aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/typer/Typer.scala
blob: f58ccbdbc54ecc91bd0201a904e5f65815427a2d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
package dotty.tools
package dotc
package typer

import core._
import ast._
import Trees._
import Constants._
import StdNames._
import Scopes._
import Denotations._
import ProtoTypes._
import Contexts._
import Symbols._
import Types._
import SymDenotations._
import Annotations._
import Names._
import NameOps._
import Flags._
import Decorators._
import ErrorReporting._
import EtaExpansion.etaExpand
import util.Positions._
import util.common._
import util.SourcePosition
import collection.mutable
import annotation.tailrec
import Implicits._
import util.Stats.{track, record}
import config.Printers._
import language.implicitConversions

trait TyperContextOps { ctx: Context => }

object Typer {

  /** The precedence of bindings which determines which of several bindings will be
   *  accessed by an Ident.
   */
  object BindingPrec {
    val definition = 4
    val namedImport = 3
    val wildImport = 2
    val packageClause = 1
    val nothingBound = 0
    def isImportPrec(prec: Int) = prec == namedImport || prec == wildImport
  }

  /** Assert tree has a position, unless it is empty or a typed splice */
  def assertPositioned(tree: untpd.Tree)(implicit ctx: Context) =
    if (!tree.isEmpty && !tree.isInstanceOf[untpd.TypedSplice] && ctx.typerState.isGlobalCommittable)
      assert(tree.pos.exists, s"position not set for $tree # ${tree.uniqueId}")
}

class Typer extends Namer with TypeAssigner with Applications with Implicits with Inferencing with Checking {

  import Typer._
  import tpd.{cpy => _, _}
  import untpd.cpy

  /** A temporary data item valid for a single typed ident:
   *  The set of all root import symbols that have been
   *  encountered as a qualifier of an import so far.
   *  Note: It would be more proper to move importedFromRoot into typedIdent.
   *  We should check that this has no performance degradation, however.
   */
  private var importedFromRoot: Set[Symbol] = Set()

  /** Attribute an identifier consisting of a simple name or wildcard
   *
   *  @param tree      The tree representing the identifier.
   *  Transformations: (1) Prefix class members with this.
   *                   (2) Change imported symbols to selections.
   *                   (3) Change pattern Idents id (but not wildcards) to id @ _
   */
  def typedIdent(tree: untpd.Ident, pt: Type)(implicit ctx: Context): Tree = track("typedIdent") {
    val refctx = ctx
    val name = tree.name

    /** Method is necessary because error messages need to bind to
     *  to typedIdent's context which is lost in nested calls to findRef
     */
    def error(msg: => String, pos: Position) = ctx.error(msg, pos)

    /** Is this import a root import that has been shadowed by an explicit
     *  import in the same program?
     */
    def isDisabled(imp: ImportInfo, site: Type): Boolean = {
      if (imp.isRootImport && (importedFromRoot contains site.termSymbol)) return true
      if (imp.hiddenRoot.exists) importedFromRoot += imp.hiddenRoot
      false
    }

    /** Does this identifier appear as a constructor of a pattern? */
    def isPatternConstr =
      if (ctx.mode.isExpr && (ctx.outer.mode is Mode.Pattern))
        ctx.outer.tree match {
          case Apply(`tree`, _) => true
          case _ => false
        }
      else false

    /** A symbol qualifies if it really exists. In addition,
     *  if we are in a constructor of a pattern, we ignore all definitions
     *  which are methods and not accessors (note: if we don't do that
     *  case x :: xs in class List would return the :: method).
     */
    def qualifies(denot: Denotation): Boolean =
      reallyExists(denot) && !(
         pt.isInstanceOf[UnapplySelectionProto] &&
         (denot.symbol is (Method, butNot = Accessor)))

    /** Find the denotation of enclosing `name` in given context `ctx`.
     *  @param previous    A denotation that was found in a more deeply nested scope,
     *                     or else `NoDenotation` if nothing was found yet.
     *  @param prevPrec    The binding precedence of the previous denotation,
     *                     or else `nothingBound` if nothing was found yet.
     *  @param prevCtx     The context of the previous denotation,
     *                     or else `NoContext` if nothing was found yet.
     */
    def findRef(previous: Type, prevPrec: Int, prevCtx: Context)(implicit ctx: Context): Type = {
      import BindingPrec._

      /** A string which explains how something was bound; Depending on `prec` this is either
       *      imported by <tree>
       *  or  defined in <symbol>
       */
      def bindingString(prec: Int, whereFound: Context, qualifier: String = "") =
        if (prec == wildImport || prec == namedImport) d"imported$qualifier by ${whereFound.importInfo}"
        else d"defined$qualifier in ${whereFound.owner}"

      /** Check that any previously found result from an inner context
       *  does properly shadow the new one from an outer context.
       */
      def checkNewOrShadowed(found: Type, newPrec: Int): Type =
        if (!previous.exists || ctx.typeComparer.isSameRef(previous, found)) found
        else if ((prevCtx.scope eq ctx.scope) &&
                 (newPrec == definition ||
                  newPrec == namedImport && prevPrec == wildImport)) {
          // special cases: definitions beat imports, and named imports beat
          // wildcard imports, provided both are in contexts with same scope
          found
        }
        else {
          if (!previous.isError && !found.isError) {
            error(
              d"""reference to $name is ambiguous;
                 |it is both ${bindingString(newPrec, ctx, "")}
                 |and ${bindingString(prevPrec, prevCtx, " subsequently")}""".stripMargin,
              tree.pos)
          }
          previous
        }

      /** The type representing a named import with enclosing name when imported
       *  from given `site` and `selectors`.
       */
      def namedImportRef(site: Type, selectors: List[untpd.Tree]): Type = {
        def checkUnambiguous(found: Type) = {
          val other = namedImportRef(site, selectors.tail)
          if (other.exists && found.exists && (found != other))
            error(d"reference to $name is ambiguous; it is imported twice in ${ctx.tree}",
                  tree.pos)
          found
        }
        val Name = name.toTermName
        selectors match {
          case Pair(Ident(from), Ident(Name)) :: rest =>
            val selName = if (name.isTypeName) from.toTypeName else from
            checkUnambiguous(selectionType(site, selName, tree.pos))
          case Ident(Name) :: rest =>
            checkUnambiguous(selectionType(site, name, tree.pos))
          case _ :: rest =>
            namedImportRef(site, rest)
          case nil =>
            NoType
        }
      }

      /** The type representing a wildcard import with enclosing name when imported
       *  from given import info
       */
      def wildImportRef(imp: ImportInfo): Type = {
        if (imp.isWildcardImport) {
          val pre = imp.site
          if (!isDisabled(imp, pre) && !(imp.excluded contains name.toTermName)) {
            val denot = pre.member(name).accessibleFrom(pre)(refctx)
            if (reallyExists(denot)) return pre.select(name, denot)
          }
        }
        NoType
      }

      /** Is (some alternative of) the given predenotation `denot`
       *  defined in current compilation unit?
       */
      def isDefinedInCurrentUnit(denot: Denotation): Boolean = denot match {
        case MultiDenotation(d1, d2) => isDefinedInCurrentUnit(d1) || isDefinedInCurrentUnit(d2)
        case denot: SingleDenotation => denot.symbol.sourceFile == ctx.source
      }

      /** Is `denot` the denotation of a self symbol? */
      def isSelfDenot(denot: Denotation) = denot match {
        case denot: SymDenotation => denot is SelfName
        case _ => false
      }

      // begin findRef
      if (ctx.scope == null) previous
      else {
        val outer = ctx.outer
        if ((ctx.scope ne outer.scope) || (ctx.owner ne outer.owner)) {
          val defDenot = ctx.denotNamed(name)
          if (qualifies(defDenot)) {
            val curOwner = ctx.owner
            val found =
              if (isSelfDenot(defDenot)) curOwner.enclosingClass.thisType
              else curOwner.thisType.select(name, defDenot)
            if (!(curOwner is Package) || (defDenot.symbol is Package) || isDefinedInCurrentUnit(defDenot))
              return checkNewOrShadowed(found, definition) // no need to go further out, we found highest prec entry
            else if (prevPrec < packageClause)
              return findRef(found, packageClause, ctx)(outer)
          }
        }
        val curImport = ctx.importInfo
        if (curImport != null && curImport.isRootImport && previous.exists) return previous
        // would import of kind `prec` be not shadowed by a nested higher-precedence definition?
        def isPossibleImport(prec: Int) =
          prevPrec < prec || prevPrec == prec && (prevCtx.scope eq ctx.scope)
        if (isPossibleImport(namedImport) && (curImport ne outer.importInfo) && !curImport.sym.isCompleting) {
          val namedImp = namedImportRef(curImport.site, curImport.selectors)
          if (namedImp.exists)
            return findRef(checkNewOrShadowed(namedImp, namedImport), namedImport, ctx)(outer)
          if (isPossibleImport(wildImport)) {
            val wildImp = wildImportRef(curImport)
            if (wildImp.exists)
              return findRef(checkNewOrShadowed(wildImp, wildImport), wildImport, ctx)(outer)
          }
        }
        findRef(previous, prevPrec, prevCtx)(outer)
      }
    }

    // begin typedIdent
    def kind = if (name.isTermName) "" else "type "
    typr.println(s"typed ident $kind$name in ${ctx.owner}")
    if (ctx.mode is Mode.Pattern) {
      if (name == nme.WILDCARD)
        return tree.withType(pt)
      if (isVarPattern(tree))
        return typed(untpd.Bind(name, untpd.Ident(nme.WILDCARD)).withPos(tree.pos), pt)
    }

    val saved = importedFromRoot
    importedFromRoot = Set.empty

    val rawType =
      try findRef(NoType, BindingPrec.nothingBound, NoContext)
      finally importedFromRoot = saved

    val ownType =
      if (rawType.exists)
        ensureAccessible(rawType, superAccess = false, tree.pos)
      else {
        error(d"not found: $kind$name", tree.pos)
        ErrorType
      }

    val tree1 = ownType match {
      case ownType: NamedType if !prefixIsElidable(ownType) =>
        ref(ownType).withPos(tree.pos)
      case _ =>
        tree.withType(ownType)
    }

    checkValue(tree1, pt)
  }

  def typedSelect(tree: untpd.Select, pt: Type)(implicit ctx: Context): Tree = track("typedSelect") {
    val qual1 = typedExpr(tree.qualifier, selectionProto(tree.name, pt, this))
    if (tree.name.isTypeName) checkStable(qual1.tpe, qual1.pos)
    checkValue(assignType(cpy.Select(tree)(qual1, tree.name), qual1), pt)
  }

  def typedSelectFromTypeTree(tree: untpd.SelectFromTypeTree, pt: Type)(implicit ctx: Context): Tree = track("typedSelectFromTypeTree") {
    val qual1 = typedType(tree.qualifier, selectionProto(tree.name, pt, this))
    checkLegalPrefix(qual1.tpe, tree.name, qual1.pos)
    assignType(cpy.SelectFromTypeTree(tree)(qual1, tree.name), qual1)
  }

  def typedThis(tree: untpd.This)(implicit ctx: Context): Tree = track("typedThis") {
    assignType(tree)
  }

  def typedSuper(tree: untpd.Super, pt: Type)(implicit ctx: Context): Tree = track("typedSuper") {
    val qual1 = typed(tree.qual)
    val inConstrCall = pt match {
      case pt: SelectionProto if pt.name == nme.CONSTRUCTOR => true
      case _ => false
    }
    assignType(cpy.Super(tree)(qual1, tree.mix), qual1, inConstrCall)
  }

  def typedLiteral(tree: untpd.Literal)(implicit ctx: Context) = track("typedLiteral") {
    assignType(tree)
  }

  def typedNew(tree: untpd.New, pt: Type)(implicit ctx: Context) = track("typedNew") {
    tree.tpt match {
      case templ: untpd.Template =>
        import untpd._
        val x = tpnme.ANON_CLASS
        val clsDef = TypeDef(Modifiers(Final), x, templ)
        typed(cpy.Block(tree)(clsDef :: Nil, New(Ident(x), Nil)), pt)
      case _ =>
	      val tpt1 = typedType(tree.tpt)
	      checkClassTypeWithStablePrefix(tpt1.tpe, tpt1.pos, traitReq = false)
        assignType(cpy.New(tree)(tpt1), tpt1)
        // todo in a later phase: checkInstantiatable(cls, tpt1.pos)
    }
  }

  def typedPair(tree: untpd.Pair, pt: Type)(implicit ctx: Context) = track("typedPair") {
    val (leftProto, rightProto) = pt.argTypesLo match {
      case l :: r :: Nil if pt isRef defn.PairClass => (l, r)
      case _ => (WildcardType, WildcardType)
    }
    val left1 = typed(tree.left, leftProto)
    val right1 = typed(tree.right, rightProto)
    assignType(cpy.Pair(tree)(left1, right1), left1, right1)
  }

  def typedTyped(tree: untpd.Typed, pt: Type)(implicit ctx: Context): Tree = track("typedTyped") {
    def regularTyped(isWildcard: Boolean) = {
      val tpt1 = typedType(tree.tpt)
      val expr1 =
        if (isWildcard) tree.expr withType tpt1.tpe
        else typed(tree.expr, tpt1.tpe)
      assignType(cpy.Typed(tree)(expr1, tpt1), tpt1)
    }
    tree.expr match {
      case id: untpd.Ident if (ctx.mode is Mode.Pattern) && isVarPattern(id) =>
        if (id.name == nme.WILDCARD) regularTyped(isWildcard = true)
        else {
          import untpd._
          typed(Bind(id.name, Typed(Ident(nme.WILDCARD), tree.tpt)).withPos(id.pos))
        }
      case _ =>
        if (untpd.isWildcardStarArg(tree))
          seqToRepeated(typedExpr(tree.expr, defn.SeqType))
        else
          regularTyped(isWildcard = false)
    }
  }

  def typedNamedArg(tree: untpd.NamedArg, pt: Type)(implicit ctx: Context) = track("typedNamedArg") {
    val arg1 = typed(tree.arg, pt)
    assignType(cpy.NamedArg(tree)(tree.name, arg1), arg1)
  }

  def typedAssign(tree: untpd.Assign, pt: Type)(implicit ctx: Context) = track("typedAssign") {
    tree.lhs match {
      case lhs @ Apply(fn, args) =>
        typed(cpy.Apply(lhs)(untpd.Select(fn, nme.update), args :+ tree.rhs), pt)
      case untpd.TypedSplice(Apply(Select(fn, app), args)) if app == nme.apply =>
        typed(cpy.Apply(fn)(
            untpd.Select(untpd.TypedSplice(fn), nme.update),
            (args map untpd.TypedSplice) :+ tree.rhs), pt)
      case lhs =>
        val lhsCore = typedUnadapted(lhs)
        def lhs1 = typed(untpd.TypedSplice(lhsCore))
        lhsCore.tpe match {
          case ref: TermRef if ref.symbol is (Mutable, butNot = Accessor) =>
            assignType(cpy.Assign(tree)(lhs1, typed(tree.rhs, ref.info)))
          case _ =>
            def reassignmentToVal =
              errorTree(cpy.Assign(tree)(lhsCore, typed(tree.rhs, lhs1.tpe.widen)),
                  "reassignment to val")
            lhsCore.tpe match {
              case ref: TermRef => // todo: further conditions to impose on getter?
                val pre = ref.prefix
                val setterName = ref.name.setterName
                val setter = pre.member(setterName)
                lhsCore match {
                  case lhsCore: RefTree if setter.exists =>
                    val setterTypeRaw = pre select (setterName, setter)
                    val setterType = ensureAccessible(setterTypeRaw, isSuperSelection(lhsCore), tree.pos)
                    val lhs2 = lhsCore.withName(setterName).withType(setterType)
                    typed(cpy.Apply(tree)(untpd.TypedSplice(lhs2), tree.rhs :: Nil))
                  case _ =>
                    reassignmentToVal
                }
              case tpe =>
                reassignmentToVal
            }
        }
    }
  }

  def typedBlock(tree: untpd.Block, pt: Type)(implicit ctx: Context) = track("typedBlock") {
    val exprCtx = index(tree.stats)
    val stats1 = typedStats(tree.stats, ctx.owner)
    val expr1 = typedExpr(tree.expr, pt)(exprCtx)
    ensureNoLocalRefs(assignType(cpy.Block(tree)(stats1, expr1), stats1, expr1), pt)
  }

  def escapingRefs(block: Block)(implicit ctx: Context): collection.Set[NamedType] = {
    var hoisted: Set[Symbol] = Set()
    lazy val locals = localSyms(block.stats).toSet
    def isLocal(sym: Symbol): Boolean =
      (locals contains sym) && !isHoistableClass(sym)
    def isHoistableClass(sym: Symbol) =
      sym.isClass && {
        (hoisted contains sym) || {
          hoisted += sym
          !classLeaks(sym.asClass)
        }
      }
    def leakingTypes(tp: Type): collection.Set[NamedType] =
      tp namedPartsWith (tp => isLocal(tp.symbol))
    def typeLeaks(tp: Type): Boolean = leakingTypes(tp).nonEmpty
    def classLeaks(sym: ClassSymbol): Boolean =
      (ctx.owner is Method) || // can't hoist classes out of method bodies
      (sym.info.parents exists typeLeaks) ||
      (sym.decls.toList exists (t => typeLeaks(t.info)))
    leakingTypes(block.tpe)
  }

  /** Check that block's type can be expressed without references to locally defined
   *  symbols. The following two remedies are tried before giving up:
   *  1. If the expected type of the block is fully defined, pick it as the
   *     type of the result expressed by adding a type ascription.
   *  2. If (1) fails, force all type variables so that the block's type is
   *     fully defined and try again.
   */
  protected def ensureNoLocalRefs(block: Block, pt: Type, forcedDefined: Boolean = false)(implicit ctx: Context): Tree = {
    val Block(stats, expr) = block
    val leaks = escapingRefs(block)
    if (leaks.isEmpty) block
    else if (isFullyDefined(pt, ForceDegree.all)) {
      val expr1 = Typed(expr, TypeTree(pt))
      cpy.Block(block)(stats, expr1) withType expr1.tpe // no assignType here because avoid is redundant
    } else if (!forcedDefined) {
      fullyDefinedType(block.tpe, "block", block.pos)
      val expr1 = Typed(expr, TypeTree(avoid(block.tpe, localSyms(stats))))
      val block1 = cpy.Block(block)(stats, expr1) withType expr1.tpe // no assignType here because avoid is already done
      ensureNoLocalRefs(block1, pt, forcedDefined = true)
    } else
      errorTree(block,
          d"local definition of ${leaks.head.name} escapes as part of block's type ${block.tpe}"/*; full type: ${result.tpe.toString}"*/)
  }

  def typedIf(tree: untpd.If, pt: Type)(implicit ctx: Context) = track("typedIf") {
    val cond1 = typed(tree.cond, defn.BooleanType)
    val thenp1 = typed(tree.thenp, pt)
    val elsep1 = typed(tree.elsep orElse untpd.unitLiteral withPos tree.pos, pt)
    assignType(cpy.If(tree)(cond1, thenp1, elsep1), thenp1, elsep1)
  }

  def typedFunction(tree: untpd.Function, pt: Type)(implicit ctx: Context) = track("typedFunction") {
    val untpd.Function(args, body) = tree
    if (ctx.mode is Mode.Type)
      typed(cpy.AppliedTypeTree(tree)(
        untpd.TypeTree(defn.FunctionClass(args.length).typeRef), args :+ body), pt)
    else {
      val params = args.asInstanceOf[List[untpd.ValDef]]
      val (protoFormals, protoResult): (List[Type], Type) = pt match {
        case _ if defn.isFunctionType(pt) =>
          (pt.dealias.argInfos.init, pt.dealias.argInfos.last)
        case SAMType(meth) =>
          val mt @ MethodType(_, paramTypes) = meth.info
          (paramTypes, mt.resultType)
        case _ =>
          (params map alwaysWildcardType, WildcardType)
      }

      def refersTo(arg: untpd.Tree, param: untpd.ValDef): Boolean = arg match {
        case Ident(name) => name == param.name
        case _ => false
      }

      /** The funcion body to be returned in the closure. Can become a TypedSplice
       *  of a typed expression if this is necessary to infer a parameter type.
       */
      var fnBody = tree.body


      /** If function is of the form
       *      (x1, ..., xN) => f(x1, ..., XN)
       *  the type of `f`, otherwise NoType. (updates `fnBody` as a side effect).
       */
      def calleeType: Type = fnBody match {
        case Apply(expr, args) if (args corresponds params)(refersTo) =>
          expr match {
            case untpd.TypedSplice(expr1) =>
              expr1.tpe
            case _ =>
              val protoArgs = args map (_ withType WildcardType)
              val callProto = FunProto(protoArgs, WildcardType, this)
              val expr1 = typedExpr(expr, callProto)
              fnBody = cpy.Apply(fnBody)(untpd.TypedSplice(expr1), args)
              expr1.tpe
          }
        case _ =>
          NoType
      }

      /** Two attempts: First, if expected type is fully defined pick this one.
       *  Second, if function is of the form
       *      (x1, ..., xN) => f(x1, ..., XN)
       *  and f has a method type MT, pick the corresponding parameter type in MT,
       *  if this one is fully defined.
       *  If both attempts fail, issue a "missing parameter type" error.
       */
      def inferredParamType(param: untpd.ValDef, formal: Type): Type = {
        if (isFullyDefined(formal, ForceDegree.noBottom)) return formal
        calleeType.widen match {
          case mtpe: MethodType =>
            val pos = params indexWhere (_.name == param.name)
            if (pos < mtpe.paramTypes.length) {
              val ptype = mtpe.paramTypes(pos)
              if (isFullyDefined(ptype, ForceDegree.none)) return ptype
            }
          case _ =>
        }
        val ofFun =
          if (nme.syntheticParamNames(args.length + 1) contains param.name)
            i" of expanded function $tree"
          else
            ""
        errorType(i"missing parameter type for parameter ${param.name}$ofFun, expected = $pt", param.pos)
      }

      def protoFormal(i: Int): Type =
        if (protoFormals.length == params.length) protoFormals(i)
        else errorType(i"wrong number of parameters, expected: ${protoFormals.length}", tree.pos)

      val inferredParams: List[untpd.ValDef] =
        for ((param, i) <- params.zipWithIndex) yield
          if (!param.tpt.isEmpty) param
          else {
            val paramTpt = untpd.TypeTree(inferredParamType(param, protoFormal(i)))
            cpy.ValDef(param)(param.mods, param.name, paramTpt, param.rhs)
          }

      // Define result type of closure as the expected type, thereby pushing
      // down any implicit searches. We do this even if the expected type is not fully
      // defined, which is a bit of a hack. But it's needed to make the following work
      // (see typers.scala and printers/PlainPrinter.scala for examples).
      //
      //     def double(x: Char): String = s"$x$x"
      //     "abc" flatMap double
      //
      val resultTpt = protoResult match {
        case WildcardType(_) => untpd.TypeTree()
        case _ => untpd.TypeTree(protoResult)
      }
      typed(desugar.makeClosure(inferredParams, fnBody, resultTpt), pt)
    }
  }

  def typedClosure(tree: untpd.Closure, pt: Type)(implicit ctx: Context) = track("typedClosure") {
    val env1 = tree.env mapconserve (typed(_))
    val meth1 = typedUnadapted(tree.meth)
    val target =
      if (tree.tpt.isEmpty)
        meth1.tpe.widen match {
          case mt: MethodType =>
            pt match {
              case SAMType(meth) if !defn.isFunctionType(pt) && mt <:< meth.info =>
                if (!isFullyDefined(pt, ForceDegree.all))
                  ctx.error(d"result type of closure is an underspecified SAM type $pt", tree.pos)
                TypeTree(pt)
              case _ =>
                if (!mt.isDependent) EmptyTree
                else throw new Error(i"internal error: cannot turn dependent method type $mt into closure, position = ${tree.pos}, raw type = ${mt.toString}") // !!! DEBUG. Eventually, convert to an error?
            }
          case tp =>
            throw new Error(i"internal error: closing over non-method $tp, pos = ${tree.pos}")
        }
      else typed(tree.tpt)
    assignType(cpy.Closure(tree)(env1, meth1, target), meth1, target)
  }

  def typedMatch(tree: untpd.Match, pt: Type)(implicit ctx: Context) = track("typedMatch") {
    tree.selector match {
      case EmptyTree =>
        typed(desugar.makeCaseLambda(tree.cases) withPos tree.pos, pt)
      case _ =>
        val sel1 = typedExpr(tree.selector)
        val selType = widenForMatchSelector(
            fullyDefinedType(sel1.tpe, "pattern selector", tree.pos))

        /** gadtSyms = "all type parameters of enclosing methods that appear
         *              non-variantly in the selector type" todo: should typevars
         *              which appear with variances +1 and -1 (in different
         *              places) be considered as well?
         */
        val gadtSyms: Set[Symbol] = ctx.traceIndented(i"GADT syms of $selType", gadts) {
          val accu = new TypeAccumulator[Set[Symbol]] {
            def apply(tsyms: Set[Symbol], t: Type): Set[Symbol] = {
              val tsyms1 = t match {
                case tr: TypeRef if (tr.symbol is TypeParam) && tr.symbol.owner.isTerm && variance == 0 =>
                  tsyms + tr.symbol
                case _ =>
                  tsyms
              }
              foldOver(tsyms1, t)
            }
          }
          accu(Set.empty, selType)
        }

        def typedCase(tree: untpd.CaseDef): CaseDef = track("typedCase") {
          def caseRest(pat: Tree)(implicit ctx: Context) = {
            gadtSyms foreach (_.resetGADTFlexType)
            foreachSubTreeOf(pat) {
              case b: Bind =>
                if (ctx.scope.lookup(b.name) == NoSymbol) ctx.enter(b.symbol)
                else ctx.error(d"duplicate pattern variable: ${b.name}", b.pos)
              case _ =>
            }
            val guard1 = typedExpr(tree.guard, defn.BooleanType)
            val body1 = typedExpr(tree.body, pt)
            assignType(cpy.CaseDef(tree)(pat, guard1, body1), body1)
          }
          val doCase: () => CaseDef =
            () => caseRest(typedPattern(tree.pat, selType))(ctx.fresh.setNewScope)
          (doCase /: gadtSyms)((op, tsym) => tsym.withGADTFlexType(op))()
        }

        val cases1 = tree.cases mapconserve typedCase
        assignType(cpy.Match(tree)(sel1, cases1), cases1)
    }
  }

  def typedReturn(tree: untpd.Return)(implicit ctx: Context): Return = track("typedReturn") {
    def returnProto(owner: Symbol) =
      if (owner.isConstructor) defn.UnitType else owner.info.finalResultType
    def enclMethInfo(cx: Context): (Tree, Type) =
      if (tree.from.isEmpty) {
        val owner = cx.owner
        if (cx == NoContext || owner.isType) {
          ctx.error("return outside method definition", tree.pos)
          (EmptyTree, WildcardType)
        } else if (owner.isSourceMethod)
          if (owner.isCompleted) {
            val from = Ident(TermRef(NoPrefix, owner.asTerm))
            val proto = returnProto(owner)
            (from, proto)
          } else (EmptyTree, errorType(d"$owner has return statement; needs result type", tree.pos))
        else enclMethInfo(cx.outer)
      }
      else
        (tree.from.asInstanceOf[tpd.Tree], returnProto(tree.from.symbol))
    val (from, proto) = enclMethInfo(ctx)
    val expr1 = typedExpr(tree.expr orElse untpd.unitLiteral.withPos(tree.pos), proto)
    assignType(cpy.Return(tree)(expr1, from))
  }

  def typedTry(tree: untpd.Try, pt: Type)(implicit ctx: Context): Try = track("typedTry") {
    val expr1 = typed(tree.expr, pt)
    val handler1 = typed(tree.handler, defn.FunctionType(defn.ThrowableType :: Nil, pt))
    val finalizer1 = typed(tree.finalizer, defn.UnitType)
    assignType(cpy.Try(tree)(expr1, handler1, finalizer1), expr1, handler1)
  }

  def typedThrow(tree: untpd.Throw)(implicit ctx: Context): Throw = track("typedThrow") {
    val expr1 = typed(tree.expr, defn.ThrowableType)
    assignType(cpy.Throw(tree)(expr1))
  }

  def typedSeqLiteral(tree: untpd.SeqLiteral, pt: Type)(implicit ctx: Context): SeqLiteral = track("typedSeqLiteral") {
    val proto1 = pt.elemType orElse WildcardType
    val elems1 = tree.elems mapconserve (typed(_, proto1))
    assignType(cpy.SeqLiteral(tree)(elems1), elems1)
  }

  def typedTypeTree(tree: untpd.TypeTree, pt: Type)(implicit ctx: Context): TypeTree = track("typedTypeTree") {
    if (tree.original.isEmpty)
      tree match {
        case tree: untpd.DerivedTypeTree =>
          tree.ensureCompletions
          try
            TypeTree(tree.derivedType(tree.attachment(untpd.OriginalSymbol))) withPos tree.pos
            // btw, no need to remove the attachment. The typed
            // tree is different from the untyped one, so the
            // untyped tree is no longer accessed after all
            // accesses with typedTypeTree are done.
          catch {
            case ex: NoSuchElementException =>
              println(s"missing OriginalSymbol for ${ctx.owner.ownersIterator.toList}")
              throw ex
          }
        case _ =>
          assert(isFullyDefined(pt, ForceDegree.none))
          tree.withType(pt)
      }
    else {
      val original1 = typed(tree.original)
      cpy.TypeTree(tree)(original1).withType(original1.tpe)
    }
  }

  def typedSingletonTypeTree(tree: untpd.SingletonTypeTree)(implicit ctx: Context): SingletonTypeTree = track("typedSingletonTypeTree") {
    val ref1 = typedExpr(tree.ref)
    checkStable(ref1.tpe, tree.pos)
    assignType(cpy.SingletonTypeTree(tree)(ref1), ref1)
  }

  def typedAndTypeTree(tree: untpd.AndTypeTree)(implicit ctx: Context): AndTypeTree = track("typedAndTypeTree") {
    val left1 = typed(tree.left)
    val right1 = typed(tree.right)
    assignType(cpy.AndTypeTree(tree)(left1, right1), left1, right1)
  }

  def typedOrTypeTree(tree: untpd.OrTypeTree)(implicit ctx: Context): OrTypeTree = track("typedOrTypeTree") {
    val left1 = typed(tree.left)
    val right1 = typed(tree.right)
    assignType(cpy.OrTypeTree(tree)(left1, right1), left1, right1)
  }

  def typedRefinedTypeTree(tree: untpd.RefinedTypeTree)(implicit ctx: Context): RefinedTypeTree = track("typedRefinedTypeTree") {
    val tpt1 = if (tree.tpt.isEmpty) TypeTree(defn.ObjectType) else typedAheadType(tree.tpt)
    val refineClsDef = desugar.refinedTypeToClass(tree)
    val refineCls = createSymbol(refineClsDef).asClass
    val TypeDef(_, _, Template(_, _, _, refinements1)) = typed(refineClsDef)
    assert(tree.refinements.length == refinements1.length, s"${tree.refinements} != $refinements1")
    def addRefinement(parent: Type, refinement: Tree): Type = {
      typr.println(s"adding refinement $refinement")
      def checkRef(tree: Tree, sym: Symbol) =
        if (sym.maybeOwner == refineCls && tree.pos.start <= sym.pos.end)
          ctx.error("illegal forward reference in refinement", tree.pos)
      foreachSubTreeOf(refinement) {
        case tree: RefTree => checkRef(tree, tree.symbol)
        case tree: TypeTree => checkRef(tree, tree.tpe.typeSymbol)
        case _ =>
      }
      val rsym = refinement.symbol
      val rinfo = if (rsym is Accessor) rsym.info.resultType else rsym.info
      RefinedType(parent, rsym.name, rt => rinfo.substThis(refineCls, RefinedThis(rt)))
      // todo later: check that refinement is within bounds
    }
    val res = cpy.RefinedTypeTree(tree)(tpt1, refinements1) withType
      (tpt1.tpe /: refinements1)(addRefinement)
    typr.println(i"typed refinement: ${res.tpe}")
    res
  }

  def typedAppliedTypeTree(tree: untpd.AppliedTypeTree)(implicit ctx: Context): AppliedTypeTree = track("typedAppliedTypeTree") {
    val tpt1 = typed(tree.tpt)
    val args1 = tree.args mapconserve (typed(_))
    // check that arguments conform to bounds is done in phase FirstTransform
    assignType(cpy.AppliedTypeTree(tree)(tpt1, args1), tpt1, args1)
  }

  def typedByNameTypeTree(tree: untpd.ByNameTypeTree)(implicit ctx: Context): ByNameTypeTree = track("typedByNameTypeTree") {
    val result1 = typed(tree.result)
    assignType(cpy.ByNameTypeTree(tree)(result1), result1)
  }

  def typedTypeBoundsTree(tree: untpd.TypeBoundsTree)(implicit ctx: Context): TypeBoundsTree = track("typedTypeBoundsTree") {
    val TypeBoundsTree(lo, hi) = desugar.typeBoundsTree(tree)
    val lo1 = typed(lo)
    val hi1 = typed(hi)
    if (!(lo1.tpe <:< hi1.tpe))
      ctx.error(d"lower bound ${lo1.tpe} does not conform to upper bound ${hi1.tpe}", tree.pos)
    assignType(cpy.TypeBoundsTree(tree)(lo1, hi1), lo1, hi1)
  }

  def typedBind(tree: untpd.Bind, pt: Type)(implicit ctx: Context): Bind = track("typedBind") {
    val body1 = typed(tree.body, pt)
    typr.println(i"typed bind $tree pt = $pt bodytpe = ${body1.tpe}")
    val sym = ctx.newSymbol(ctx.owner, tree.name.asTermName, EmptyFlags, body1.tpe, coord = tree.pos)
    assignType(cpy.Bind(tree)(tree.name, body1), sym)
  }

  def typedAlternative(tree: untpd.Alternative, pt: Type)(implicit ctx: Context): Alternative = track("typedAlternative") {
    val trees1 = tree.trees mapconserve (typed(_, pt))
    assignType(cpy.Alternative(tree)(trees1), trees1)
  }

  def addTypedModifiersAnnotations(mods: untpd.Modifiers, sym: Symbol)(implicit ctx: Context): Modifiers = {
    val mods1 = typedModifiers(mods, sym)
    for (tree <- mods1.annotations) sym.addAnnotation(Annotation(tree))
    mods1
  }

  def typedModifiers(mods: untpd.Modifiers, sym: Symbol)(implicit ctx: Context): Modifiers = track("typedModifiers") {
    val annotations1 = mods.annotations mapconserve typedAnnotation
    if (annotations1 eq mods.annotations) mods.asInstanceOf[Modifiers]
    else Modifiers(mods.flags, mods.privateWithin, annotations1)
  }

  def typedAnnotation(annot: untpd.Tree)(implicit ctx: Context): Tree = track("typedAnnotation") {
    typed(annot, defn.AnnotationClass.typeRef)
  }

  def typedValDef(vdef: untpd.ValDef, sym: Symbol)(implicit ctx: Context) = track("typedValDef") {
    val ValDef(mods, name, tpt, rhs) = vdef
    val mods1 = addTypedModifiersAnnotations(mods, sym)
    val tpt1 = typedType(tpt)
    val rhs1 = rhs match {
      case Ident(nme.WILDCARD) => rhs withType tpt1.tpe
      case _ => typedExpr(rhs, tpt1.tpe)
    }
    assignType(cpy.ValDef(vdef)(mods1, name, tpt1, rhs1), sym)
  }

  def typedDefDef(ddef: untpd.DefDef, sym: Symbol)(implicit ctx: Context) = track("typedDefDef") {
    val DefDef(mods, name, tparams, vparamss, tpt, rhs) = ddef
    val mods1 = addTypedModifiersAnnotations(mods, sym)
    val tparams1 = tparams mapconserve (typed(_).asInstanceOf[TypeDef])
    val vparamss1 = vparamss nestedMapconserve (typed(_).asInstanceOf[ValDef])
    if (sym is Implicit) checkImplicitParamsNotSingletons(vparamss1)
    val tpt1 = typedType(tpt)
    val rhs1 = typedExpr(rhs, tpt1.tpe)
    assignType(cpy.DefDef(ddef)(mods1, name, tparams1, vparamss1, tpt1, rhs1), sym)
    //todo: make sure dependent method types do not depend on implicits or by-name params
  }

  def typedTypeDef(tdef: untpd.TypeDef, sym: Symbol)(implicit ctx: Context): Tree = track("typedTypeDef") {
    val TypeDef(mods, name, rhs) = tdef
    val mods1 = addTypedModifiersAnnotations(mods, sym)
    val _ = typedType(rhs) // unused, typecheck only to remove from typedTree
    assignType(cpy.TypeDef(tdef)(mods1, name, TypeTree(sym.info), Nil), sym)
  }

  def typedClassDef(cdef: untpd.TypeDef, cls: ClassSymbol)(implicit ctx: Context) = track("typedClassDef") {
    val TypeDef(mods, name, impl @ Template(constr, parents, self, body)) = cdef
    val superCtx = ctx.superCallContext
    def typedParent(tree: untpd.Tree): Tree =
      if (tree.isType) typedType(tree)(superCtx)
      else {
        val result = typedExpr(tree)(superCtx)
        if ((cls is Trait) && result.tpe.classSymbol.isRealClass && !ctx.isAfterTyper)
          ctx.error(s"trait may not call constructor of ${result.tpe.classSymbol}", tree.pos)
        result
      }

    /** If this is a real class, make sure its first parent is a
     *  constructor call. Cannot simply use a type.
     */
    def ensureConstrCall(parents: List[Tree]): List[Tree] = {
      val firstParent :: otherParents = parents
      if (firstParent.isType && !(cls is Trait))
        typed(untpd.New(untpd.TypedSplice(firstParent), Nil))(superCtx) :: otherParents
      else parents
    }

    val mods1 = addTypedModifiersAnnotations(mods, cls)
    val constr1 = typed(constr).asInstanceOf[DefDef]
    val parents1 = ensureConstrCall(ensureFirstIsClass(
        parents mapconserve typedParent, cdef.pos.toSynthetic))
    val self1 = typed(self)(ctx.outer).asInstanceOf[ValDef] // outer context where class members are not visible
    val dummy = localDummy(cls, impl)
    val body1 = typedStats(body, dummy)(inClassContext(self1.symbol))
    checkNoDoubleDefs(cls)
    val impl1 = cpy.Template(impl)(constr1, parents1, self1, body1)
      .withType(dummy.nonMemberTermRef)
    checkVariance(impl1)
    assignType(cpy.TypeDef(cdef)(mods1, name, impl1, Nil), cls)

    // todo later: check that
    //  1. If class is non-abstract, it is instantiatable:
    //  - self type is s supertype of own type
    //  - all type members have consistent bounds
    // 2. all private type members have consistent bounds
    // 3. Types do not override classes.
    // 4. Polymorphic type defs override nothing.
  }

  /** Overridden in retyper */
  def checkVariance(tree: Tree)(implicit ctx: Context) = VarianceChecker.check(tree)

  def localDummy(cls: ClassSymbol, impl: untpd.Template)(implicit ctx: Context): Symbol =
    ctx.newLocalDummy(cls, impl.pos)

  def typedImport(imp: untpd.Import, sym: Symbol)(implicit ctx: Context): Import = track("typedImport") {
    val expr1 = typedExpr(imp.expr, AnySelectionProto)
    checkStable(expr1.tpe, imp.expr.pos)
    assignType(cpy.Import(imp)(expr1, imp.selectors), sym)
  }

  def typedPackageDef(tree: untpd.PackageDef)(implicit ctx: Context): Tree = track("typedPackageDef") {
    val pid1 = typedExpr(tree.pid, AnySelectionProto)
    val pkg = pid1.symbol
    val packageContext =
      if (pkg is Package) ctx.fresh.setOwner(pkg.moduleClass).setTree(tree)
      else {
        ctx.error(d"$pkg is not a packge", tree.pos)
        ctx
      }
    val stats1 = typedStats(tree.stats, pkg.moduleClass)(packageContext)
    cpy.PackageDef(tree)(pid1.asInstanceOf[RefTree], stats1) withType pkg.valRef
  }

  def typedAnnotated(tree: untpd.Annotated, pt: Type)(implicit ctx: Context): Tree = track("typedAnnotated") {
    val annot1 = typedExpr(tree.annot, defn.AnnotationClass.typeRef)
    val arg1 = typed(tree.arg, pt)
    if (ctx.mode is Mode.Type)
      assignType(cpy.Annotated(tree)(annot1, arg1), annot1, arg1)
    else {
      val tpt = TypeTree(AnnotatedType(Annotation(annot1), arg1.tpe.widen))
      assignType(cpy.Typed(tree)(arg1, tpt), tpt)
    }
  }

  def typedAsFunction(tree: untpd.Tree, pt: Type)(implicit ctx: Context): Tree =
    typed(tree, if (defn.isFunctionType(pt)) pt else AnyFunctionProto)

  /** Retrieve symbol attached to given tree */
  protected def retrieveSym(tree: untpd.Tree)(implicit ctx: Context) = tree.removeAttachment(SymOfTree) match {
    case Some(sym) =>
      sym.ensureCompleted()
      sym
    case none =>
      NoSymbol
  }

  /** A fresh local context with given tree and owner.
   *  Owner might not exist (can happen for self valdefs), in which case
   *  no owner is set in result context
   */
  protected def localContext(tree: untpd.Tree, owner: Symbol)(implicit ctx: Context): FreshContext = {
    val freshCtx = ctx.fresh.setTree(tree)
    if (owner.exists) freshCtx.setOwner(owner) else freshCtx
  }

  protected def localTyper(sym: Symbol): Typer = nestedTyper.remove(sym).get

  def typedUnadapted(initTree: untpd.Tree, pt: Type = WildcardType)(implicit ctx: Context): Tree = {
    record("typedUnadapted")
    val xtree = expanded(initTree)
    xtree.removeAttachment(TypedAhead) match {
      case Some(ttree) => ttree
      case none =>

        def typedNamed(tree: untpd.NameTree, pt: Type)(implicit ctx: Context): Tree = {
          val sym = retrieveSym(xtree)
          tree match {
            case tree: untpd.Ident => typedIdent(tree, pt)
            case tree: untpd.Select => typedSelect(tree, pt)
            case tree: untpd.SelectFromTypeTree => typedSelectFromTypeTree(tree, pt)
            case tree: untpd.Bind => typedBind(tree, pt)
            case tree: untpd.ValDef =>
              if (tree.isEmpty) tpd.EmptyValDef
              else typedValDef(tree, sym)(localContext(tree, sym).setNewScope)
            case tree: untpd.DefDef =>
              val typer1 = localTyper(sym)
              typer1.typedDefDef(tree, sym)(localContext(tree, sym).setTyper(typer1))
            case tree: untpd.TypeDef =>
              if (tree.isClassDef) typedClassDef(tree, sym.asClass)(localContext(tree, sym))
              else typedTypeDef(tree, sym)(localContext(tree, sym).setNewScope)
            case _ => typedUnadapted(desugar(tree), pt)
          }
        }

        def typedUnnamed(tree: untpd.Tree): Tree = tree match {
          case tree: untpd.Apply =>
            if (ctx.mode is Mode.Pattern) typedUnApply(tree, pt) else typedApply(tree, pt)
          case tree: untpd.This => typedThis(tree)
          case tree: untpd.Literal => typedLiteral(tree)
          case tree: untpd.New => typedNew(tree, pt)
          case tree: untpd.Pair => typedPair(tree, pt)
          case tree: untpd.Typed => typedTyped(tree, pt)
          case tree: untpd.NamedArg => typedNamedArg(tree, pt)
          case tree: untpd.Assign => typedAssign(tree, pt)
          case tree: untpd.Block => typedBlock(desugar.block(tree), pt)(ctx.fresh.setNewScope)
          case tree: untpd.If => typedIf(tree, pt)
          case tree: untpd.Function => typedFunction(tree, pt)
          case tree: untpd.Closure => typedClosure(tree, pt)
          case tree: untpd.Match => typedMatch(tree, pt)
          case tree: untpd.Return => typedReturn(tree)
          case tree: untpd.Try => typedTry(tree, pt)
          case tree: untpd.Throw => typedThrow(tree)
          case tree: untpd.TypeApply => typedTypeApply(tree, pt)
          case tree: untpd.Super => typedSuper(tree, pt)
          case tree: untpd.SeqLiteral => typedSeqLiteral(tree, pt)
          case tree: untpd.TypeTree => typedTypeTree(tree, pt)
          case tree: untpd.SingletonTypeTree => typedSingletonTypeTree(tree)
          case tree: untpd.AndTypeTree => typedAndTypeTree(tree)
          case tree: untpd.OrTypeTree => typedOrTypeTree(tree)
          case tree: untpd.RefinedTypeTree => typedRefinedTypeTree(tree)
          case tree: untpd.AppliedTypeTree => typedAppliedTypeTree(tree)
          case tree: untpd.ByNameTypeTree => typedByNameTypeTree(tree)
          case tree: untpd.TypeBoundsTree => typedTypeBoundsTree(tree)
          case tree: untpd.Alternative => typedAlternative(tree, pt)
          case tree: untpd.PackageDef => typedPackageDef(tree)
          case tree: untpd.Annotated => typedAnnotated(tree, pt)
          case tree: untpd.TypedSplice => tree.tree
          case untpd.PostfixOp(tree, nme.WILDCARD) => typedAsFunction(tree, pt)
          case untpd.EmptyTree => tpd.EmptyTree
          case _ => typedUnadapted(desugar(tree), pt)
        }

        xtree match {
          case xtree: untpd.NameTree => typedNamed(encodeName(xtree), pt)
          case xtree: untpd.Import => typedImport(xtree, retrieveSym(xtree))
          case xtree => typedUnnamed(xtree)
        }
    }
  }

  protected def encodeName(tree: untpd.NameTree)(implicit ctx: Context) = tree withName tree.name.encode

  def typed(tree: untpd.Tree, pt: Type = WildcardType)(implicit ctx: Context): Tree = /*>|>*/ ctx.traceIndented (i"typing $tree", typr, show = true) /*<|<*/ {
    assertPositioned(tree)
    try adapt(typedUnadapted(tree, pt), pt, tree)
    catch {
      case ex: CyclicReference => errorTree(tree, cyclicErrorMsg(ex))
      case ex: FatalTypeError => errorTree(tree, ex.getMessage)
    }
  }

  def typedTrees(trees: List[untpd.Tree])(implicit ctx: Context): List[Tree] =
    trees mapconserve (typed(_))

  def typedStats(stats: List[untpd.Tree], exprOwner: Symbol)(implicit ctx: Context): List[tpd.Tree] = {
    val buf = new mutable.ListBuffer[Tree]
    @tailrec def traverse(stats: List[untpd.Tree])(implicit ctx: Context): List[Tree] = stats match {
      case (imp: untpd.Import) :: rest =>
        val imp1 = typed(imp)
        buf += imp1
        traverse(rest)(importContext(imp1.symbol, imp.selectors))
      case (mdef: untpd.DefTree) :: rest =>
        mdef.removeAttachment(ExpandedTree) match {
          case Some(xtree) =>
            traverse(xtree :: rest)
          case none =>
            buf += typed(mdef)
            traverse(rest)
        }
      case Thicket(stats) :: rest =>
        traverse(stats ++ rest)
      case stat :: rest =>
        val nestedCtx = if (exprOwner == ctx.owner) ctx else ctx.fresh.setOwner(exprOwner)
        buf += typed(stat)(nestedCtx)
        traverse(rest)
      case nil =>
        buf.toList
    }
    traverse(stats)
  }

  def typedExpr(tree: untpd.Tree, pt: Type = WildcardType)(implicit ctx: Context): Tree =
    typed(tree, pt)(ctx retractMode Mode.PatternOrType)
  def typedType(tree: untpd.Tree, pt: Type = WildcardType)(implicit ctx: Context): Tree = // todo: retract mode between Type and Pattern?
    typed(tree, pt)(ctx addMode Mode.Type)
  def typedPattern(tree: untpd.Tree, pt: Type = WildcardType)(implicit ctx: Context): Tree =
    typed(tree, pt)(ctx addMode Mode.Pattern)

  def tryEither[T](op: Context => T)(fallBack: (T, TyperState) => T)(implicit ctx: Context) = {
    val nestedCtx = ctx.fresh.setNewTyperState
    val result = op(nestedCtx)
    if (nestedCtx.reporter.hasErrors)
      fallBack(result, nestedCtx.typerState)
    else {
      nestedCtx.typerState.commit()
      result
    }
  }

  /** Add apply node or implicit conversions. Two strategies are tried, and the first
   *  that is succesful is picked. If neither of the strategies are succesful, continues with
   *  `fallBack`.
   *
   *  1st strategy: Try to insert `.apply` so that the result conforms to prototype `pt`.
   *  2nd stratgey: If tree is a select `qual.name`, try to insert an implicit conversion
   *    around the qualifier part `qual` so that the result conforms to the expected type
   *    with wildcard result type.
   */
  def tryInsertApplyOrImplicit(tree: Tree, pt: ProtoType)(fallBack: (Tree, TyperState) => Tree)(implicit ctx: Context): Tree =
    tryEither { implicit ctx =>
      val sel = typedSelect(untpd.Select(untpd.TypedSplice(tree), nme.apply), pt)
      if (sel.tpe.isError) sel else adapt(sel, pt)
    } { (failedTree, failedState) =>
      val tree1 = tryInsertImplicitOnQualifier(tree, pt)
      if (tree1 eq tree) fallBack(failedTree, failedState)
      else adapt(tree1, pt)
    }

  /** If this tree is a select node `qual.name`, try to insert an implicit conversion
   *  `c` around `qual` so that `c(qual).name` conforms to `pt`. If that fails
   *  return `tree` itself.
   */
  def tryInsertImplicitOnQualifier(tree: Tree, pt: Type)(implicit ctx: Context): Tree = ctx.traceIndented(i"try insert impl on qualifier $tree $pt") {
    tree match {
      case Select(qual, name) =>
        val qualProto = SelectionProto(name, pt, NoViewsAllowed)
        tryEither { implicit ctx =>
          val qual1 = adaptInterpolated(qual, qualProto, EmptyTree)
          if ((qual eq qual1) || ctx.reporter.hasErrors) tree
          else typedSelect(cpy.Select(tree)(untpd.TypedSplice(qual1), name), pt)
        } { (_, _) => tree
        }
      case _ => tree
    }
  }

  def adapt(tree: Tree, pt: Type, original: untpd.Tree = untpd.EmptyTree)(implicit ctx: Context) = /*>|>*/ track("adapt") /*<|<*/ {
    /*>|>*/ ctx.traceIndented(i"adapting $tree of type ${tree.tpe} to $pt", typr, show = true) /*<|<*/ {
      interpolateUndetVars(tree)
      tree overwriteType tree.tpe.simplified
      adaptInterpolated(tree, pt, original)
    }
  }

  /** (-1) For expressions with annotated types, let AnnotationCheckers decide what to do
   *  (0) Convert expressions with constant types to literals (unless in interactive/scaladoc mode)
   */

  /** Perform the following adaptations of expression, pattern or type `tree` wrt to
   *  given prototype `pt`:
   *  (1) Resolve overloading
   *  (2) Apply parameterless functions
   *  (3) Apply polymorphic types to fresh instances of their type parameters and
   *      store these instances in context.undetparams,
   *      unless followed by explicit type application.
   *  (4) Do the following to unapplied methods used as values:
   *  (4.1) If the method has only implicit parameters pass implicit arguments
   *  (4.2) otherwise, if `pt` is a function type and method is not a constructor,
   *        convert to function by eta-expansion,
   *  (4.3) otherwise, if the method is nullary with a result type compatible to `pt`
   *        and it is not a constructor, apply it to ()
   *  otherwise issue an error
   *  (5) Convert constructors in a pattern as follows:
   *  (5.1) If constructor refers to a case class factory, set tree's type to the unique
   *        instance of its primary constructor that is a subtype of the expected type.
   *  (5.2) If constructor refers to an extractor, convert to application of
   *        unapply or unapplySeq method.
   *
   *  (6) Convert all other types to TypeTree nodes.
   *  (7) When in TYPEmode but not FUNmode or HKmode, check that types are fully parameterized
   *      (7.1) In HKmode, higher-kinded types are allowed, but they must have the expected kind-arity
   *  (8) When in both EXPRmode and FUNmode, add apply method calls to values of object type.
   *  (9) If there are undetermined type variables and not POLYmode, infer expression instance
   *  Then, if tree's type is not a subtype of expected type, try the following adaptations:
   *  (10) If the expected type is Byte, Short or Char, and the expression
   *      is an integer fitting in the range of that type, convert it to that type.
   *  (11) Widen numeric literals to their expected type, if necessary
   *  (12) When in mode EXPRmode, convert E to { E; () } if expected type is scala.Unit.
   *  (13) When in mode EXPRmode, apply AnnotationChecker conversion if expected type is annotated.
   *  (14) When in mode EXPRmode, apply a view
   *  If all this fails, error
   */
  def adaptInterpolated(tree: Tree, pt: Type, original: untpd.Tree)(implicit ctx: Context): Tree = {

    assert(pt.exists)

    def methodStr = err.refStr(methPart(tree).tpe)

    def adaptOverloaded(ref: TermRef) = {
      val altDenots = ref.denot.alternatives
      typr.println(i"adapt overloaded $ref with alternatives ${altDenots map (_.info)}%, %")
      val alts = altDenots map (alt =>
        TermRef.withSigAndDenot(ref.prefix, ref.name, alt.info.signature, alt))
      def expectedStr = err.expectedTypeStr(pt)
      resolveOverloaded(alts, pt) match {
        case alt :: Nil =>
          adapt(tree.withType(alt), pt, original)
        case Nil =>
          def noMatches =
            errorTree(tree,
              d"""none of the ${err.overloadedAltsStr(altDenots)}
                 |match $expectedStr""".stripMargin)
          def hasEmptyParams(denot: SingleDenotation) = denot.info.paramTypess == ListOfNil
          pt match {
            case pt: FunProto =>
              tryInsertApplyOrImplicit(tree, pt)((_, _) => noMatches)
            case _ =>
              if (altDenots exists (_.info.paramTypess == ListOfNil))
                typed(untpd.Apply(untpd.TypedSplice(tree), Nil), pt)
              else
                noMatches
          }
        case alts =>
          val remainingDenots = alts map (_.denot.asInstanceOf[SingleDenotation])
          def all = if (remainingDenots.length == 2) "both" else "all"
          errorTree(tree,
            d"""Ambiguous overload. The ${err.overloadedAltsStr(remainingDenots)}
               |$all match $expectedStr""".stripMargin)
      }
    }

    def adaptToArgs(wtp: Type, pt: FunProto): Tree = wtp match {
      case _: MethodType | _: PolyType =>
        def isUnary = wtp.firstParamTypes match {
          case ptype :: Nil => !ptype.isRepeatedParam
          case _ => false
        }
        if (pt.args.lengthCompare(1) > 0 && isUnary && ctx.canAutoTuple)
          adaptToArgs(wtp, pt.tupled)
        else
          tree
      case _ => tryInsertApplyOrImplicit(tree, pt) {
        val more = tree match {
          case Apply(_, _) => " more"
          case _ => ""
        }
        (_, _) => errorTree(tree, d"$methodStr does not take$more parameters")
      }
    }

    def adaptNoArgs(wtp: Type): Tree = wtp match {
      case wtp: ExprType =>
        adaptInterpolated(tree.withType(wtp.resultType), pt, original)
      case wtp: ImplicitMethodType if constrainResult(wtp, pt) =>
        def addImplicitArgs = {
          def implicitArgError(msg: => String): Tree = {
            ctx.error(msg, tree.pos.endPos)
            EmptyTree
          }
          val args = (wtp.paramNames, wtp.paramTypes).zipped map { (pname, formal) =>
            def where = d"parameter $pname of $methodStr"
            inferImplicit(formal, EmptyTree, tree.pos.endPos) match {
              case SearchSuccess(arg, _, _) =>
                adapt(arg, formal)
              case ambi: AmbiguousImplicits =>
                implicitArgError(s"ambiguous implicits: ${ambi.explanation} of $where")
              case failure: SearchFailure =>
                implicitArgError(d"no implicit argument of type $formal found for $where" + failure.postscript)
            }
          }
          adapt(tpd.Apply(tree, args), pt)
        }
        if ((pt eq WildcardType) || original.isEmpty) addImplicitArgs
        else
          ctx.typerState.tryWithFallback(addImplicitArgs) {
            adapt(typed(original, WildcardType), pt, EmptyTree)
          }
      case wtp: MethodType if !pt.isInstanceOf[SingletonType] =>
        val arity =
          if (defn.isFunctionType(pt)) defn.functionArity(pt)
          else if (pt eq AnyFunctionProto) wtp.paramTypes.length
          else -1
        if (arity >= 0 && !tree.symbol.isConstructor)
          typed(etaExpand(tree, wtp, arity), pt)
        else if (wtp.paramTypes.isEmpty)
          adaptInterpolated(tpd.Apply(tree, Nil), pt, EmptyTree)
        else
          errorTree(tree,
            d"""missing arguments for $methodStr
               |follow this method with `_' if you want to treat it as a partially applied function""".stripMargin)
      case _ =>
        if (tree.tpe <:< pt) tree
        else if (ctx.mode is Mode.Pattern) tree // no subtype check for pattern
        else {
          typr.println(i"adapt to subtype ${tree.tpe} !<:< $pt")
          //typr.println(TypeComparer.explained(implicit ctx => tree.tpe <:< pt))
          adaptToSubType(wtp)
        }
    }

    def adaptToSubType(wtp: Type): Tree = {
      // try converting a constant to the target type
      val folded = ConstFold(tree, pt)
      if (folded ne tree) return folded
      // drop type if prototype is Unit
      if (pt isRef defn.UnitClass)
        return tpd.Block(tree :: Nil, Literal(Constant(())))
      // convert function literal to SAM closure
      tree match {
        case Closure(Nil, id @ Ident(nme.ANON_FUN), _)
        if defn.isFunctionType(wtp) && !defn.isFunctionType(pt) =>
          pt match {
            case SAMType(meth)
            if wtp <:< meth.info.toFunctionType =>
              // was ... && isFullyDefined(pt, ForceDegree.noBottom)
              // but this prevents case blocks from implementing polymorphic partial functions,
              // since we do not know the result parameter a priori. Have to wait until the
              // body is typechecked.
              return cpy.Closure(tree)(Nil, id, TypeTree(pt)).withType(pt)
            case _ =>
          }
        case _ =>
      }
      // try an implicit conversion
      inferView(tree, pt) match {
        case SearchSuccess(inferred, _, _) =>
          adapt(inferred, pt)
        case failure: SearchFailure =>
          if (pt.isInstanceOf[ProtoType]) tree
          else err.typeMismatch(tree, pt, failure)
      }
    }

    tree match {
      case _: MemberDef | _: PackageDef | _: Import | _: WithoutTypeOrPos[_] => tree
      case _ => tree.tpe.widen match {
        case ErrorType =>
          tree
        case ref: TermRef =>
          adaptOverloaded(ref)
        case poly: PolyType =>
          if (pt.isInstanceOf[PolyProto]) tree
          else {
            val (_, tvars) = constrained(poly, tree)
            adaptInterpolated(tree appliedToTypes tvars, pt, original)
          }
        case wtp =>
          pt match {
            case pt: FunProto =>
              adaptToArgs(wtp, pt)
            case pt: PolyProto =>
              tryInsertApplyOrImplicit(tree, pt) {
                (_, _) => tree // error will be reported in typedTypeApply
              }
            case _ =>
              if (ctx.mode is Mode.Type)
                if (tree.tpe <:< pt) tree
                else err.typeMismatch(tree, pt)
              else adaptNoArgs(wtp)
          }
      }
    }
  }
}