanded at runtime.
   */
  private def genActualJSArgs(sym: Symbol, args: List[Tree])(
      implicit pos: Position): List[js.Tree] = {

    def paramNamesAndTypes(implicit ctx: Context): List[(Names.TermName, Type)] =
      sym.info.paramNamess.flatten.zip(sym.info.paramTypess.flatten)

    val wereRepeated = ctx.atPhase(ctx.elimRepeatedPhase) { implicit ctx =>
      for ((name, tpe) <- paramNamesAndTypes)
        yield (name -> tpe.isRepeatedParam)
    }.toMap

    val paramTypes = ctx.atPhase(ctx.elimErasedValueTypePhase) { implicit ctx =>
      paramNamesAndTypes
    }.toMap

    var reversedArgs: List[js.Tree] = Nil

    for ((arg, (paramName, paramType)) <- args.zip(paramNamesAndTypes)) {
      val wasRepeated = wereRepeated.getOrElse(paramName, false)
      if (wasRepeated) {
        reversedArgs =
          genJSRepeatedParam(arg) reverse_::: reversedArgs
      } else {
        val unboxedArg = genExpr(arg)
        val boxedArg = unboxedArg match {
          case js.UndefinedParam() =>
            unboxedArg
          case _ =>
            val tpe = paramTypes.getOrElse(paramName, paramType)
            box(unboxedArg, tpe)
        }
        reversedArgs ::= boxedArg
      }
    }

    /* Remove all consecutive js.UndefinedParam's at the end of the argument
     * list. No check is performed whether they may be there, since they will
     * only be placed where default arguments can be anyway.
     */
    reversedArgs = reversedArgs.dropWhile(_.isInstanceOf[js.UndefinedParam])

    /* Find remaining js.UndefinedParam and replace by js.Undefined. This can
     * happen with named arguments or with multiple argument lists.
     */
    reversedArgs = reversedArgs map {
      case js.UndefinedParam() => js.Undefined()
      case arg                 => arg
    }

    reversedArgs.reverse
  }

  /** Gen JS code for a repeated param of a JS method.
   *
   *  In this case `arg` has type `Seq[T]` for some `T`, but the result should
   *  be an expanded list of the elements in the sequence. So this method
   *  takes care of the conversion.
   *
   *  It is specialized for the shapes of tree generated by the desugaring
   *  of repeated params in Scala, so that these are actually expanded at
   *  compile-time.
   *
   *  Otherwise, it returns a `JSSpread` with the `Seq` converted to a
   *  `js.Array`.
   */
  private def genJSRepeatedParam(arg: Tree): List[js.Tree] = {
    tryGenRepeatedParamAsJSArray(arg, handleNil = true).getOrElse {
      /* Fall back to calling runtime.genTraversableOnce2jsArray
       * to perform the conversion to js.Array, then wrap in a Spread
       * operator.
       */
      implicit val pos: Position = arg.pos
      val jsArrayArg = genModuleApplyMethod(
          jsdefn.RuntimePackage_genTraversableOnce2jsArray,
          List(genExpr(arg)))
      List(js.JSSpread(jsArrayArg))
    }
  }

  /** Try and expand an actual argument to a repeated param `(xs: T*)`.
   *
   *  This method recognizes the shapes of tree generated by the desugaring
   *  of repeated params in Scala, and expands them.
   *  If `arg` does not have the shape of a generated repeated param, this
   *  method returns `None`.
   */
  private def tryGenRepeatedParamAsJSArray(arg: Tree,
      handleNil: Boolean): Option[List[js.Tree]] = {
    implicit val pos: Position = arg.pos

    // Given a method `def foo(args: T*)`
    arg match {
      // foo(arg1, arg2, ..., argN) where N > 0
      case MaybeAsInstanceOf(WrapArray(MaybeAsInstanceOf(array: JavaSeqLiteral))) =>
        /* Value classes in arrays are already boxed, so no need to use
         * the type before erasure.
         * TODO Is this true in dotty?
         */
        Some(array.elems.map(e => box(genExpr(e), e.tpe)))

      // foo()
      case Ident(_) if handleNil && arg.symbol == defn.NilModule =>
        Some(Nil)

      // foo(argSeq: _*) - cannot be optimized
      case _ =>
        None
    }
  }

  private object MaybeAsInstanceOf {
    def unapply(tree: Tree): Some[Tree] = tree match {
      case TypeApply(asInstanceOf_? @ Select(base, _), _)
          if asInstanceOf_?.symbol == defn.Any_asInstanceOf =>
        Some(base)
      case _ =>
        Some(tree)
    }
  }

  private object WrapArray {
    lazy val isWrapArray: Set[Symbol] = {
      val names = {
        defn.ScalaValueClasses().map(sym => nme.wrapXArray(sym.name)) ++
        Set(nme.wrapRefArray, nme.genericWrapArray)
      }
      names.map(defn.ScalaPredefModule.requiredMethod(_)).toSet
    }

    def unapply(tree: Apply): Option[Tree] = tree match {
      case Apply(wrapArray_?, List(wrapped)) if isWrapArray(wrapArray_?.symbol) =>
        Some(wrapped)
      case _ =>
        None
    }
  }

  /** Gen JS code for loading a Java static field.
   */
  private def genLoadStaticField(sym: Symbol)(implicit pos: Position): js.Tree = {
    /* Actually, there is no static member in Scala.js. If we come here, that
     * is because we found the symbol in a Java-emitted .class in the
     * classpath. But the corresponding implementation in Scala.js will
     * actually be a val in the companion module.
     */

    if (sym == defn.BoxedUnit_UNIT) {
      js.Undefined()
    } else {
      val instance = genLoadModule(sym.owner)
      val method = encodeStaticMemberSym(sym)
      js.Apply(instance, method, Nil)(toIRType(sym.info))
    }
  }

  /** Gen JS code for loading a module.
   *
   *  Can be given either the module symbol, or its module class symbol.
   */
  private def genLoadModule(sym0: Symbol)(implicit pos: Position): js.Tree = {
    require(sym0.is(Module),
        "genLoadModule called with non-module symbol: " + sym0)
    val sym1 = if (sym0.isTerm) sym0.moduleClass else sym0
    val sym = // redirect all static methods of String to RuntimeString
      if (sym1 == defn.StringModule) jsdefn.RuntimeStringModule.moduleClass
      else sym1

    if (isJSType(sym)) {
      if (isScalaJSDefinedJSClass(sym))
        js.LoadJSModule(jstpe.ClassType(encodeClassFullName(sym)))
      else if (sym.derivesFrom(jsdefn.JSGlobalScopeClass))
        genLoadJSGlobal()
      else
        genLoadNativeJSModule(sym)
    } else {
      js.LoadModule(jstpe.ClassType(encodeClassFullName(sym)))
    }
  }

  /** Gen JS code representing the constructor of a JS class. */
  private def genLoadJSConstructor(sym: Symbol)(
      implicit pos: Position): js.Tree = {
    assert(!isStaticModule(sym) && !sym.is(Trait),
        s"genPrimitiveJSClass called with non-class $sym")
    js.LoadJSConstructor(jstpe.ClassType(encodeClassFullName(sym)))
  }

  /** Gen JS code representing a native JS module. */
  private def genLoadNativeJSModule(sym: Symbol)(
      implicit pos: Position): js.Tree = {
    require(sym.is(ModuleClass),
        s"genLoadNativeJSModule called with non-module $sym")
    fullJSNameOf(sym).split('.').foldLeft(genLoadJSGlobal()) { (memo, chunk) =>
      js.JSBracketSelect(memo, js.StringLiteral(chunk))
    }
  }

  /** Gen JS code to load the JavaScript global scope. */
  private def genLoadJSGlobal()(implicit pos: Position): js.Tree = {
    js.JSBracketSelect(
        js.JSBracketSelect(js.JSLinkingInfo(), js.StringLiteral("envInfo")),
        js.StringLiteral("global"))
  }

  /** Generate a Class[_] value (e.g. coming from classOf[T]) */
  private def genClassConstant(tpe: Type)(implicit pos: Position): js.Tree =
    js.ClassOf(toReferenceType(tpe))

  private def isStaticModule(sym: Symbol): Boolean =
    sym.is(Module) && sym.isStatic

  private def isPrimitiveValueType(tpe: Type): Boolean = {
    tpe.widenDealias match {
      case JavaArrayType(_) => false
      case t                => t.typeSymbol.asClass.isPrimitiveValueClass
    }
  }

}