summaryrefslogtreecommitdiff
path: root/examples/scala-js/scalalib/overrides-2.11/scala/collection/immutable/NumericRange.scala
diff options
context:
space:
mode:
Diffstat (limited to 'examples/scala-js/scalalib/overrides-2.11/scala/collection/immutable/NumericRange.scala')
-rw-r--r--examples/scala-js/scalalib/overrides-2.11/scala/collection/immutable/NumericRange.scala346
1 files changed, 0 insertions, 346 deletions
diff --git a/examples/scala-js/scalalib/overrides-2.11/scala/collection/immutable/NumericRange.scala b/examples/scala-js/scalalib/overrides-2.11/scala/collection/immutable/NumericRange.scala
deleted file mode 100644
index 51f9f68..0000000
--- a/examples/scala-js/scalalib/overrides-2.11/scala/collection/immutable/NumericRange.scala
+++ /dev/null
@@ -1,346 +0,0 @@
-/* __ *\
-** ________ ___ / / ___ Scala API **
-** / __/ __// _ | / / / _ | (c) 2006-2013, LAMP/EPFL **
-** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
-** /____/\___/_/ |_/____/_/ | | **
-** |/ **
-\* */
-
-package scala
-package collection
-package immutable
-
-import mutable.{ Builder, ListBuffer }
-
-/** `NumericRange` is a more generic version of the
- * `Range` class which works with arbitrary types.
- * It must be supplied with an `Integral` implementation of the
- * range type.
- *
- * Factories for likely types include `Range.BigInt`, `Range.Long`,
- * and `Range.BigDecimal`. `Range.Int` exists for completeness, but
- * the `Int`-based `scala.Range` should be more performant.
- *
- * {{{
- * val r1 = new Range(0, 100, 1)
- * val veryBig = Int.MaxValue.toLong + 1
- * val r2 = Range.Long(veryBig, veryBig + 100, 1)
- * assert(r1 sameElements r2.map(_ - veryBig))
- * }}}
- *
- * TODO: Now the specialization exists there is no clear reason to have
- * separate classes for Range/NumericRange. Investigate and consolidate.
- *
- * @author Paul Phillips
- * @version 2.8
- * @define Coll `NumericRange`
- * @define coll numeric range
- * @define mayNotTerminateInf
- * @define willNotTerminateInf
- */
-abstract class NumericRange[T]
- (val start: T, val end: T, val step: T, val isInclusive: Boolean)
- (implicit num: Integral[T])
-extends AbstractSeq[T] with IndexedSeq[T] with Serializable {
- /** Note that NumericRange must be invariant so that constructs
- * such as "1L to 10 by 5" do not infer the range type as AnyVal.
- */
- import num._
-
- // See comment in Range for why this must be lazy.
- private lazy val numRangeElements: Int =
- NumericRange.count(start, end, step, isInclusive)
-
- override def length = numRangeElements
- override def isEmpty = length == 0
- override lazy val last: T =
- if (length == 0) Nil.last
- else locationAfterN(length - 1)
-
- /** Create a new range with the start and end values of this range and
- * a new `step`.
- */
- def by(newStep: T): NumericRange[T] = copy(start, end, newStep)
-
- /** Create a copy of this range.
- */
- def copy(start: T, end: T, step: T): NumericRange[T]
-
- override def foreach[U](f: T => U) {
- var count = 0
- var current = start
- while (count < length) {
- f(current)
- current += step
- count += 1
- }
- }
-
- // TODO: these private methods are straight copies from Range, duplicated
- // to guard against any (most likely illusory) performance drop. They should
- // be eliminated one way or another.
-
- // Tests whether a number is within the endpoints, without testing
- // whether it is a member of the sequence (i.e. when step > 1.)
- private def isWithinBoundaries(elem: T) = !isEmpty && (
- (step > zero && start <= elem && elem <= last ) ||
- (step < zero && last <= elem && elem <= start)
- )
- // Methods like apply throw exceptions on invalid n, but methods like take/drop
- // are forgiving: therefore the checks are with the methods.
- private def locationAfterN(n: Int): T = start + (step * fromInt(n))
-
- // When one drops everything. Can't ever have unchecked operations
- // like "end + 1" or "end - 1" because ranges involving Int.{ MinValue, MaxValue }
- // will overflow. This creates an exclusive range where start == end
- // based on the given value.
- private def newEmptyRange(value: T) = NumericRange(value, value, step)
-
- final override def take(n: Int): NumericRange[T] = (
- if (n <= 0 || length == 0) newEmptyRange(start)
- else if (n >= length) this
- else new NumericRange.Inclusive(start, locationAfterN(n - 1), step)
- )
-
- final override def drop(n: Int): NumericRange[T] = (
- if (n <= 0 || length == 0) this
- else if (n >= length) newEmptyRange(end)
- else copy(locationAfterN(n), end, step)
- )
-
- def apply(idx: Int): T = {
- if (idx < 0 || idx >= length) throw new IndexOutOfBoundsException(idx.toString)
- else locationAfterN(idx)
- }
-
- import NumericRange.defaultOrdering
-
- override def min[T1 >: T](implicit ord: Ordering[T1]): T =
- if (ord eq defaultOrdering(num)) {
- if (num.signum(step) > 0) start
- else last
- } else super.min(ord)
-
- override def max[T1 >: T](implicit ord: Ordering[T1]): T =
- if (ord eq defaultOrdering(num)) {
- if (num.signum(step) > 0) last
- else start
- } else super.max(ord)
-
- // Motivated by the desire for Double ranges with BigDecimal precision,
- // we need some way to map a Range and get another Range. This can't be
- // done in any fully general way because Ranges are not arbitrary
- // sequences but step-valued, so we have a custom method only we can call
- // which we promise to use responsibly.
- //
- // The point of it all is that
- //
- // 0.0 to 1.0 by 0.1
- //
- // should result in
- //
- // NumericRange[Double](0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
- //
- // and not
- //
- // NumericRange[Double](0.0, 0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6000000000000001, 0.7000000000000001, 0.8, 0.9)
- //
- // or perhaps more importantly,
- //
- // (0.1 to 0.3 by 0.1 contains 0.3) == true
- //
- private[immutable] def mapRange[A](fm: T => A)(implicit unum: Integral[A]): NumericRange[A] = {
- val self = this
-
- // XXX This may be incomplete.
- new NumericRange[A](fm(start), fm(end), fm(step), isInclusive) {
- def copy(start: A, end: A, step: A): NumericRange[A] =
- if (isInclusive) NumericRange.inclusive(start, end, step)
- else NumericRange(start, end, step)
-
- private lazy val underlyingRange: NumericRange[T] = self
- override def foreach[U](f: A => U) { underlyingRange foreach (x => f(fm(x))) }
- override def isEmpty = underlyingRange.isEmpty
- override def apply(idx: Int): A = fm(underlyingRange(idx))
- override def containsTyped(el: A) = underlyingRange exists (x => fm(x) == el)
- }
- }
-
- // a well-typed contains method.
- def containsTyped(x: T): Boolean =
- isWithinBoundaries(x) && (((x - start) % step) == zero)
-
- override def contains[A1 >: T](x: A1): Boolean =
- try containsTyped(x.asInstanceOf[T])
- catch { case _: ClassCastException => false }
-
- final override def sum[B >: T](implicit num: Numeric[B]): B = {
- // arithmetic series formula can be used for regular addition
- if ((num eq scala.math.Numeric.IntIsIntegral)||
- (num eq scala.math.Numeric.ShortIsIntegral)||
- (num eq scala.math.Numeric.ByteIsIntegral)||
- (num eq scala.math.Numeric.CharIsIntegral)||
- (num eq scala.math.Numeric.LongIsIntegral)) {
- val numAsIntegral = num.asInstanceOf[Integral[B]]
- import numAsIntegral._
- if (isEmpty) num fromInt 0
- else if (numRangeElements == 1) head
- else ((num fromInt numRangeElements) * (head + last) / (num fromInt 2))
- } else {
- // user provided custom Numeric, we cannot rely on arithmetic series formula
- if (isEmpty) num.zero
- else {
- var acc = num.zero
- var i = head
- var idx = 0
- while(idx < length) {
- acc = num.plus(acc, i)
- i = i + step
- idx = idx + 1
- }
- acc
- }
- }
- }
-
- override lazy val hashCode = super.hashCode()
- override def equals(other: Any) = other match {
- case x: NumericRange[_] =>
- (x canEqual this) && (length == x.length) && (
- (length == 0) || // all empty sequences are equal
- (start == x.start && last == x.last) // same length and same endpoints implies equality
- )
- case _ =>
- super.equals(other)
- }
-
- override def toString() = {
- val endStr = if (length > Range.MAX_PRINT) ", ... )" else ")"
- take(Range.MAX_PRINT).mkString("NumericRange(", ", ", endStr)
- }
-}
-
-/** A companion object for numeric ranges.
- */
-object NumericRange {
-
- /** Calculates the number of elements in a range given start, end, step, and
- * whether or not it is inclusive. Throws an exception if step == 0 or
- * the number of elements exceeds the maximum Int.
- */
- def count[T](start: T, end: T, step: T, isInclusive: Boolean)(implicit num: Integral[T]): Int = {
- val zero = num.zero
- val upward = num.lt(start, end)
- val posStep = num.gt(step, zero)
-
- if (step == zero) throw new IllegalArgumentException("step cannot be 0.")
- else if (start == end) if (isInclusive) 1 else 0
- else if (upward != posStep) 0
- else {
- /* We have to be frightfully paranoid about running out of range.
- * We also can't assume that the numbers will fit in a Long.
- * We will assume that if a > 0, -a can be represented, and if
- * a < 0, -a+1 can be represented. We also assume that if we
- * can't fit in Int, we can represent 2*Int.MaxValue+3 (at least).
- * And we assume that numbers wrap rather than cap when they overflow.
- */
- // Check whether we can short-circuit by deferring to Int range.
- val startint = num.toInt(start)
- if (start == num.fromInt(startint)) {
- val endint = num.toInt(end)
- if (end == num.fromInt(endint)) {
- val stepint = num.toInt(step)
- if (step == num.fromInt(stepint)) {
- return {
- if (isInclusive) Range.inclusive(startint, endint, stepint).length
- else Range (startint, endint, stepint).length
- }
- }
- }
- }
- // If we reach this point, deferring to Int failed.
- // Numbers may be big.
- val one = num.one
- val limit = num.fromInt(Int.MaxValue)
- def check(t: T): T =
- if (num.gt(t, limit)) throw new IllegalArgumentException("More than Int.MaxValue elements.")
- else t
- // If the range crosses zero, it might overflow when subtracted
- val startside = num.signum(start)
- val endside = num.signum(end)
- num.toInt{
- if (startside*endside >= 0) {
- // We're sure we can subtract these numbers.
- // Note that we do not use .rem because of different conventions for Long and BigInt
- val diff = num.minus(end, start)
- val quotient = check(num.quot(diff, step))
- val remainder = num.minus(diff, num.times(quotient, step))
- if (!isInclusive && zero == remainder) quotient else check(num.plus(quotient, one))
- }
- else {
- // We might not even be able to subtract these numbers.
- // Jump in three pieces:
- // * start to -1 or 1, whichever is closer (waypointA)
- // * one step, which will take us at least to 0 (ends at waypointB)
- // * there to the end
- val negone = num.fromInt(-1)
- val startlim = if (posStep) negone else one
- val startdiff = num.minus(startlim, start)
- val startq = check(num.quot(startdiff, step))
- val waypointA = if (startq == zero) start else num.plus(start, num.times(startq, step))
- val waypointB = num.plus(waypointA, step)
- check {
- if (num.lt(waypointB, end) != upward) {
- // No last piece
- if (isInclusive && waypointB == end) num.plus(startq, num.fromInt(2))
- else num.plus(startq, one)
- }
- else {
- // There is a last piece
- val enddiff = num.minus(end,waypointB)
- val endq = check(num.quot(enddiff, step))
- val last = if (endq == zero) waypointB else num.plus(waypointB, num.times(endq, step))
- // Now we have to tally up all the pieces
- // 1 for the initial value
- // startq steps to waypointA
- // 1 step to waypointB
- // endq steps to the end (one less if !isInclusive and last==end)
- num.plus(startq, num.plus(endq, if (!isInclusive && last==end) one else num.fromInt(2)))
- }
- }
- }
- }
- }
- }
-
- class Inclusive[T](start: T, end: T, step: T)(implicit num: Integral[T])
- extends NumericRange(start, end, step, true) {
- def copy(start: T, end: T, step: T): Inclusive[T] =
- NumericRange.inclusive(start, end, step)
-
- def exclusive: Exclusive[T] = NumericRange(start, end, step)
- }
-
- class Exclusive[T](start: T, end: T, step: T)(implicit num: Integral[T])
- extends NumericRange(start, end, step, false) {
- def copy(start: T, end: T, step: T): Exclusive[T] =
- NumericRange(start, end, step)
-
- def inclusive: Inclusive[T] = NumericRange.inclusive(start, end, step)
- }
-
- def apply[T](start: T, end: T, step: T)(implicit num: Integral[T]): Exclusive[T] =
- new Exclusive(start, end, step)
- def inclusive[T](start: T, end: T, step: T)(implicit num: Integral[T]): Inclusive[T] =
- new Inclusive(start, end, step)
-
- private[collection] val defaultOrdering = Map[Numeric[_], Ordering[_]](
- Numeric.IntIsIntegral -> Ordering.Int,
- Numeric.ShortIsIntegral -> Ordering.Short,
- Numeric.ByteIsIntegral -> Ordering.Byte,
- Numeric.CharIsIntegral -> Ordering.Char,
- Numeric.LongIsIntegral -> Ordering.Long
- )
-
-}
-