aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/core/SymDenotations.scala
blob: e1dd64ab5a058511294579caa56c07ca4fb9daa6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
package dotty.tools.dotc
package core

import Periods._, Contexts._, Symbols._, Denotations._, Names._, NameOps._, Annotations._
import Types._, Flags._, Decorators._, Transformers._, StdNames._, Scopes._
import NameOps._
import Scopes.Scope
import collection.mutable
import collection.immutable.BitSet
import scala.reflect.io.AbstractFile
import Decorators.SymbolIteratorDecorator
import annotation.tailrec
import util.SimpleMap
import config.Config
import config.Printers._

trait SymDenotations { this: Context =>
  import SymDenotations._

  /** Factory method for SymDenotion creation. All creations
   *  should be done via this method.
   */
  def SymDenotation(
    symbol: Symbol,
    owner: Symbol,
    name: Name,
    initFlags: FlagSet,
    initInfo: Type,
    initPrivateWithin: Symbol = NoSymbol)(implicit ctx: Context): SymDenotation = {
    val result =
      if (symbol.isClass) new ClassDenotation(symbol, owner, name, initFlags, initInfo, initPrivateWithin)
      else new SymDenotation(symbol, owner, name, initFlags, initInfo, initPrivateWithin)
    result.validFor = stablePeriod
    result
  }

  def stillValid(denot: SymDenotation): Boolean =
    if (denot is ValidForever) true
    else if (denot.owner is PackageClass) denot.owner.decls.lookup(denot.name) eq denot.symbol
    else stillValid(denot.owner)
}

object SymDenotations {

  /** A sym-denotation represents the contents of a definition
   *  during a period.
   */
  class SymDenotation private[SymDenotations] (
    final val symbol: Symbol,
    ownerIfExists: Symbol,
    final val name: Name,
    initFlags: FlagSet,
    initInfo: Type,
    initPrivateWithin: Symbol = NoSymbol) extends SingleDenotation {

    //assert(symbol.id != 4940, name)

    override def hasUniqueSym: Boolean = exists

    // ------ Getting and setting fields -----------------------------

    private[this] var myFlags: FlagSet = adaptFlags(initFlags)
    private[this] var myInfo: Type = initInfo
    private[this] var myPrivateWithin: Symbol = initPrivateWithin
    private[this] var myAnnotations: List[Annotation] = Nil

    /** The owner of the symbol; overridden in NoDenotation */
    def owner: Symbol = ownerIfExists

    /** The flag set */
    final def flags: FlagSet = { ensureCompleted(); myFlags }

    /** The flag set without forcing symbol completion.
     *  Should be used only for printing.
     */
    private[dotc] final def flagsUNSAFE = myFlags

    /** Adapt flag set to this denotation's term or type nature */
    private def adaptFlags(flags: FlagSet) = if (isType) flags.toTypeFlags else flags.toTermFlags

    /** Update the flag set */
    private final def flags_=(flags: FlagSet): Unit =
      myFlags = adaptFlags(flags)

    /** Set given flags(s) of this denotation */
    final def setFlag(flags: FlagSet): Unit = { myFlags |= flags }

    /** Unset given flags(s) of this denotation */
    final def resetFlag(flags: FlagSet): Unit = { myFlags &~= flags }

    /** Has this denotation one of the flags in `fs` set? */
    final def is(fs: FlagSet) = {
      (if (fs <= FromStartFlags) myFlags else flags) is fs
    }

    /** Has this denotation one of the flags in `fs` set, whereas none of the flags
     *  in `butNot` are set?
     */
    final def is(fs: FlagSet, butNot: FlagSet) =
      (if (fs <= FromStartFlags && butNot <= FromStartFlags) myFlags else flags) is (fs, butNot)

    /** Has this denotation all of the flags in `fs` set? */
    final def is(fs: FlagConjunction) =
      (if (fs <= FromStartFlags) myFlags else flags) is fs

    /** Has this denotation all of the flags in `fs` set, whereas none of the flags
     *  in `butNot` are set?
     */
    final def is(fs: FlagConjunction, butNot: FlagSet) =
      (if (fs <= FromStartFlags && butNot <= FromStartFlags) myFlags else flags) is (fs, butNot)

    /** The type info.
     *  The info is an instance of TypeType iff this is a type denotation
     *  Uncompleted denotations set myInfo to a LazyType.
     */
    final def info: Type = myInfo match {
      case myInfo: LazyType => completeFrom(myInfo); info
      case _ => myInfo
    }

    /** Optionally, the info if it is completed */
    final def unforcedInfo: Option[Type] = myInfo match {
      case myInfo: LazyType => None
      case _ => Some(myInfo)
    }

    private def completeFrom(completer: LazyType): Unit = {
      if (myFlags is Touched) throw new CyclicReference(this)
      myFlags |= Touched

      completions.println(s"completing ${this.debugString}")
      completer.complete(this)
      completions.println(s"completed ${this.debugString}")
    }

    protected[dotc] final def info_=(tp: Type) = {
      /*
      def illegal: String = s"illegal type for $this: $tp"
      if (this is Module) // make sure module invariants that allow moduleClass and sourceModule to work are kept.
        tp match {
          case tp: ClassInfo => assert(tp.selfInfo.isInstanceOf[TermRefBySym], illegal)
          case tp: NamedType => assert(tp.isInstanceOf[TypeRefBySym], illegal)
          case tp: ExprType => assert(tp.resultType.isInstanceOf[TypeRefBySym], illegal)
          case _ =>
        }
        */
      myInfo = tp
    }

    /** The name, except if this is a module class, strip the module class suffix */
    def effectiveName =
      if (this is ModuleClass) name.stripModuleClassSuffix else name

    /** The privateWithin boundary, NoSymbol if no boundary is given.
     */
    final def privateWithin: Symbol = { ensureCompleted(); myPrivateWithin }

    /** Set privateWithin. */
    protected[core] final def privateWithin_=(sym: Symbol): Unit =
      myPrivateWithin = sym

    /** The annotations of this denotation */
    final def annotations: List[Annotation] = {
      ensureCompleted(); myAnnotations
    }

    /** Update the annotations of this denotation */
    private[core] final def annotations_=(annots: List[Annotation]): Unit =
       myAnnotations = annots

    /** Does this denotation have an annotation matching the given class symbol? */
    final def hasAnnotation(cls: Symbol)(implicit ctx: Context) =
      dropOtherAnnotations(annotations, cls).nonEmpty

    /** Add given annotation to the annotations of this denotation */
    final def addAnnotation(annot: Annotation): Unit =
      annotations = annot :: myAnnotations

    @tailrec
    private def dropOtherAnnotations(anns: List[Annotation], cls: Symbol)(implicit ctx: Context): List[Annotation] = anns match {
      case ann :: rest => if (ann matches cls) anns else dropOtherAnnotations(rest, cls)
      case Nil => Nil
    }

    /** The denotation is completed: info is not a lazy type and attributes have defined values */
    final def isCompleted: Boolean = !myInfo.isInstanceOf[LazyType]

    /** The denotation is in train of being completed */
    final def isCompleting: Boolean = (myFlags is Touched) && !isCompleted

    /** The completer of this denotation. @pre: Denotation is not yet completed */
    final def completer: LazyType = myInfo.asInstanceOf[LazyType]

    /** Make sure this denotation is completed */
    final def ensureCompleted(): Unit = info

    /** The symbols defined in this class or object.
     */
    final def decls(implicit ctx: Context): Scope = myInfo match {
      case cinfo: LazyType =>
        val knownDecls = cinfo.decls
        if (knownDecls ne EmptyScope) knownDecls
        else { completeFrom(cinfo); decls } // complete-once
      case _ => info.decls
    }

    /** If this is a package class, the symbols entered in it
     *  before it is completed. (this is needed to eagerly enter synthetic
     *  aliases such as AnyRef into a package class without forcing it.
     *  Right now, I believe the only usage is for the AnyRef alias
     *  in Definitions.
     */
    final def preDecls(implicit ctx: Context): MutableScope = myInfo match {
      case pinfo: SymbolLoaders # PackageLoader => pinfo.preDecls
      case _ => decls.asInstanceOf[MutableScope]
    }

    // ------ Names ----------------------------------------------

    /** The name with which the denoting symbol was created */
    final def originalName = {
      val d = initial.asSymDenotation
      if (d is ExpandedName) d.name.unexpandedName() else d.name // !!!DEBUG, was: effectiveName
    }

    /** The encoded full path name of this denotation, where outer names and inner names
     *  are separated by `separator` characters.
     *  Never translates expansions of operators back to operator symbol.
     *  Drops package objects. Represents terms in the owner chain by a simple `separator`.
     */
    def fullNameSeparated(separator: Char)(implicit ctx: Context): Name =
      if (symbol == NoSymbol || owner == NoSymbol || owner.isEffectiveRoot) name
      else {
        var owner = this
        var sep = ""
        do {
          owner = owner.owner
          sep += separator
        } while (!owner.isClass)
        val fn = owner.skipPackageObject.fullNameSeparated(separator) ++ sep ++ name
        if (isType) fn.toTypeName else fn.toTermName
      }

    /** `fullName` where `.' is the separator character */
    def fullName(implicit ctx: Context): Name = fullNameSeparated('.')

    // ----- Tests -------------------------------------------------

    /** Is this denotation a type? */
    override def isType: Boolean = name.isTypeName

    /** Is this denotation a class? */
    final def isClass: Boolean = isInstanceOf[ClassDenotation]

    /** Cast to class denotation */
    final def asClass: ClassDenotation = asInstanceOf[ClassDenotation]

    /** is this symbol the result of an erroneous definition? */
    def isError: Boolean = false

    /** Make denotation not exist */
    final def markAbsent(): Unit =
      myInfo = NoType

    /** Is symbol known to not exist? */
    final def isAbsent(implicit ctx: Context): Boolean =
      myInfo == NoType ||
      (this is (ModuleVal, butNot = Package)) && moduleClass.isAbsent

    /** Is this symbol the root class or its companion object? */
    final def isRoot: Boolean =
      (name.toTermName == nme.ROOT) && (owner eq NoSymbol)

    /** Is this symbol the empty package class or its companion object? */
    final def isEmptyPackage(implicit ctx: Context): Boolean =
      name.toTermName == nme.EMPTY_PACKAGE && owner.isRoot

    /** Is this symbol the empty package class or its companion object? */
    final def isEffectiveRoot(implicit ctx: Context) = isRoot || isEmptyPackage

    /** Is this symbol an anonymous class? */
    final def isAnonymousClass(implicit ctx: Context): Boolean =
      initial.asSymDenotation.name startsWith tpnme.ANON_CLASS

    /** Is this symbol a package object or its module class? */
    def isPackageObject(implicit ctx: Context): Boolean = {
      val poName = if (isType) nme.PACKAGE_CLS else nme.PACKAGE
      (name.toTermName == poName) && (owner is Package) && (this is Module)
    }

    /** Is this symbol an abstract type? */
    final def isAbstractType = isType && (this is Deferred)

    /** Is this symbol an alias type? */
    final def isAliasType = isAbstractOrAliasType && !(this is Deferred)

    /** Is this symbol an abstract or alias type? */
    final def isAbstractOrAliasType = isType & !isClass

    /** Is this definition contained in `boundary`?
     *  Same as `ownersIterator contains boundary` but more efficient.
     */
    final def isContainedIn(boundary: Symbol)(implicit ctx: Context): Boolean = {
      def recur(sym: Symbol): Boolean =
        if (sym eq boundary) true
        else if (sym eq NoSymbol) false
        else if ((sym is PackageClass) && !(boundary is PackageClass)) false
        else recur(sym.owner)
      recur(symbol)
    }

    /** Is this denotation static (i.e. with no outer instance)? */
    final def isStatic(implicit ctx: Context) =
      (this is Static) || this.exists && owner.isStaticOwner

    /** Is this a package class or module class that defines static symbols? */
    final def isStaticOwner(implicit ctx: Context): Boolean =
      (this is PackageClass) || (this is ModuleClass) && isStatic

    /** Is this denotation defined in the same scope and compilation unit as that symbol? */
    final def isCoDefinedWith(that: Symbol)(implicit ctx: Context) =
      (this.effectiveOwner == that.effectiveOwner) &&
      (  !(this.effectiveOwner is PackageClass)
      || { val thisFile = this.symbol.associatedFile
           val thatFile = that.symbol.associatedFile
           (  thisFile == null
           || thatFile == null
           || thisFile.path == thatFile.path // Cheap possibly wrong check, then expensive normalization
           || thisFile.canonicalPath == thatFile.canonicalPath
           )
         }
      )

    /** Is this a denotation of a stable term (or an arbitrary type)? */
    final def isStable(implicit ctx: Context) = {
      val isUnstable =
        (this is UnstableValue) ||
        info.isVolatile && !hasAnnotation(defn.uncheckedStableClass)
      (this is Stable) || isType || {
        if (isUnstable) false
        else { setFlag(Stable); true }
      }
    }

    /** Is this a user defined "def" method? Excluded are accessors. */
    final def isSourceMethod = this is (Method, butNot = Accessor)

    /** Is this a setter? */
    final def isGetter = (this is Accessor) && !originalName.isSetterName

    /** Is this a setter? */
    final def isSetter = (this is Accessor) && originalName.isSetterName

    /** is this the constructor of a class? */
    final def isClassConstructor = name == nme.CONSTRUCTOR

    /** Is this the constructor of a trait? */
    final def isImplClassConstructor = name == nme.IMPLCLASS_CONSTRUCTOR

    /** Is this the constructor of a trait or a class */
    final def isConstructor = name.isConstructorName

    /** Is this a local template dummmy? */
    final def isLocalDummy: Boolean = name.isLocalDummyName

    /** Does this symbol denote the primary constructor of its enclosing class? */
    final def isPrimaryConstructor(implicit ctx: Context) =
      isConstructor && owner.primaryConstructor == this

    /** Is this a subclass of the given class `base`? */
    def isSubClass(base: Symbol)(implicit ctx: Context) = false

    /** Is this a subclass of `base`,
     *  and is the denoting symbol also different from `Null` or `Nothing`?
     *  @note  erroneous classes are assumed to derive from all other classes
     *         and all classes derive from them.
     */
    def derivesFrom(base: Symbol)(implicit ctx: Context) = false

    /** Is this symbol a class that does not extend `AnyVal`? */
    final def isNonValueClass(implicit ctx: Context): Boolean =
      isClass && !derivesFrom(defn.AnyValClass)

    /** Is this definition accessible as a member of tree with type `pre`?
     *  @param pre          The type of the tree from which the selection is made
     *  @param superAccess  Access is via super
     *  Everything is accessible if `pre` is `NoPrefix`.
     *  A symbol with type `NoType` is not accessible for any other prefix.
     */
    final def isAccessibleFrom(pre: Type, superAccess: Boolean = false, whyNot: StringBuffer = null)(implicit ctx: Context): Boolean = {

      /** Are we inside definition of `boundary`? */
      def accessWithin(boundary: Symbol) =
        ctx.owner.isContainedIn(boundary) &&
          (!(this is JavaDefined) || // disregard package nesting for Java
             ctx.owner.enclosingPackage == boundary.enclosingPackage)

      /** Are we within definition of linked class of `boundary`? */
      def accessWithinLinked(boundary: Symbol) = {
        val linked = boundary.linkedClass
        (linked ne NoSymbol) && accessWithin(linked)
      }

      /** Is `pre` of the form C.this, where C is exactly the owner of this symbol,
       *  or, if this symbol is protected, a subclass of the owner?
       */
      def isCorrectThisType(pre: Type): Boolean = pre match {
        case ThisType(pclazz) =>
          (pclazz eq owner) ||
            (this is Protected) && pclazz.derivesFrom(owner)
        case _ => false
      }

      /** Is protected access to target symbol permitted? */
      def isProtectedAccessOK = {
        def fail(str: => String): Boolean = {
          if (whyNot != null) whyNot append str
          false
        }
        val cls = owner.enclosingSubClass
        if (!cls.exists)
          fail(
            s""" Access to protected $this not permitted because
               | enclosing ${ctx.owner.enclosingClass.showLocated} is not a subclass of
               | ${owner.showLocated} where target is defined""".stripMargin)
        else if (
          !(  isType // allow accesses to types from arbitrary subclasses fixes #4737
           || pre.baseType(cls).exists
           || isConstructor
           || (owner is ModuleClass) // don't perform this check for static members
           ))
          fail(
            s""" Access to protected ${symbol.show} not permitted because
               | prefix type ${pre.widen.show} does not conform to
               | ${cls.showLocated} where the access takes place""".stripMargin)
        else true
      }

      if (pre eq NoPrefix) true
      else if (info eq NoType) false
      else {
        val boundary = accessBoundary(owner)

        (  boundary.isTerm
        || boundary.isRoot
        || (accessWithin(boundary) || accessWithinLinked(boundary)) &&
             (  !(this is Local)
             || (owner is ImplClass) // allow private local accesses to impl class members
             || isCorrectThisType(pre)
             )
        || (this is Protected) &&
             (  superAccess
             || pre.isInstanceOf[ThisType]
             || ctx.phase.erasedTypes
             || isProtectedAccessOK
             )
        )
      }
    }

    /** Do members of this symbol need translation via asSeenFrom when
     *  accessed via prefix `pre`?
     */
    def membersNeedAsSeenFrom(pre: Type)(implicit ctx: Context) =
      !(  this.isTerm
       || this.isStaticOwner
       || ctx.erasedTypes && symbol != defn.ArrayClass
       || (pre eq NoPrefix) || (pre eq thisType)
       )

    /** Is this symbol concrete, or that symbol deferred? */
    def isAsConcrete(that: Symbol)(implicit ctx: Context): Boolean =
      !(this is Deferred) || (that is Deferred)

    /** Does this symbol have defined or inherited default parameters? */
    def hasDefaultParams(implicit ctx: Context): Boolean =
      if (this is HasDefaultParams) true
      else if (this is NoDefaultParams) false
      else {
        val result = allOverriddenSymbols exists (_.hasDefaultParams)
        setFlag(if (result) InheritedDefaultParams else NoDefaultParams)
        result
      }

    //    def isOverridable: Boolean = !!! need to enforce that classes cannot be redefined
    //    def isSkolem: Boolean = ???

    // ------ access to related symbols ---------------------------------

    /* Modules and module classes are represented as follows:
     *
     * object X extends Y { def f() }
     *
     * <module> lazy val X: X$ = new X$
     * <module> class X$ extends Y { this: X.type => def f() }
     *
     * During completion, references to moduleClass and sourceModules are stored in
     * the completers.
     */
    /** The class implementing this module, NoSymbol if not applicable. */
    final def moduleClass(implicit ctx: Context): Symbol =
      if (this is ModuleVal)
        myInfo match {
          case info: TypeRef           => info.symbol
          case ExprType(info: TypeRef) => info.symbol // needed after uncurry, when module terms might be accessor defs
          case info: LazyType          => info.moduleClass
          case _                       => println(s"missing module class for $name: $myInfo"); NoSymbol
        }
      else NoSymbol

    /** The module implemented by this module class, NoSymbol if not applicable. */
    final def sourceModule(implicit ctx: Context): Symbol = myInfo match {
      case ClassInfo(_, _, _, _, selfType: TermRef) if this is ModuleClass =>
        selfType.symbol
      case info: LazyType =>
        info.sourceModule
      case _ =>
        NoSymbol
    }

    /** The chain of owners of this denotation, starting with the denoting symbol itself */
    final def ownersIterator(implicit ctx: Context) = new Iterator[Symbol] {
      private[this] var current = symbol
      def hasNext = current.exists
      def next: Symbol = {
        val result = current
        current = current.owner
        result
      }
    }

    /** If this is a package object or its implementing class, its owner,
     *  otherwise the denoting symbol.
     */
    final def skipPackageObject(implicit ctx: Context): Symbol =
      if (isPackageObject) owner else symbol

    /** The owner, skipping package objects. */
    final def effectiveOwner(implicit ctx: Context) = owner.skipPackageObject

    /** The class containing this denotation.
     *  If this denotation is already a class, return itself
     */
    final def enclosingClass(implicit ctx: Context): Symbol =
      if (isClass || !exists) symbol else owner.enclosingClass

    /** The class containing this denotation which has the given effective name.
     */
    final def enclosingClassNamed(name: Name)(implicit ctx: Context): Symbol = {
      val cls = enclosingClass
      if (cls.effectiveName == name || !cls.exists) cls else cls.owner.enclosingClassNamed(name)
    }

    /** The top-level class containing this denotation,
     *  except for a toplevel module, where its module class is returned.
     */
    final def topLevelClass(implicit ctx: Context): Symbol = {
      def topLevel(d: SymDenotation): Symbol = {
        if ((d is PackageClass) || (d.owner is PackageClass)) d.symbol
        else topLevel(d.owner)
      }
      val sym = topLevel(this)
      if (sym.isClass) sym else sym.moduleClass
    }

    /** The package class containing this denotation */
    final def enclosingPackage(implicit ctx: Context): Symbol =
      if (this is PackageClass) symbol else owner.enclosingPackage

    /** The module object with the same (term-) name as this class or module class,
     *  and which is also defined in the same scope and compilation unit.
     *  NoSymbol if this module does not exist.
     */
    final def companionModule(implicit ctx: Context): Symbol =
      if (owner.exists && name != tpnme.ANON_CLASS) // name test to avoid forcing, thereby causing cyclic reference errors
        owner.info.decl(effectiveName.toTermName)
          .suchThat(sym => (sym is Module) && sym.isCoDefinedWith(symbol))
          .symbol
      else NoSymbol

    /** The class with the same (type-) name as this module or module class,
     *  and which is also defined in the same scope and compilation unit.
     *  NoSymbol if this class does not exist.
     */
    final def companionClass(implicit ctx: Context): Symbol =
      if (owner.exists)
        owner.info.decl(effectiveName.toTypeName)
          .suchThat(sym => sym.isClass && sym.isCoDefinedWith(symbol))
          .symbol
      else NoSymbol

    /** If this is a class, the module class of its companion object.
     *  If this is a module class, its companion class.
     *  NoSymbol otherwise.
     */
    final def linkedClass(implicit ctx: Context): Symbol =
      if (this is ModuleClass) companionClass
      else if (this.isClass) companionModule.moduleClass
      else NoSymbol

    /** The class that encloses the owner of the current context
     *  and that is a subclass of this class. NoSymbol if no such class exists.
     */
    final def enclosingSubClass(implicit ctx: Context) =
      ctx.owner.ownersIterator.findSymbol(_.isSubClass(symbol))

    /** The non-private symbol whose name and type matches the type of this symbol
     *  in the given class.
     *  @param inClass   The class containing the symbol's definition
     *  @param site      The base type from which member types are computed
     *
     *  inClass <-- find denot.symbol      class C { <-- symbol is here
     *
     *                   site: Subtype of both inClass and C
     */
    final def matchingSymbol(inClass: Symbol, site: Type)(implicit ctx: Context): Symbol = {
      var denot = inClass.info.nonPrivateDecl(name)
      if (denot.isTerm) // types of the same name always match
        denot = denot.matchingDenotation(site, site.memberInfo(symbol))
      denot.symbol
    }

    /** The symbol, in class `inClass`, that is overridden by this denotation. */
    final def overriddenSymbol(inClass: ClassSymbol)(implicit ctx: Context): Symbol =
      matchingSymbol(inClass, owner.thisType)

    /** All symbols overriden by this denotation. */
    final def allOverriddenSymbols(implicit ctx: Context): Iterator[Symbol] =
      if (exists)
        owner.info.baseClasses.tail.iterator map overriddenSymbol filter (_.exists)
      else
        Iterator.empty

    /** The class or term symbol up to which this symbol is accessible,
     *  or RootClass if it is public.  As java protected statics are
     *  otherwise completely inaccessible in scala, they are treated
     *  as public.
     *  @param base  The access boundary to assume if this symbol is protected
     */
    final def accessBoundary(base: Symbol)(implicit ctx: Context): Symbol = {
      val fs = flags
      if (fs is PrivateOrLocal) owner
      else if (fs is StaticProtected) defn.RootClass
      else if (privateWithin.exists && !ctx.phase.erasedTypes) privateWithin
      else if (fs is Protected) base
      else defn.RootClass
    }

    /** The primary constructor of a class or trait, NoSymbol if not applicable. */
    def primaryConstructor(implicit ctx: Context): Symbol = NoSymbol

    // ----- type-related ------------------------------------------------

    /** The type parameters of a class symbol, Nil for all other symbols */
    def typeParams(implicit ctx: Context): List[TypeSymbol] = Nil

    /** The type This(cls), where cls is this class, NoPrefix for all other symbols */
    def thisType(implicit ctx: Context): Type = NoPrefix

    override def typeRef(implicit ctx: Context): TypeRef =
      TypeRef(owner.thisType, name.asTypeName, this)

    override def termRef(implicit ctx: Context): TermRef =
      TermRef(owner.thisType, name.asTermName, this)

    override def valRef(implicit ctx: Context): TermRef =
      TermRef.withSig(owner.thisType, name.asTermName, Signature.NotAMethod, this)

    override def termRefWithSig(implicit ctx: Context): TermRef =
      TermRef.withSig(owner.thisType, name.asTermName, signature, this)

    /** The variance of this type parameter or type member as an Int, with
     *  +1 = Covariant, -1 = Contravariant, 0 = Nonvariant, or not a type parameter
     */
    final def variance: Int =
      if (this is Covariant) 1
      else if (this is Contravariant) -1
      else 0

    override def toString = {
      val kindString =
        if (this is ModuleClass) "module class"
        else if (isClass) "class"
        else if (isType) "type"
        else if (this is Module) "module"
        else if (this is Method) "method"
        else "val"
      s"$kindString $name"
    }

    val debugString = toString+"#"+symbol.id // !!! DEBUG

    // ----- copies ------------------------------------------------------

    protected def newLikeThis(s: Symbol, i: Type): SingleDenotation = new UniqueRefDenotation(s, i, validFor)

    /** Copy this denotation, overriding selective fields */
    final def copySymDenotation(
      symbol: Symbol = this.symbol,
      owner: Symbol = this.owner,
      name: Name = this.name,
      initFlags: FlagSet = this.flags,
      info: Type = this.info,
      privateWithin: Symbol = this.privateWithin,
      annotations: List[Annotation] = this.annotations)(implicit ctx: Context) =
    {
      val d = ctx.SymDenotation(symbol, owner, name, initFlags, info, privateWithin)
      d.annotations = annotations
      d
    }
  }

  /** The contents of a class definition during a period
   */
  class ClassDenotation private[SymDenotations] (
    symbol: Symbol,
    ownerIfExists: Symbol,
    name: Name,
    initFlags: FlagSet,
    initInfo: Type,
    initPrivateWithin: Symbol = NoSymbol)
    extends SymDenotation(symbol, ownerIfExists, name, initFlags, initInfo, initPrivateWithin) {

    import util.LRUCache

    // ----- denotation fields and accessors ------------------------------

    if (initFlags is (Module, butNot = Package)) assert(name.isModuleClassName, this)

    /** The symbol asserted to have type ClassSymbol */
    def classSymbol: ClassSymbol = symbol.asInstanceOf[ClassSymbol]

    /** The info asserted to have type ClassInfo */
    def classInfo(implicit ctx: Context): ClassInfo = info.asInstanceOf[ClassInfo]

    /** TODO: Document why caches are supposedly safe to use */
    private[this] var myTypeParams: List[TypeSymbol] = _

    /** The type parameters of this class */
    override final def typeParams(implicit ctx: Context): List[TypeSymbol] = {
      def computeTypeParams = decls.filter(sym =>
        (sym is TypeParam) && sym.owner == symbol).asInstanceOf[List[TypeSymbol]]
      if (myTypeParams == null) myTypeParams = computeTypeParams
      myTypeParams
    }

    private def myClassParents: List[TypeRef] = info match {
      case classInfo: ClassInfo => classInfo.myClassParents
      case _ => Nil
    }

    /** The denotation is fully completed: all attributes are fully defined.
     *  ClassDenotations compiled from source are first completed, then fully completed.
     *  @see Namer#ClassCompleter
     */
    private def isFullyCompleted(implicit ctx: Context): Boolean =
      isCompleted && myClassParents.nonEmpty

    /** A key to verify that all caches influenced by parent classes are valid */
    private var parentDenots: List[Denotation] = null

    /** The denotations of all parents in this class.
     *  Note: Always use this method instead of `classInfo.myClassParents`
     *  because the latter does not ensure that the `parentDenots` key
     *  is up-to-date, which might lead to invalid caches later on.
     */
    def classParents(implicit ctx: Context): List[TypeRef] = {
      val ps = myClassParents
      if (parentDenots == null && ps.nonEmpty) parentDenots = ps map (_.denot)
      ps
    }

    /** Are caches influenced by parent classes still valid? */
    private def parentsAreValid(implicit ctx: Context): Boolean =
      parentDenots == null ||
      parentDenots.corresponds(myClassParents)(_ eq _.denot)

    /** If caches influenced by parent classes are still valid, the denotation
     *  itself, otherwise a freshly initialized copy.
     */
    override def copyIfParentInvalid(implicit ctx: Context): SingleDenotation =
      if (!parentsAreValid) copySymDenotation() else this

   // ------ class-specific operations -----------------------------------

    private[this] var myThisType: Type = null

    override def thisType(implicit ctx: Context): Type = {
      if (myThisType == null) myThisType = computeThisType
      myThisType
    }

    private def computeThisType(implicit ctx: Context): Type = ThisType(classSymbol) /*
      if ((this is PackageClass) && !isRoot)
        TermRef(owner.thisType, name.toTermName)
      else
        ThisType(classSymbol) */

    private[this] var myTypeRef: TypeRef = null

    override def typeRef(implicit ctx: Context): TypeRef = {
      if (myTypeRef == null) myTypeRef = super.typeRef
      myTypeRef
    }

    private[this] var myBaseClasses: List[ClassSymbol] = null
    private[this] var mySuperClassBits: BitSet = null

    private def computeBases(implicit ctx: Context): Unit = {
      if (myBaseClasses == Nil) throw new CyclicReference(this)
      myBaseClasses = Nil
      val seen = new mutable.BitSet
      val locked = new mutable.BitSet
      def addBaseClasses(bcs: List[ClassSymbol], to: List[ClassSymbol])
          : List[ClassSymbol] = bcs match {
        case bc :: bcs1 =>
          val bcs1added = addBaseClasses(bcs1, to)
          val id = bc.superId
          if (seen contains id) bcs1added
          else {
            seen += id
            bc :: bcs1added
          }
        case nil =>
          to
      }
      def addParentBaseClasses(ps: List[Type], to: List[ClassSymbol]): List[ClassSymbol] = ps match {
        case p :: ps1 =>
          addParentBaseClasses(ps1, addBaseClasses(p.baseClasses, to))
        case nil =>
          to
      }
      myBaseClasses = classSymbol :: addParentBaseClasses(classParents, Nil)
      mySuperClassBits = ctx.uniqueBits.findEntryOrUpdate(seen.toImmutable)
    }

    /** A bitset that contains the superId's of all base classes */
    private def superClassBits(implicit ctx: Context): BitSet =
      if (classParents.isEmpty) BitSet() // can happen when called too early in Namers
      else {
        if (mySuperClassBits == null) computeBases
        mySuperClassBits
      }

    /** The base classes of this class in linearization order,
     *  with the class itself as first element.
     */
    def baseClasses(implicit ctx: Context): List[ClassSymbol] =
      if (classParents.isEmpty) classSymbol :: Nil // can happen when called too early in Namers
      else {
        if (myBaseClasses == null) computeBases
        myBaseClasses
      }

    final override def derivesFrom(base: Symbol)(implicit ctx: Context): Boolean =
      !isAbsent &&
      base.isClass &&
      (  (symbol eq base)
      || (superClassBits contains base.superId)
      || (this is Erroneous)
      || (base is Erroneous)
      )

    final override def isSubClass(base: Symbol)(implicit ctx: Context) =
      derivesFrom(base) ||
        base.isClass && (
          (symbol eq defn.NothingClass) ||
            (symbol eq defn.NullClass) && (base ne defn.NothingClass))

    private[this] var myMemberFingerPrint: FingerPrint = FingerPrint.unknown

    private def computeMemberFingerPrint(implicit ctx: Context): FingerPrint = {
      var fp = FingerPrint()
      var e = info.decls.lastEntry
      while (e != null) {
        fp.include(e.sym.name)
        e = e.prev
      }
      var ps = classParents
      while (ps.nonEmpty) {
        val parent = ps.head.typeSymbol
        parent.denot match {
          case classd: ClassDenotation =>
            fp.include(classd.memberFingerPrint)
            parent.denot.setFlag(Frozen)
          case _ =>
        }
        ps = ps.tail
      }
      fp
    }

    /** A bloom filter for the names of all members in this class.
     *  Makes sense only for parent classes, and should definitely
     *  not be used for package classes because cache never
     *  gets invalidated.
     */
    def memberFingerPrint(implicit ctx: Context): FingerPrint = {
      if (myMemberFingerPrint == FingerPrint.unknown) myMemberFingerPrint = computeMemberFingerPrint
      myMemberFingerPrint
    }

    private[this] var myMemberCache: LRUCache[Name, PreDenotation] = null

    private def memberCache: LRUCache[Name, PreDenotation] = {
      if (myMemberCache == null) myMemberCache = new LRUCache
      myMemberCache
    }

    /** Enter a symbol in current scope.
     *  Note: We require that this does not happen after the first time
     *  someone does a findMember on a subclass.
     */
    def enter(sym: Symbol, scope: Scope = EmptyScope)(implicit ctx: Context): Unit = {
      val mscope = scope match {
        case scope: MutableScope => scope
        case _ => decls.asInstanceOf[MutableScope]
      }
      if (this is PackageClass) { // replace existing symbols
        val entry = mscope.lookupEntry(sym.name)
        if (entry != null) {
          mscope.unlink(entry)
          entry.sym.denot = sym.denot // to avoid stale symbols
        }
      }
      enterNoReplace(sym, mscope)
    }

    /** Enter a symbol in current scope without potentially replacing the old copy. */
    def enterNoReplace(sym: Symbol, scope: MutableScope)(implicit ctx: Context): Unit = {
      require(!(this is Frozen))
      scope.enter(sym)

      if (myMemberFingerPrint != FingerPrint.unknown)
        myMemberFingerPrint.include(sym.name)
      if (myMemberCache != null)
        myMemberCache invalidate sym.name
    }

    /** Delete symbol from current scope.
     *  Note: We require that this does not happen after the first time
     *  someone does a findMember on a subclass.
     */
    def delete(sym: Symbol)(implicit ctx: Context) = {
      require(!(this is Frozen))
      info.decls.asInstanceOf[MutableScope].unlink(sym)
      if (myMemberFingerPrint != FingerPrint.unknown)
        computeMemberFingerPrint
      if (myMemberCache != null)
        myMemberCache invalidate sym.name
    }

    /** All members of this class that have the given name.
     *  The elements of the returned pre-denotation all
     *  have existing symbols.
     */
    final def membersNamed(name: Name)(implicit ctx: Context): PreDenotation = {
      val privates = decls.denotsNamed(name, selectPrivate)
      privates union nonPrivateMembersNamed(name).filterDisjoint(privates)
    }

    /** All non-private members of this class that have the given name.
     *  The elements of the returned pre-denotation all
     *  have existing symbols.
     */
    final def nonPrivateMembersNamed(name: Name)(implicit ctx: Context): PreDenotation =
      if (Config.cacheMembersNamed) {
        var denots: PreDenotation = memberCache lookup name
        if (denots == null) {
          denots = computeNPMembersNamed(name)
          if (isFullyCompleted) memberCache.enter(name, denots)
        } else if (Config.checkCacheMembersNamed) {
          val denots1 = computeNPMembersNamed(name)
          assert(denots.exists == denots1.exists, s"cache inconsistency: cached: $denots, computed $denots1, name = $name, owner = $this")
        }
        denots
      } else computeNPMembersNamed(name)

    private def computeNPMembersNamed(name: Name)(implicit ctx: Context): PreDenotation =
      if (!classSymbol.hasChildren ||
          !Config.useFingerPrints ||
          (memberFingerPrint contains name)) {
        ensureCompleted()
        val ownDenots = decls.denotsNamed(name, selectNonPrivate)
        if (debugTrace)  // DEBUG
          println(s"$this.member($name), ownDenots = $ownDenots")
        def collect(denots: PreDenotation, parents: List[TypeRef]): PreDenotation = parents match {
          case p :: ps =>
            val denots1 = collect(denots, ps)
            p.symbol.denot match {
              case parentd: ClassDenotation =>
                denots1 union
                  parentd.nonPrivateMembersNamed(name)
                    .mapInherited(ownDenots, denots1, thisType)
              case _ =>
                denots1
            }
          case nil =>
            denots
        }
        if (name.isConstructorName) ownDenots
        else collect(ownDenots, classParents)
      } else NoDenotation

    override final def findMember(name: Name, pre: Type, excluded: FlagSet)(implicit ctx: Context): Denotation = {
      val raw = if (excluded is Private) nonPrivateMembersNamed(name) else membersNamed(name)
      raw.filterExcluded(excluded).asSeenFrom(pre).toDenot(pre)
    }

    private[this] var baseTypeCache: java.util.HashMap[CachedType, Type] = null
    private[this] var baseTypeValid: RunId = NoRunId

    /** Compute tp.baseType(this) */
    final def baseTypeOf(tp: Type)(implicit ctx: Context): Type = {

      def foldGlb(bt: Type, ps: List[Type]): Type = ps match {
        case p :: ps1 => foldGlb(bt & baseTypeOf(p), ps1)
        case _ => bt
      }

      def computeBaseTypeOf(tp: Type): Type = tp match {
        case tp: TypeRef =>
          val subcls = tp.symbol
          if (subcls eq symbol)
            tp
          else subcls.denot match {
            case cdenot: ClassDenotation =>
              if (cdenot.superClassBits contains symbol.superId) foldGlb(NoType, tp.parents)
              else NoType
            case _ =>
              baseTypeOf(tp.underlying)
          }
        case tp: TypeProxy =>
          baseTypeOf(tp.underlying)
        case AndType(tp1, tp2) =>
          baseTypeOf(tp1) & baseTypeOf(tp2)
        case OrType(tp1, tp2) =>
          baseTypeOf(tp1) | baseTypeOf(tp2)
        case _ =>
          NoType
      }

      ctx.debugTraceIndented(s"$tp.baseType($this)") {
        if (symbol.isStatic && tp.derivesFrom(symbol))
          symbol.typeRef
        else tp match {
          case tp: CachedType =>
            if (baseTypeValid != ctx.runId) {
              baseTypeCache = new java.util.HashMap[CachedType, Type]
              baseTypeValid = ctx.runId
            }
            var basetp = baseTypeCache get tp
            if (basetp == null) {
              baseTypeCache.put(tp, NoPrefix)
              basetp = computeBaseTypeOf(tp)
              baseTypeCache.put(tp, basetp)
            } else if (basetp == NoPrefix) {
              throw new CyclicReference(this)
            }
            basetp
          case _ =>
            computeBaseTypeOf(tp)
        }
      }
    }

    private[this] var memberNamesCache: SimpleMap[NameFilter, Set[Name]] = SimpleMap.Empty

    def memberNames(keepOnly: NameFilter)(implicit ctx: Context): Set[Name] = {
      def computeMemberNames: Set[Name] = {
        val inheritedNames = (classParents flatMap (_.memberNames(keepOnly, thisType))).toSet
        val ownSyms =
          if (keepOnly == implicitFilter)
            if (this is Package) Iterator.empty
            else info.decls.iterator filter (_ is Implicit)
          else info.decls.iterator
        val ownNames = ownSyms map (_.name)
        val candidates = inheritedNames ++ ownNames
        candidates filter (keepOnly(thisType, _))
      }
      if ((this is PackageClass) || (keepOnly == implicitFilter) || !Config.cacheMemberNames)
        computeMemberNames // don't cache package member names; they might change
      else {
        val cached = memberNamesCache(keepOnly)
        if (cached != null) cached
        else {
          setFlag(Frozen)
          val names = computeMemberNames
          memberNamesCache = memberNamesCache.updated(keepOnly, names)
          names
        }
      }
    }

    private[this] var fullNameCache: SimpleMap[Character, Name] = SimpleMap.Empty
    override final def fullNameSeparated(separator: Char)(implicit ctx: Context): Name = {
      val cached = fullNameCache(separator)
      if (cached != null) cached
      else {
        val fn = super.fullNameSeparated(separator)
        fullNameCache = fullNameCache.updated(separator, fn)
        fn
      }
    }

    // to avoid overloading ambiguities
    override def fullName(implicit ctx: Context): Name = super.fullName

    override def primaryConstructor(implicit ctx: Context): Symbol = {
      val cname = if (this is ImplClass) nme.IMPLCLASS_CONSTRUCTOR else nme.CONSTRUCTOR
      decls.denotsNamed(cname).first.symbol
    }
  }

  object NoDenotation extends SymDenotation(
    NoSymbol, NoSymbol, "<none>".toTermName, Permanent, NoType) {
    override def exists = false
    override def isTerm = false
    override def isType = false
    override def owner: Symbol = throw new AssertionError("NoDenotation.owner")
    override def computeAsSeenFrom(pre: Type)(implicit ctx: Context): SingleDenotation = this
    validFor = Period.allInRun(NoRunId) // will be brought forward automatically
  }

  // ---- Completion --------------------------------------------------------

  /** Instances of LazyType are carried by uncompleted symbols.
   *  Note: LazyTypes double up as (constant) functions from Symbol and
   *  from (TermSymbol, ClassSymbol) to LazyType. That way lazy types can be
   *  directly passed to symbol creation methods in Symbols that demand instances
   *  of these function types.
   */
  abstract class LazyType extends UncachedGroundType
    with (Symbol => LazyType)
    with ((TermSymbol, ClassSymbol) => LazyType) { self =>

    /** Sets all missing fields of given denotation */
    def complete(denot: SymDenotation): Unit

    def apply(sym: Symbol) = this
    def apply(module: TermSymbol, modcls: ClassSymbol) = this

    private var myDecls: Scope = EmptyScope
    private var mySourceModuleFn: () => Symbol = NoSymbolFn
    private var myModuleClassFn: () => Symbol = NoSymbolFn

    /** A proxy to this lazy type that keeps the complete operation
     *  but provides fresh slots for scope/sourceModule/moduleClass
     */
    def proxy: LazyType = new LazyType {
      override def complete(denot: SymDenotation) = self.complete(denot)
    }

    def decls: Scope = myDecls
    def sourceModule: Symbol = mySourceModuleFn()
    def moduleClass: Symbol = myModuleClassFn()

    def withDecls(decls: Scope): this.type = { myDecls = decls; this }
    def withSourceModule(sourceModule: => Symbol): this.type = { mySourceModuleFn = () => sourceModule; this }
    def withModuleClass(moduleClass: => Symbol): this.type = { myModuleClassFn = () => moduleClass; this }
  }

  val NoSymbolFn = () => NoSymbol

  /** A missing completer */
  class NoCompleter extends LazyType {
    def complete(denot: SymDenotation): Unit = unsupported("complete")
  }

  /** A lazy type for modules that points to the module class.
   *  Needed so that `moduleClass` works before completion.
   *  Completion of modules is always completion of the underlying
   *  module class, followed by copying the relevant fields to the module.
   */
  class ModuleCompleter(override val moduleClass: ClassSymbol)(implicit cctx: CondensedContext)
  extends LazyType {
    def complete(denot: SymDenotation): Unit = {
      val from = moduleClass.denot.asClass
      denot.setFlag(from.flags.toTermFlags & RetainedModuleValFlags)
      denot.annotations = from.annotations filter (_.appliesToModule)
        // !!! ^^^ needs to be revised later. The problem is that annotations might
        // only apply to the module but not to the module class. The right solution
        // is to have the module class completer set the annotations of both the
        // class and the module.
      denot.info = moduleClass.typeRef
      denot.privateWithin = from.privateWithin
    }
  }

  /** A completer for missing references */
  class StubInfo()(implicit cctx: CondensedContext) extends LazyType {

    def initializeToDefaults(denot: SymDenotation) = {
      denot.info = denot match {
        case denot: ClassDenotation =>
          ClassInfo(denot.owner.thisType, denot.classSymbol, Nil, EmptyScope)
        case _ =>
          ErrorType
      }
      denot.privateWithin = NoSymbol
    }

    def complete(denot: SymDenotation): Unit = {
      val sym = denot.symbol
      val file = sym.associatedFile
      val (location, src) =
        if (file != null) (s" in $file", file.toString)
        else ("", "the signature")
      val name = cctx.fresh.withSetting(cctx.settings.debugNames, true).nameString(denot.name)
      cctx.error(
        s"""|bad symbolic reference. A signature$location
            |refers to $name in ${denot.owner.showKind} ${denot.owner.showFullName} which is not available.
            |It may be completely missing from the current classpath, or the version on
            |the classpath might be incompatible with the version used when compiling $src.""".stripMargin)
      if (cctx.debug) throw new Error()
      initializeToDefaults(denot)
    }
  }

  // ---- Fingerprints -----------------------------------------------------

  /** A fingerprint is a bitset that acts as a bloom filter for sets
   *  of names.
   */
  class FingerPrint(val bits: Array[Long]) extends AnyVal {
    import FingerPrint._

    /** Include some bits of name's hashcode in set */
    def include(name: Name): Unit = {
      val hash = name.hashCode & Mask
      bits(hash >> WordSizeLog) |= (1L << hash)
    }

    /** Include all bits of `that` fingerprint in set */
    def include(that: FingerPrint): Unit =
      for (i <- 0 until NumWords) bits(i) |= that.bits(i)

    /** Does set contain hash bits of given name? */
    def contains(name: Name): Boolean = {
      val hash = name.hashCode & Mask
      (bits(hash >> WordSizeLog) & (1L << hash)) != 0
    }
  }

  object FingerPrint {
    def apply() = new FingerPrint(new Array[Long](NumWords))
    val unknown = new FingerPrint(null)
    private final val WordSizeLog = 6
    private final val NumWords = 32
    private final val NumBits = NumWords << WordSizeLog
    private final val Mask = NumBits - 1
  }
}