aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/ast/TreeInfo.scala
blob: 8957d88133df57b18c7c547f7e3ca6374a0493a1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
package dotty.tools
package dotc
package ast

import core._
import Flags._, Trees._, Types._, Contexts._
import Names._, StdNames._, NameOps._, Decorators._, Symbols._
import util.HashSet

trait TreeInfo[T >: Untyped <: Type] { self: Trees.Instance[T] =>

  // Note: the <: Type constraint looks necessary (and is needed to make the file compile in dotc).
  // But Scalac accepts the program happily without it. Need to find out why.

  def unsplice[T >: Untyped](tree: Trees.Tree[T]): Trees.Tree[T] = tree.asInstanceOf[untpd.Tree] match {
    case untpd.TypedSplice(tree1) => tree1.asInstanceOf[Trees.Tree[T]]
    case _ => tree
  }

  def isDeclarationOrTypeDef(tree: Tree): Boolean = unsplice(tree) match {
    case DefDef(_, _, _, _, _, EmptyTree)
      | ValDef(_, _, _, EmptyTree)
      | TypeDef(_, _, _) => true
    case _ => false
  }

  /** Is tree legal as a member definition of an interface?
   */
  def isInterfaceMember(tree: Tree): Boolean = unsplice(tree) match {
    case EmptyTree => true
    case Import(_, _) => true
    case TypeDef(_, _, _) => true
    case DefDef(mods, _, _, _, _, __) => mods.flags is Deferred
    case ValDef(mods, _, _, _) => mods is Deferred
    case _ => false
  }

  def isOpAssign(tree: Tree) = unsplice(tree) match {
    case Apply(fn, _ :: Nil) =>
      unsplice(fn) match {
        case Select(_, name) if name.isOpAssignmentName => true
        case _ => false
      }
    case _ => false
  }

  class MatchingArgs(params: List[Symbol], args: List[Tree])(implicit ctx: Context) {
    def foreach(f: (Symbol, Tree) => Unit): Boolean = {
      def recur(params: List[Symbol], args: List[Tree]): Boolean = params match {
        case Nil => args.isEmpty
        case param :: params1 =>
          if (param.info.isRepeatedParam) {
            for (arg <- args) f(param, arg)
            true
          } else args match {
            case Nil => false
            case arg :: args1 =>
              f(param, args.head)
              recur(params1, args1)
          }
      }
      recur(params, args)
    }
    def zipped: List[(Symbol, Tree)] = map((_, _))
    def map[R](f: (Symbol, Tree) => R): List[R] = {
      val b = List.newBuilder[R]
      foreach(b += f(_, _))
      b.result
    }
  }

  /** The method part of an application node, possibly enclosed in a block
   *  with only valdefs as statements. the reason for also considering blocks
   *  is that named arguments can transform a call into a block, e.g.
   *   <init>(b = foo, a = bar)
   * is transformed to
   *   { val x$1 = foo
   *     val x$2 = bar
   *     <init>(x$2, x$1)
   *   }
   */
  def methPart(tree: Tree): Tree = stripApply(tree) match {
    case TypeApply(fn, _) => methPart(fn)
    case AppliedTypeTree(fn, _) => methPart(fn) // !!! should not be needed
    case Block(stats, expr) => methPart(expr)
    case mp => mp
  }

  /** If tree is a closure, it's body, otherwise tree itself */
  def closureBody(tree: tpd.Tree): tpd.Tree = tree match {
    case Block(DefDef(_, nme.ANON_FUN, _, _, _, rhs) :: Nil, Closure(_, _, _)) => rhs
    case _ => tree
  }

  /** If this is an application, its function part, stripping all
   *  Apply nodes (but leaving TypeApply nodes in). Otherwise the tree itself.
   */
  def stripApply(tree: Tree): Tree = unsplice(tree) match {
    case Apply(fn, _) => stripApply(fn)
    case _ => tree
  }

  /** The number of arguments in an application */
  def numArgs(tree: Tree): Int = unsplice(tree) match {
    case Apply(fn, args) => numArgs(fn) + args.length
    case TypeApply(fn, args) => numArgs(fn)
    case Block(stats, expr) => numArgs(expr)
    case _ => 0
  }

  /** Is tree a self constructor call this(...)? I.e. a call to a constructor of the
   *  same object?
   */
  def isSelfConstrCall(tree: Tree): Boolean = methPart(tree) match {
    case Ident(nme.CONSTRUCTOR) | Select(This(_), nme.CONSTRUCTOR) => true
    case _ => false
  }

  /** Is tree a super constructor call?
   */
  def isSuperConstrCall(tree: Tree): Boolean = methPart(tree) match {
    case Select(Super(_, _), nme.CONSTRUCTOR) => true
    case _ => false
  }

  def isSuperSelection(tree: untpd.Tree) = unsplice(tree) match {
    case Select(Super(_, _), _) => true
    case _ => false
  }

  def isSelfOrSuperConstrCall(tree: Tree): Boolean = methPart(tree) match {
    case Ident(nme.CONSTRUCTOR)
       | Select(This(_), nme.CONSTRUCTOR)
       | Select(Super(_, _), nme.CONSTRUCTOR) => true
    case _ => false
  }

  /** Is tree a variable pattern? */
  def isVarPattern(pat: untpd.Tree): Boolean = unsplice(pat) match {
    case x: BackquotedIdent => false
    case x: Ident => x.name.isVariableName
    case _  => false
  }

  /** The first constructor definition in `stats` */
  def firstConstructor(stats: List[Tree]): Tree = stats match {
    case (meth: DefDef) :: _ if meth.name.isConstructorName => meth
    case stat :: stats => firstConstructor(stats)
    case nil => EmptyTree
  }

  /** The arguments to the first constructor in `stats`. */
  def firstConstructorArgs(stats: List[Tree]): List[Tree] = firstConstructor(stats) match {
    case DefDef(_, _, _, args :: _, _, _) => args
    case _                                => Nil
  }

  /** The value definitions marked PRESUPER in this statement sequence */
  def preSuperFields(stats: List[Tree]): List[ValDef] =
    (stats filter isEarlyValDef).asInstanceOf[List[ValDef]]

  def isEarlyDef(tree: Tree) = isEarlyValDef(tree) || isEarlyTypeDef(tree)

  def isEarlyValDef(tree: Tree) = unsplice(tree) match {
    case ValDef(mods, _, _, _) => mods is Scala2PreSuper
    case _ => false
  }

  def isEarlyTypeDef(tree: Tree) = unsplice(tree) match {
    case TypeDef(mods, _, _) => mods is Scala2PreSuper
    case _ => false
  }

  /** Is tpt a vararg type of the form T* ? */
  def isRepeatedParamType(tpt: Tree)(implicit ctx: Context) = tpt match {
    case tpt: TypeTree => tpt.typeOpt.isRepeatedParam
    case AppliedTypeTree(Select(_, tpnme.REPEATED_PARAM_CLASS), _)      => true
    case AppliedTypeTree(Select(_, tpnme.JAVA_REPEATED_PARAM_CLASS), _) => true
    case _                                                              => false
  }

  /** Is name a left-associative operator? */
  def isLeftAssoc(operator: Name) = operator.nonEmpty && (operator.last != ':')

  /** can this type be a type pattern? */
  def mayBeTypePat(tree: untpd.Tree): Boolean = unsplice(tree) match {
    case AndTypeTree(tpt1, tpt2) => mayBeTypePat(tpt1) || mayBeTypePat(tpt2)
    case OrTypeTree(tpt1, tpt2) => mayBeTypePat(tpt1) || mayBeTypePat(tpt2)
    case RefinedTypeTree(tpt, refinements) => mayBeTypePat(tpt) || refinements.exists(_.isInstanceOf[Bind])
    case AppliedTypeTree(tpt, args) => mayBeTypePat(tpt) || args.exists(_.isInstanceOf[Bind])
    case SelectFromTypeTree(tpt, _) => mayBeTypePat(tpt)
    case Annotated(_, tpt) => mayBeTypePat(tpt)
    case _ => false
  }

  /** Is this argument node of the form <expr> : _* ?
   */
  def isWildcardStarArg(tree: untpd.Tree): Boolean = unsplice(tree) match {
    case Typed(_, Ident(tpnme.WILDCARD_STAR)) => true
    case _ => false
  }

  /** If this tree has type parameters, those.  Otherwise Nil.
  def typeParameters(tree: Tree): List[TypeDef] = tree match {
    case DefDef(_, _, tparams, _, _, _) => tparams
    case ClassDef(_, _, tparams, _)     => tparams
    case TypeDef(_, _, tparams, _)      => tparams
    case _                              => Nil
  }*/

  /** Does this argument list end with an argument of the form <expr> : _* ? */
  def isWildcardStarArgList(trees: List[Tree]) =
    trees.nonEmpty && isWildcardStarArg(trees.last)

  /** Is the argument a wildcard argument of the form `_` or `x @ _`?
   */
  def isWildcardArg(tree: Tree): Boolean = unbind(tree) match {
    case Ident(nme.WILDCARD) => true
    case _                   => false
  }

  /** Is this pattern node a catch-all (wildcard or variable) pattern? */
  def isDefaultCase(cdef: CaseDef) = cdef match {
    case CaseDef(pat, EmptyTree, _) => isWildcardArg(pat)
    case _                            => false
  }

  /** Is this pattern node a synthetic catch-all case, added during PartialFuction synthesis before we know
    * whether the user provided cases are exhaustive. */
  def isSyntheticDefaultCase(cdef: CaseDef) = unsplice(cdef) match {
    case CaseDef(Bind(nme.DEFAULT_CASE, _), EmptyTree, _) => true
    case _                                                  => false
  }

  /** Does this CaseDef catch Throwable? */
  def catchesThrowable(cdef: CaseDef)(implicit ctx: Context) =
    catchesAllOf(cdef, defn.ThrowableClass.typeRef)

  /** Does this CaseDef catch everything of a certain Type? */
  def catchesAllOf(cdef: CaseDef, threshold: Type)(implicit ctx: Context) =
    isDefaultCase(cdef) ||
    cdef.guard.isEmpty && {
      unbind(cdef.pat) match {
        case Typed(Ident(nme.WILDCARD), tpt) => threshold <:< tpt.typeOpt
        case _                               => false
      }
    }

  /** Is this case guarded? */
  def isGuardedCase(cdef: CaseDef) = cdef.guard ne EmptyTree

  /** True iff definition if a val or def with no right-hand-side, or it
   *  is an abstract typoe declaration
   */
  def lacksDefinition(mdef: MemberDef) = mdef match {
    case mdef: ValOrDefDef => mdef.rhs.isEmpty && !mdef.name.isConstructorName
    case mdef: TypeDef => mdef.rhs.isEmpty || mdef.rhs.isInstanceOf[TypeBoundsTree]
    case _ => false
  }

  /** The underlying pattern ignoring any bindings */
  def unbind(x: Tree): Tree = unsplice(x) match {
    case Bind(_, y) => unbind(y)
    case y          => y
  }

  /** Checks whether predicate `p` is true for all result parts of this epression,
   *  where we zoom into Ifs, Matches, and Blocks.
   */
  def forallResults(tree: Tree, p: Tree => Boolean): Boolean = tree match {
    case If(_, thenp, elsep) => forallResults(thenp, p) && forallResults(elsep, p)
    case Match(_, cases) => cases forall (c => forallResults(c.body, p))
    case Block(_, expr) => forallResults(expr, p)
    case _ => p(tree)
  }
}

trait TypedTreeInfo extends TreeInfo[Type] {self: Trees.Instance[Type] =>

  /** Is tree a definition that has no side effects when
   *  evaluated as part of a block after the first time?
   */
  def isIdempotentDef(tree: tpd.Tree)(implicit ctx: Context): Boolean = unsplice(tree) match {
    case EmptyTree
       | TypeDef(_, _, _)
       | Import(_, _)
       | DefDef(_, _, _, _, _, _) =>
      true
    case ValDef(mods, _, _, rhs) =>
      !(mods is Mutable) && isIdempotentExpr(rhs)
    case _ =>
      false
  }

  /** Is tree an expression which can be inlined without affecting program semantics?
   *
   *  Note that this is not called "isExprPure" since purity (lack of side-effects)
   *  is not the litmus test.  References to modules and lazy vals are side-effecting,
   *  both because side-effecting code may be executed and because the first reference
   *  takes a different code path than all to follow; but they are safe to inline
   *  because the expression result from evaluating them is always the same.
   */
  def isIdempotentExpr(tree: tpd.Tree)(implicit ctx: Context): Boolean = unsplice(tree) match {
    case EmptyTree
       | This(_)
       | Super(_, _)
       | Literal(_) =>
      true
    case Ident(_) =>
      isIdempotentRef(tree)
    case Select(qual, _) =>
      isIdempotentRef(tree) && isIdempotentExpr(qual)
    case TypeApply(fn, _) =>
      isIdempotentExpr(fn)
/*
 * Not sure we'll need that. Comment out until we find out
    case Apply(Select(free @ Ident(_), nme.apply), _) if free.symbol.name endsWith nme.REIFY_FREE_VALUE_SUFFIX =>
      // see a detailed explanation of this trick in `GenSymbols.reifyFreeTerm`
      free.symbol.hasStableFlag && isIdempotentExpr(free)
*/
    case Apply(fn, Nil) =>
      // Note: After uncurry, field accesses are represented as Apply(getter, Nil),
      // so an Apply can also be pure.
      // However, before typing, applications of nullary functional values are also
      // Apply(function, Nil) trees. To prevent them from being treated as pure,
      // we check that the callee is a method.
      // The callee might also be a Block, which has a null symbol, so we guard against that (SI-7185)
      fn.symbol != null && (fn.symbol is (Method, butNot = Lazy)) && isIdempotentExpr(fn)
    case Typed(expr, _) =>
      isIdempotentExpr(expr)
    case Block(stats, expr) =>
      (stats forall isIdempotentDef) && isIdempotentExpr(expr)
    case _ =>
      false
  }

  def isIdempotentRef(tree: tpd.Tree)(implicit ctx: Context) =
    tree.symbol.isStable || !tree.tpe.widen.isParameterless

  /** Is symbol potentially a getter of a mutable variable?
   */
  def mayBeVarGetter(sym: Symbol)(implicit ctx: Context): Boolean = {
    def maybeGetterType(tpe: Type): Boolean = tpe match {
      case _: ExprType | _: ImplicitMethodType => true
      case tpe: PolyType => maybeGetterType(tpe.resultType)
      case _ => false
    }
    sym.owner.isClass && !sym.isStable && maybeGetterType(sym.info)
  }

  /** Is tree a reference to a mutable variable, or to a potential getter
   *  that has a setter in the same class?
   */
  def isVariableOrGetter(tree: tpd.Tree)(implicit ctx: Context) = {
    def sym = tree.symbol
    def isVar    = sym is Mutable
    def isGetter =
      mayBeVarGetter(sym) && sym.owner.info.member(sym.name.asTermName.setterName).exists

    unsplice(tree) match {
      case Ident(_) => isVar
      case Select(_, _) => isVar || isGetter
      case Apply(_, _) =>
        methPart(tree) match {
          case Select(qual, nme.apply) => qual.tpe.member(nme.update).exists
          case _ => false
        }
      case _ => false
    }
  }

  /** Is tree a `this` node which belongs to `enclClass`? */
  def isSelf(tree: Tree, enclClass: Symbol)(implicit ctx: Context): Boolean = unsplice(tree) match {
    case This(_) => tree.symbol == enclClass
    case _ => false
  }

  /** Strips layers of `.asInstanceOf[T]` / `_.$asInstanceOf[T]()` from an expression */
  def stripCast(tree: tpd.Tree)(implicit ctx: Context): tpd.Tree = {
    def isCast(sel: tpd.Tree) = defn.asInstanceOfMethods contains sel.symbol
    unsplice(tree) match {
      case TypeApply(sel @ Select(inner, _), _) if isCast(sel) =>
        stripCast(inner)
      case Apply(TypeApply(sel @ Select(inner, _), _), Nil) if isCast(sel) =>
        stripCast(inner)
      case t =>
        t
    }
  }

  /** Is this pattern node a catch-all or type-test pattern? */
  def isCatchCase(cdef: CaseDef)(implicit ctx: Context) = cdef match {
    case CaseDef(Typed(Ident(nme.WILDCARD), tpt), EmptyTree, _) =>
      isSimpleThrowable(tpt.tpe)
    case CaseDef(Bind(_, Typed(Ident(nme.WILDCARD), tpt)), EmptyTree, _) =>
      isSimpleThrowable(tpt.tpe)
    case _ =>
      isDefaultCase(cdef)
  }

  private def isSimpleThrowable(tp: Type)(implicit ctx: Context): Boolean = tp match {
    case tp @ TypeRef(pre, _) =>
      (pre == NoPrefix || pre.widen.typeSymbol.isStatic) &&
      (tp.symbol derivesFrom defn.ThrowableClass) && !(tp.symbol is Trait)
    case _ =>
      false
  }

  /** a Match(Typed(_, tpt), _) must be translated into a switch if isSwitchAnnotation(tpt.tpe)
  def isSwitchAnnotation(tpe: Type) = tpe hasAnnotation defn.SwitchClass
  */
}


  /** Does list of trees start with a definition of
   *  a class of module with given name (ignoring imports)
  def firstDefinesClassOrObject(trees: List[Tree], name: Name): Boolean = trees match {
      case Import(_, _) :: xs               => firstDefinesClassOrObject(xs, name)
      case Annotated(_, tree1) :: Nil       => firstDefinesClassOrObject(List(tree1), name)
      case ModuleDef(_, `name`, _) :: Nil   => true
      case ClassDef(_, `name`, _, _) :: Nil => true
      case _                                => false
    }


  /** Is this file the body of a compilation unit which should not
   *  have Predef imported?
   */
  def noPredefImportForUnit(body: Tree) = {
    // Top-level definition whose leading imports include Predef.
    def isLeadingPredefImport(defn: Tree): Boolean = defn match {
      case PackageDef(_, defs1) => defs1 exists isLeadingPredefImport
      case Import(expr, _)      => isReferenceToPredef(expr)
      case _                    => false
    }
    // Compilation unit is class or object 'name' in package 'scala'
    def isUnitInScala(tree: Tree, name: Name) = tree match {
      case PackageDef(Ident(nme.scala_), defs) => firstDefinesClassOrObject(defs, name)
      case _                                   => false
    }

    isUnitInScala(body, nme.Predef) || isLeadingPredefImport(body)
  }
   */

  /*
  def isAbsTypeDef(tree: Tree) = tree match {
    case TypeDef(_, _, _, TypeBoundsTree(_, _)) => true
    case TypeDef(_, _, _, rhs) => rhs.tpe.isInstanceOf[TypeBounds]
    case _ => false
  }

  def isAliasTypeDef(tree: Tree) = tree match {
    case TypeDef(_, _, _, _) => !isAbsTypeDef(tree)
    case _ => false
  }

  /** Some handy extractors for spotting trees through the
   *  the haze of irrelevant braces: i.e. Block(Nil, SomeTree)
   *  should not keep us from seeing SomeTree.
   */
  abstract class SeeThroughBlocks[T] {
    protected def unapplyImpl(x: Tree): T
    def unapply(x: Tree): T = x match {
      case Block(Nil, expr)         => unapply(expr)
      case _                        => unapplyImpl(x)
    }
  }
  object IsTrue extends SeeThroughBlocks[Boolean] {
    protected def unapplyImpl(x: Tree): Boolean = x match {
      case Literal(Constant(true)) => true
      case _                       => false
    }
  }
  object IsFalse extends SeeThroughBlocks[Boolean] {
    protected def unapplyImpl(x: Tree): Boolean = x match {
      case Literal(Constant(false)) => true
      case _                        => false
    }
  }
  object IsIf extends SeeThroughBlocks[Option[(Tree, Tree, Tree)]] {
    protected def unapplyImpl(x: Tree) = x match {
      case If(cond, thenp, elsep) => Some((cond, thenp, elsep))
      case _                      => None
    }
  }

  def isApplyDynamicName(name: Name) = (name == nme.updateDynamic) || (name == nme.selectDynamic) || (name == nme.applyDynamic) || (name == nme.applyDynamicNamed)

  class DynamicApplicationExtractor(nameTest: Name => Boolean) {
    def unapply(tree: Tree) = tree match {
      case Apply(TypeApply(Select(qual, oper), _), List(Literal(Constant(name)))) if nameTest(oper) => Some((qual, name))
      case Apply(Select(qual, oper), List(Literal(Constant(name)))) if nameTest(oper) => Some((qual, name))
      case Apply(Ident(oper), List(Literal(Constant(name)))) if nameTest(oper) => Some((EmptyTree(), name))
      case _ => None
    }
  }
  object DynamicUpdate extends DynamicApplicationExtractor(_ == nme.updateDynamic)
  object DynamicApplication extends DynamicApplicationExtractor(isApplyDynamicName)
  object DynamicApplicationNamed extends DynamicApplicationExtractor(_ == nme.applyDynamicNamed)

  object MacroImplReference {
    private def refPart(tree: Tree): Tree = tree match {
      case TypeApply(fun, _) => refPart(fun)
      case ref: RefTree => ref
      case _ => EmptyTree()
    }

    def unapply(tree: Tree) = refPart(tree) match {
      case ref: RefTree => Some((ref.qualifier.symbol, ref.symbol, dissectApplied(tree).targs))
      case _            => None
    }
  }

  def isNullaryInvocation(tree: Tree): Boolean =
    tree.symbol != null && tree.symbol.isMethod && (tree match {
      case TypeApply(fun, _) => isNullaryInvocation(fun)
      case tree: RefTree => true
      case _ => false
    })*/