aboutsummaryrefslogtreecommitdiff
path: root/tests
diff options
context:
space:
mode:
authorMartin Odersky <odersky@gmail.com>2015-09-12 11:38:00 +0200
committerMartin Odersky <odersky@gmail.com>2015-09-12 12:36:57 +0200
commit5386c88b6e8d2f2ccf68e7d4e14b5fde6faf562f (patch)
treedd65496a2fae68a8efefd9e877c4c356ec2650a5 /tests
parent6fc42dd9ea03e30f475e4eaec3e1bf95c35de0d0 (diff)
downloaddotty-5386c88b6e8d2f2ccf68e7d4e14b5fde6faf562f.tar.gz
dotty-5386c88b6e8d2f2ccf68e7d4e14b5fde6faf562f.tar.bz2
dotty-5386c88b6e8d2f2ccf68e7d4e14b5fde6faf562f.zip
Fix desugaring problem
Desugaring worked incorrectly when both context bounds and default parameters were present.
Diffstat (limited to 'tests')
-rw-r--r--tests/pos/rbtree.scala565
1 files changed, 565 insertions, 0 deletions
diff --git a/tests/pos/rbtree.scala b/tests/pos/rbtree.scala
new file mode 100644
index 000000000..1401a1231
--- /dev/null
+++ b/tests/pos/rbtree.scala
@@ -0,0 +1,565 @@
+/* __ *\
+** ________ ___ / / ___ Scala API **
+** / __/ __// _ | / / / _ | (c) 2005-2013, LAMP/EPFL **
+** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
+** /____/\___/_/ |_/____/_/ | | **
+** |/ **
+\* */
+
+
+
+package scala
+package collection
+package immutable
+
+import scala.annotation.tailrec
+import scala.annotation.meta.getter
+
+/** An object containing the RedBlack tree implementation used by for `TreeMaps` and `TreeSets`.
+ *
+ * Implementation note: since efficiency is important for data structures this implementation
+ * uses `null` to represent empty trees. This also means pattern matching cannot
+ * easily be used. The API represented by the RedBlackTree object tries to hide these
+ * optimizations behind a reasonably clean API.
+ *
+ * @since 2.10
+ */
+private[collection]
+object RedBlackTree {
+
+ def isEmpty(tree: Tree[_, _]): Boolean = tree eq null
+
+ def contains[A: Ordering](tree: Tree[A, _], x: A): Boolean = lookup(tree, x) ne null
+ def get[A: Ordering, B](tree: Tree[A, B], x: A): Option[B] = lookup(tree, x) match {
+ case null => None
+ case tree => Some(tree.value)
+ }
+
+ @tailrec
+ def lookup[A, B](tree: Tree[A, B], x: A)(implicit ordering: Ordering[A]): Tree[A, B] = if (tree eq null) null else {
+ val cmp = ordering.compare(x, tree.key)
+ if (cmp < 0) lookup(tree.left, x)
+ else if (cmp > 0) lookup(tree.right, x)
+ else tree
+ }
+
+ def count(tree: Tree[_, _]) = if (tree eq null) 0 else tree.count
+ /**
+ * Count all the nodes with keys greater than or equal to the lower bound and less than the upper bound.
+ * The two bounds are optional.
+ */
+ def countInRange[A](tree: Tree[A, _], from: Option[A], to:Option[A])(implicit ordering: Ordering[A]) : Int =
+ if (tree eq null) 0 else
+ (from, to) match {
+ // with no bounds use this node's count
+ case (None, None) => tree.count
+ // if node is less than the lower bound, try the tree on the right, it might be in range
+ case (Some(lb), _) if ordering.lt(tree.key, lb) => countInRange(tree.right, from, to)
+ // if node is greater than or equal to the upper bound, try the tree on the left, it might be in range
+ case (_, Some(ub)) if ordering.gteq(tree.key, ub) => countInRange(tree.left, from, to)
+ // node is in range so the tree on the left will all be less than the upper bound and the tree on the
+ // right will all be greater than or equal to the lower bound. So 1 for this node plus
+ // count the subtrees by stripping off the bounds that we don't need any more
+ case _ => 1 + countInRange(tree.left, from, None) + countInRange(tree.right, None, to)
+
+ }
+ def update[A: Ordering, B, B1 >: B](tree: Tree[A, B], k: A, v: B1, overwrite: Boolean): Tree[A, B1] = blacken(upd(tree, k, v, overwrite))
+ def delete[A: Ordering, B](tree: Tree[A, B], k: A): Tree[A, B] = blacken(del(tree, k))
+ def rangeImpl[A: Ordering, B](tree: Tree[A, B], from: Option[A], until: Option[A]): Tree[A, B] = (from, until) match {
+ case (Some(from), Some(until)) => this.range(tree, from, until)
+ case (Some(from), None) => this.from(tree, from)
+ case (None, Some(until)) => this.until(tree, until)
+ case (None, None) => tree
+ }
+ def range[A: Ordering, B](tree: Tree[A, B], from: A, until: A): Tree[A, B] = blacken(doRange(tree, from, until))
+ def from[A: Ordering, B](tree: Tree[A, B], from: A): Tree[A, B] = blacken(doFrom(tree, from))
+ def to[A: Ordering, B](tree: Tree[A, B], to: A): Tree[A, B] = blacken(doTo(tree, to))
+ def until[A: Ordering, B](tree: Tree[A, B], key: A): Tree[A, B] = blacken(doUntil(tree, key))
+
+ def drop[A: Ordering, B](tree: Tree[A, B], n: Int): Tree[A, B] = blacken(doDrop(tree, n))
+ def take[A: Ordering, B](tree: Tree[A, B], n: Int): Tree[A, B] = blacken(doTake(tree, n))
+ def slice[A: Ordering, B](tree: Tree[A, B], from: Int, until: Int): Tree[A, B] = blacken(doSlice(tree, from, until))
+
+ def smallest[A, B](tree: Tree[A, B]): Tree[A, B] = {
+ if (tree eq null) throw new NoSuchElementException("empty map")
+ var result = tree
+ while (result.left ne null) result = result.left
+ result
+ }
+ def greatest[A, B](tree: Tree[A, B]): Tree[A, B] = {
+ if (tree eq null) throw new NoSuchElementException("empty map")
+ var result = tree
+ while (result.right ne null) result = result.right
+ result
+ }
+
+
+ def foreach[A,B,U](tree:Tree[A,B], f:((A,B)) => U):Unit = if (tree ne null) _foreach(tree,f)
+
+ private[this] def _foreach[A, B, U](tree: Tree[A, B], f: ((A, B)) => U): Unit = {
+ if (tree.left ne null) _foreach(tree.left, f)
+ f((tree.key, tree.value))
+ if (tree.right ne null) _foreach(tree.right, f)
+ }
+
+ def foreachKey[A, U](tree:Tree[A,_], f: A => U):Unit = if (tree ne null) _foreachKey(tree,f)
+
+ private[this] def _foreachKey[A, U](tree: Tree[A, _], f: A => U): Unit = {
+ if (tree.left ne null) _foreachKey(tree.left, f)
+ f((tree.key))
+ if (tree.right ne null) _foreachKey(tree.right, f)
+ }
+
+ def iterator[A: Ordering, B](tree: Tree[A, B], start: Option[A] = None): Iterator[(A, B)] = new EntriesIterator(tree, start)
+ def keysIterator[A: Ordering](tree: Tree[A, _], start: Option[A] = None): Iterator[A] = new KeysIterator(tree, start)
+ def valuesIterator[A: Ordering, B](tree: Tree[A, B], start: Option[A] = None): Iterator[B] = new ValuesIterator(tree, start)
+
+ @tailrec
+ def nth[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = {
+ val count = this.count(tree.left)
+ if (n < count) nth(tree.left, n)
+ else if (n > count) nth(tree.right, n - count - 1)
+ else tree
+ }
+
+ def isBlack(tree: Tree[_, _]) = (tree eq null) || isBlackTree(tree)
+
+ private[this] def isRedTree(tree: Tree[_, _]) = tree.isInstanceOf[RedTree[_, _]]
+ private[this] def isBlackTree(tree: Tree[_, _]) = tree.isInstanceOf[BlackTree[_, _]]
+
+ private[this] def blacken[A, B](t: Tree[A, B]): Tree[A, B] = if (t eq null) null else t.black
+
+ private[this] def mkTree[A, B](isBlack: Boolean, k: A, v: B, l: Tree[A, B], r: Tree[A, B]) =
+ if (isBlack) BlackTree(k, v, l, r) else RedTree(k, v, l, r)
+
+ private[this] def balanceLeft[A, B, B1 >: B](isBlack: Boolean, z: A, zv: B, l: Tree[A, B1], d: Tree[A, B1]): Tree[A, B1] = {
+ if (isRedTree(l) && isRedTree(l.left))
+ RedTree(l.key, l.value, BlackTree(l.left.key, l.left.value, l.left.left, l.left.right), BlackTree(z, zv, l.right, d))
+ else if (isRedTree(l) && isRedTree(l.right))
+ RedTree(l.right.key, l.right.value, BlackTree(l.key, l.value, l.left, l.right.left), BlackTree(z, zv, l.right.right, d))
+ else
+ mkTree(isBlack, z, zv, l, d)
+ }
+ private[this] def balanceRight[A, B, B1 >: B](isBlack: Boolean, x: A, xv: B, a: Tree[A, B1], r: Tree[A, B1]): Tree[A, B1] = {
+ if (isRedTree(r) && isRedTree(r.left))
+ RedTree(r.left.key, r.left.value, BlackTree(x, xv, a, r.left.left), BlackTree(r.key, r.value, r.left.right, r.right))
+ else if (isRedTree(r) && isRedTree(r.right))
+ RedTree(r.key, r.value, BlackTree(x, xv, a, r.left), BlackTree(r.right.key, r.right.value, r.right.left, r.right.right))
+ else
+ mkTree(isBlack, x, xv, a, r)
+ }
+ private[this] def upd[A, B, B1 >: B](tree: Tree[A, B], k: A, v: B1, overwrite: Boolean)(implicit ordering: Ordering[A]): Tree[A, B1] = if (tree eq null) {
+ RedTree(k, v, null, null)
+ } else {
+ val cmp = ordering.compare(k, tree.key)
+ if (cmp < 0) balanceLeft(isBlackTree(tree), tree.key, tree.value, upd(tree.left, k, v, overwrite), tree.right)
+ else if (cmp > 0) balanceRight(isBlackTree(tree), tree.key, tree.value, tree.left, upd(tree.right, k, v, overwrite))
+ else if (overwrite || k != tree.key) mkTree(isBlackTree(tree), k, v, tree.left, tree.right)
+ else tree
+ }
+ private[this] def updNth[A, B, B1 >: B](tree: Tree[A, B], idx: Int, k: A, v: B1, overwrite: Boolean): Tree[A, B1] = if (tree eq null) {
+ RedTree(k, v, null, null)
+ } else {
+ val rank = count(tree.left) + 1
+ if (idx < rank) balanceLeft(isBlackTree(tree), tree.key, tree.value, updNth(tree.left, idx, k, v, overwrite), tree.right)
+ else if (idx > rank) balanceRight(isBlackTree(tree), tree.key, tree.value, tree.left, updNth(tree.right, idx - rank, k, v, overwrite))
+ else if (overwrite) mkTree(isBlackTree(tree), k, v, tree.left, tree.right)
+ else tree
+ }
+
+ /* Based on Stefan Kahrs' Haskell version of Okasaki's Red&Black Trees
+ * http://www.cse.unsw.edu.au/~dons/data/RedBlackTree.html */
+ private[this] def del[A, B](tree: Tree[A, B], k: A)(implicit ordering: Ordering[A]): Tree[A, B] = if (tree eq null) null else {
+ def balance(x: A, xv: B, tl: Tree[A, B], tr: Tree[A, B]) = if (isRedTree(tl)) {
+ if (isRedTree(tr)) {
+ RedTree(x, xv, tl.black, tr.black)
+ } else if (isRedTree(tl.left)) {
+ RedTree(tl.key, tl.value, tl.left.black, BlackTree(x, xv, tl.right, tr))
+ } else if (isRedTree(tl.right)) {
+ RedTree(tl.right.key, tl.right.value, BlackTree(tl.key, tl.value, tl.left, tl.right.left), BlackTree(x, xv, tl.right.right, tr))
+ } else {
+ BlackTree(x, xv, tl, tr)
+ }
+ } else if (isRedTree(tr)) {
+ if (isRedTree(tr.right)) {
+ RedTree(tr.key, tr.value, BlackTree(x, xv, tl, tr.left), tr.right.black)
+ } else if (isRedTree(tr.left)) {
+ RedTree(tr.left.key, tr.left.value, BlackTree(x, xv, tl, tr.left.left), BlackTree(tr.key, tr.value, tr.left.right, tr.right))
+ } else {
+ BlackTree(x, xv, tl, tr)
+ }
+ } else {
+ BlackTree(x, xv, tl, tr)
+ }
+ def subl(t: Tree[A, B]) =
+ if (t.isInstanceOf[BlackTree[_, _]]) t.red
+ else sys.error("Defect: invariance violation; expected black, got "+t)
+
+ def balLeft(x: A, xv: B, tl: Tree[A, B], tr: Tree[A, B]) = if (isRedTree(tl)) {
+ RedTree(x, xv, tl.black, tr)
+ } else if (isBlackTree(tr)) {
+ balance(x, xv, tl, tr.red)
+ } else if (isRedTree(tr) && isBlackTree(tr.left)) {
+ RedTree(tr.left.key, tr.left.value, BlackTree(x, xv, tl, tr.left.left), balance(tr.key, tr.value, tr.left.right, subl(tr.right)))
+ } else {
+ sys.error("Defect: invariance violation")
+ }
+ def balRight(x: A, xv: B, tl: Tree[A, B], tr: Tree[A, B]) = if (isRedTree(tr)) {
+ RedTree(x, xv, tl, tr.black)
+ } else if (isBlackTree(tl)) {
+ balance(x, xv, tl.red, tr)
+ } else if (isRedTree(tl) && isBlackTree(tl.right)) {
+ RedTree(tl.right.key, tl.right.value, balance(tl.key, tl.value, subl(tl.left), tl.right.left), BlackTree(x, xv, tl.right.right, tr))
+ } else {
+ sys.error("Defect: invariance violation")
+ }
+ def delLeft = if (isBlackTree(tree.left)) balLeft(tree.key, tree.value, del(tree.left, k), tree.right) else RedTree(tree.key, tree.value, del(tree.left, k), tree.right)
+ def delRight = if (isBlackTree(tree.right)) balRight(tree.key, tree.value, tree.left, del(tree.right, k)) else RedTree(tree.key, tree.value, tree.left, del(tree.right, k))
+ def append(tl: Tree[A, B], tr: Tree[A, B]): Tree[A, B] = if (tl eq null) {
+ tr
+ } else if (tr eq null) {
+ tl
+ } else if (isRedTree(tl) && isRedTree(tr)) {
+ val bc = append(tl.right, tr.left)
+ if (isRedTree(bc)) {
+ RedTree(bc.key, bc.value, RedTree(tl.key, tl.value, tl.left, bc.left), RedTree(tr.key, tr.value, bc.right, tr.right))
+ } else {
+ RedTree(tl.key, tl.value, tl.left, RedTree(tr.key, tr.value, bc, tr.right))
+ }
+ } else if (isBlackTree(tl) && isBlackTree(tr)) {
+ val bc = append(tl.right, tr.left)
+ if (isRedTree(bc)) {
+ RedTree(bc.key, bc.value, BlackTree(tl.key, tl.value, tl.left, bc.left), BlackTree(tr.key, tr.value, bc.right, tr.right))
+ } else {
+ balLeft(tl.key, tl.value, tl.left, BlackTree(tr.key, tr.value, bc, tr.right))
+ }
+ } else if (isRedTree(tr)) {
+ RedTree(tr.key, tr.value, append(tl, tr.left), tr.right)
+ } else if (isRedTree(tl)) {
+ RedTree(tl.key, tl.value, tl.left, append(tl.right, tr))
+ } else {
+ sys.error("unmatched tree on append: " + tl + ", " + tr)
+ }
+
+ val cmp = ordering.compare(k, tree.key)
+ if (cmp < 0) delLeft
+ else if (cmp > 0) delRight
+ else append(tree.left, tree.right)
+ }
+
+ private[this] def doFrom[A, B](tree: Tree[A, B], from: A)(implicit ordering: Ordering[A]): Tree[A, B] = {
+ if (tree eq null) return null
+ if (ordering.lt(tree.key, from)) return doFrom(tree.right, from)
+ val newLeft = doFrom(tree.left, from)
+ if (newLeft eq tree.left) tree
+ else if (newLeft eq null) upd(tree.right, tree.key, tree.value, overwrite = false)
+ else rebalance(tree, newLeft, tree.right)
+ }
+ private[this] def doTo[A, B](tree: Tree[A, B], to: A)(implicit ordering: Ordering[A]): Tree[A, B] = {
+ if (tree eq null) return null
+ if (ordering.lt(to, tree.key)) return doTo(tree.left, to)
+ val newRight = doTo(tree.right, to)
+ if (newRight eq tree.right) tree
+ else if (newRight eq null) upd(tree.left, tree.key, tree.value, overwrite = false)
+ else rebalance(tree, tree.left, newRight)
+ }
+ private[this] def doUntil[A, B](tree: Tree[A, B], until: A)(implicit ordering: Ordering[A]): Tree[A, B] = {
+ if (tree eq null) return null
+ if (ordering.lteq(until, tree.key)) return doUntil(tree.left, until)
+ val newRight = doUntil(tree.right, until)
+ if (newRight eq tree.right) tree
+ else if (newRight eq null) upd(tree.left, tree.key, tree.value, overwrite = false)
+ else rebalance(tree, tree.left, newRight)
+ }
+ private[this] def doRange[A, B](tree: Tree[A, B], from: A, until: A)(implicit ordering: Ordering[A]): Tree[A, B] = {
+ if (tree eq null) return null
+ if (ordering.lt(tree.key, from)) return doRange(tree.right, from, until)
+ if (ordering.lteq(until, tree.key)) return doRange(tree.left, from, until)
+ val newLeft = doFrom(tree.left, from)
+ val newRight = doUntil(tree.right, until)
+ if ((newLeft eq tree.left) && (newRight eq tree.right)) tree
+ else if (newLeft eq null) upd(newRight, tree.key, tree.value, overwrite = false)
+ else if (newRight eq null) upd(newLeft, tree.key, tree.value, overwrite = false)
+ else rebalance(tree, newLeft, newRight)
+ }
+
+ private[this] def doDrop[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = {
+ if (n <= 0) return tree
+ if (n >= this.count(tree)) return null
+ val count = this.count(tree.left)
+ if (n > count) return doDrop(tree.right, n - count - 1)
+ val newLeft = doDrop(tree.left, n)
+ if (newLeft eq tree.left) tree
+ else if (newLeft eq null) updNth(tree.right, n - count - 1, tree.key, tree.value, overwrite = false)
+ else rebalance(tree, newLeft, tree.right)
+ }
+ private[this] def doTake[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = {
+ if (n <= 0) return null
+ if (n >= this.count(tree)) return tree
+ val count = this.count(tree.left)
+ if (n <= count) return doTake(tree.left, n)
+ val newRight = doTake(tree.right, n - count - 1)
+ if (newRight eq tree.right) tree
+ else if (newRight eq null) updNth(tree.left, n, tree.key, tree.value, overwrite = false)
+ else rebalance(tree, tree.left, newRight)
+ }
+ private[this] def doSlice[A, B](tree: Tree[A, B], from: Int, until: Int): Tree[A, B] = {
+ if (tree eq null) return null
+ val count = this.count(tree.left)
+ if (from > count) return doSlice(tree.right, from - count - 1, until - count - 1)
+ if (until <= count) return doSlice(tree.left, from, until)
+ val newLeft = doDrop(tree.left, from)
+ val newRight = doTake(tree.right, until - count - 1)
+ if ((newLeft eq tree.left) && (newRight eq tree.right)) tree
+ else if (newLeft eq null) updNth(newRight, from - count - 1, tree.key, tree.value, overwrite = false)
+ else if (newRight eq null) updNth(newLeft, until, tree.key, tree.value, overwrite = false)
+ else rebalance(tree, newLeft, newRight)
+ }
+
+ // The zipper returned might have been traversed left-most (always the left child)
+ // or right-most (always the right child). Left trees are traversed right-most,
+ // and right trees are traversed leftmost.
+
+ // Returns the zipper for the side with deepest black nodes depth, a flag
+ // indicating whether the trees were unbalanced at all, and a flag indicating
+ // whether the zipper was traversed left-most or right-most.
+
+ // If the trees were balanced, returns an empty zipper
+ private[this] def compareDepth[A, B](left: Tree[A, B], right: Tree[A, B]): (NList[Tree[A, B]], Boolean, Boolean, Int) = {
+ import NList.cons
+ // Once a side is found to be deeper, unzip it to the bottom
+ def unzip(zipper: NList[Tree[A, B]], leftMost: Boolean): NList[Tree[A, B]] = {
+ val next = if (leftMost) zipper.head.left else zipper.head.right
+ if (next eq null) zipper
+ else unzip(cons(next, zipper), leftMost)
+ }
+
+ // Unzip left tree on the rightmost side and right tree on the leftmost side until one is
+ // found to be deeper, or the bottom is reached
+ def unzipBoth(left: Tree[A, B],
+ right: Tree[A, B],
+ leftZipper: NList[Tree[A, B]],
+ rightZipper: NList[Tree[A, B]],
+ smallerDepth: Int): (NList[Tree[A, B]], Boolean, Boolean, Int) = {
+ if (isBlackTree(left) && isBlackTree(right)) {
+ unzipBoth(left.right, right.left, cons(left, leftZipper), cons(right, rightZipper), smallerDepth + 1)
+ } else if (isRedTree(left) && isRedTree(right)) {
+ unzipBoth(left.right, right.left, cons(left, leftZipper), cons(right, rightZipper), smallerDepth)
+ } else if (isRedTree(right)) {
+ unzipBoth(left, right.left, leftZipper, cons(right, rightZipper), smallerDepth)
+ } else if (isRedTree(left)) {
+ unzipBoth(left.right, right, cons(left, leftZipper), rightZipper, smallerDepth)
+ } else if ((left eq null) && (right eq null)) {
+ (null, true, false, smallerDepth)
+ } else if ((left eq null) && isBlackTree(right)) {
+ val leftMost = true
+ (unzip(cons(right, rightZipper), leftMost), false, leftMost, smallerDepth)
+ } else if (isBlackTree(left) && (right eq null)) {
+ val leftMost = false
+ (unzip(cons(left, leftZipper), leftMost), false, leftMost, smallerDepth)
+ } else {
+ sys.error("unmatched trees in unzip: " + left + ", " + right)
+ }
+ }
+ unzipBoth(left, right, null, null, 0)
+ }
+
+ private[this] def rebalance[A, B](tree: Tree[A, B], newLeft: Tree[A, B], newRight: Tree[A, B]) = {
+ // This is like drop(n-1), but only counting black nodes
+ @tailrec
+ def findDepth(zipper: NList[Tree[A, B]], depth: Int): NList[Tree[A, B]] =
+ if (zipper eq null) {
+ sys.error("Defect: unexpected empty zipper while computing range")
+ } else if (isBlackTree(zipper.head)) {
+ if (depth == 1) zipper else findDepth(zipper.tail, depth - 1)
+ } else {
+ findDepth(zipper.tail, depth)
+ }
+
+ // Blackening the smaller tree avoids balancing problems on union;
+ // this can't be done later, though, or it would change the result of compareDepth
+ val blkNewLeft = blacken(newLeft)
+ val blkNewRight = blacken(newRight)
+ val (zipper, levelled, leftMost, smallerDepth) = compareDepth(blkNewLeft, blkNewRight)
+
+ if (levelled) {
+ BlackTree(tree.key, tree.value, blkNewLeft, blkNewRight)
+ } else {
+ val zipFrom = findDepth(zipper, smallerDepth)
+ val union = if (leftMost) {
+ RedTree(tree.key, tree.value, blkNewLeft, zipFrom.head)
+ } else {
+ RedTree(tree.key, tree.value, zipFrom.head, blkNewRight)
+ }
+ val zippedTree = NList.foldLeft(zipFrom.tail, union: Tree[A, B]) { (tree, node) =>
+ if (leftMost)
+ balanceLeft(isBlackTree(node), node.key, node.value, tree, node.right)
+ else
+ balanceRight(isBlackTree(node), node.key, node.value, node.left, tree)
+ }
+ zippedTree
+ }
+ }
+
+ // Null optimized list implementation for tree rebalancing. null presents Nil.
+ private[this] final class NList[A](val head: A, val tail: NList[A])
+
+ private[this] final object NList {
+
+ def cons[B](x: B, xs: NList[B]): NList[B] = new NList(x, xs)
+
+ def foldLeft[A, B](xs: NList[A], z: B)(f: (B, A) => B): B = {
+ var acc = z
+ var these = xs
+ while (these ne null) {
+ acc = f(acc, these.head)
+ these = these.tail
+ }
+ acc
+ }
+
+ }
+
+ /*
+ * Forcing direct fields access using the @inline annotation helps speed up
+ * various operations (especially smallest/greatest and update/delete).
+ *
+ * Unfortunately the direct field access is not guaranteed to work (but
+ * works on the current implementation of the Scala compiler).
+ *
+ * An alternative is to implement the these classes using plain old Java code...
+ */
+ sealed abstract class Tree[A, +B](
+ @(inline @getter) final val key: A,
+ @(inline @getter) final val value: B,
+ @(inline @getter) final val left: Tree[A, B],
+ @(inline @getter) final val right: Tree[A, B])
+ extends Serializable {
+ @(inline @getter) final val count: Int = 1 + RedBlackTree.count(left) + RedBlackTree.count(right)
+ def black: Tree[A, B]
+ def red: Tree[A, B]
+ }
+ final class RedTree[A, +B](key: A,
+ value: B,
+ left: Tree[A, B],
+ right: Tree[A, B]) extends Tree[A, B](key, value, left, right) {
+ override def black: Tree[A, B] = BlackTree(key, value, left, right)
+ override def red: Tree[A, B] = this
+ override def toString: String = "RedTree(" + key + ", " + value + ", " + left + ", " + right + ")"
+ }
+ final class BlackTree[A, +B](key: A,
+ value: B,
+ left: Tree[A, B],
+ right: Tree[A, B]) extends Tree[A, B](key, value, left, right) {
+ override def black: Tree[A, B] = this
+ override def red: Tree[A, B] = RedTree(key, value, left, right)
+ override def toString: String = "BlackTree(" + key + ", " + value + ", " + left + ", " + right + ")"
+ }
+
+ object RedTree {
+ @inline def apply[A, B](key: A, value: B, left: Tree[A, B], right: Tree[A, B]) = new RedTree(key, value, left, right)
+ def unapply[A, B](t: RedTree[A, B]) = Some((t.key, t.value, t.left, t.right))
+ }
+ object BlackTree {
+ @inline def apply[A, B](key: A, value: B, left: Tree[A, B], right: Tree[A, B]) = new BlackTree(key, value, left, right)
+ def unapply[A, B](t: BlackTree[A, B]) = Some((t.key, t.value, t.left, t.right))
+ }
+
+ private[this] abstract class TreeIterator[A, B, R](root: Tree[A, B], start: Option[A])(implicit ordering: Ordering[A]) extends Iterator[R] {
+ protected[this] def nextResult(tree: Tree[A, B]): R
+
+ override def hasNext: Boolean = lookahead ne null
+
+ override def next: R = lookahead match {
+ case null =>
+ throw new NoSuchElementException("next on empty iterator")
+ case tree =>
+ lookahead = findLeftMostOrPopOnEmpty(goRight(tree))
+ nextResult(tree)
+ }
+
+// @tailrec
+ private[this] def findLeftMostOrPopOnEmpty(tree: Tree[A, B]): Tree[A, B] =
+ if (tree eq null) popNext()
+ else if (tree.left eq null) tree
+ else findLeftMostOrPopOnEmpty(goLeft(tree))
+
+ private[this] def pushNext(tree: Tree[A, B]): Unit = {
+ try {
+ stackOfNexts(index) = tree
+ index += 1
+ } catch {
+ case _: ArrayIndexOutOfBoundsException =>
+ /*
+ * Either the tree became unbalanced or we calculated the maximum height incorrectly.
+ * To avoid crashing the iterator we expand the path array. Obviously this should never
+ * happen...
+ *
+ * An exception handler is used instead of an if-condition to optimize the normal path.
+ * This makes a large difference in iteration speed!
+ */
+ assert(index >= stackOfNexts.length)
+ stackOfNexts :+= null
+ pushNext(tree)
+ }
+ }
+ private[this] def popNext(): Tree[A, B] = if (index == 0) null else {
+ index -= 1
+ stackOfNexts(index)
+ }
+
+ private[this] var stackOfNexts = if (root eq null) null else {
+ /*
+ * According to "Ralf Hinze. Constructing red-black trees" [http://www.cs.ox.ac.uk/ralf.hinze/publications/#P5]
+ * the maximum height of a red-black tree is 2*log_2(n + 2) - 2.
+ *
+ * According to {@see Integer#numberOfLeadingZeros} ceil(log_2(n)) = (32 - Integer.numberOfLeadingZeros(n - 1))
+ *
+ * We also don't store the deepest nodes in the path so the maximum path length is further reduced by one.
+ */
+ val maximumHeight = 2 * (32 - Integer.numberOfLeadingZeros(root.count + 2 - 1)) - 2 - 1
+ new Array[Tree[A, B]](maximumHeight)
+ }
+ private[this] var index = 0
+ private[this] var lookahead: Tree[A, B] = start map startFrom getOrElse findLeftMostOrPopOnEmpty(root)
+
+ /**
+ * Find the leftmost subtree whose key is equal to the given key, or if no such thing,
+ * the leftmost subtree with the key that would be "next" after it according
+ * to the ordering. Along the way build up the iterator's path stack so that "next"
+ * functionality works.
+ */
+ private[this] def startFrom(key: A) : Tree[A,B] = if (root eq null) null else {
+ @tailrec def find(tree: Tree[A, B]): Tree[A, B] =
+ if (tree eq null) popNext()
+ else find(
+ if (ordering.lteq(key, tree.key)) goLeft(tree)
+ else goRight(tree)
+ )
+ find(root)
+ }
+
+ private[this] def goLeft(tree: Tree[A, B]) = {
+ pushNext(tree)
+ tree.left
+ }
+
+ private[this] def goRight(tree: Tree[A, B]) = tree.right
+ }
+
+ private[this] class EntriesIterator[A: Ordering, B](tree: Tree[A, B], focus: Option[A]) extends TreeIterator[A, B, (A, B)](tree, focus) {
+ override def nextResult(tree: Tree[A, B]) = (tree.key, tree.value)
+ }
+
+ private[this] class KeysIterator[A: Ordering, B](tree: Tree[A, B], focus: Option[A]) extends TreeIterator[A, B, A](tree, focus) {
+ override def nextResult(tree: Tree[A, B]) = tree.key
+ }
+
+ private[this] class ValuesIterator[A: Ordering, B](tree: Tree[A, B], focus: Option[A]) extends TreeIterator[A, B, B](tree, focus) {
+ override def nextResult(tree: Tree[A, B]) = tree.value
+ }
+}
+
+object Test {
+ def main(args: Array[String]) = {}
+}