aboutsummaryrefslogtreecommitdiff
path: root/core
diff options
context:
space:
mode:
authorJon Pretty <jon.pretty@propensive.com>2017-11-09 16:34:18 +0000
committerJon Pretty <jon.pretty@propensive.com>2017-11-09 16:34:18 +0000
commit5d862115bd31fcd42484293c1f64652192d95d26 (patch)
tree1e5301cd51192de114db20616e1c18e3d2726a52 /core
parente396b7a038e458de37ced6b59e0d367883bc3b71 (diff)
downloadmagnolia-5d862115bd31fcd42484293c1f64652192d95d26.tar.gz
magnolia-5d862115bd31fcd42484293c1f64652192d95d26.tar.bz2
magnolia-5d862115bd31fcd42484293c1f64652192d95d26.zip
Upgrade to SBT 1.0 and include testing binariesv0.5.0
Diffstat (limited to 'core')
-rw-r--r--core/src/main/scala/interface.scala196
-rw-r--r--core/src/main/scala/magnolia.scala448
2 files changed, 358 insertions, 286 deletions
diff --git a/core/src/main/scala/interface.scala b/core/src/main/scala/interface.scala
index ecc4379..30b473a 100644
--- a/core/src/main/scala/interface.scala
+++ b/core/src/main/scala/interface.scala
@@ -3,23 +3,23 @@ package magnolia
import language.higherKinds
/** represents a subtype of a sealed trait
- *
- * @tparam Typeclass type constructor for the typeclass being derived
- * @tparam Type generic type of this parameter */
+ *
+ * @tparam Typeclass type constructor for the typeclass being derived
+ * @tparam Type generic type of this parameter */
trait Subtype[Typeclass[_], Type] {
-
+
/** the type of subtype */
type SType <: Type
/** the name of the subtype
- *
- * This is the fully-qualified name of the type of subclass. */
+ *
+ * This is the fully-qualified name of the type of subclass. */
def label: String
-
+
/** the typeclass instance associated with this subtype
- *
- * This is the instance of the type `Typeclass[SType]` which will have been discovered by
- * implicit search, or derived by Magnolia. */
+ *
+ * This is the instance of the type `Typeclass[SType]` which will have been discovered by
+ * implicit search, or derived by Magnolia. */
def typeclass: Typeclass[SType]
/** partial function defined the subset of values of `Type` which have the type of this subtype */
@@ -27,107 +27,108 @@ trait Subtype[Typeclass[_], Type] {
}
/** represents a parameter of a case class
- *
- * @tparam Typeclass type constructor for the typeclass being derived
- * @tparam Type generic type of this parameter */
+ *
+ * @tparam Typeclass type constructor for the typeclass being derived
+ * @tparam Type generic type of this parameter */
trait Param[Typeclass[_], Type] {
-
+
/** the type of the parameter being represented
- *
- * For exmaple, for a case class,
- * <pre>
- * case class Person(name: String, age: Int)
- * </pre>
- * the [[Param]] instance corresponding to the `age` parameter would have a [[PType]] equal to
- * the type [[scala.Int]]. However, in practice, this type will never be universally quantified.
- */
+ *
+ * For exmaple, for a case class,
+ * <pre>
+ * case class Person(name: String, age: Int)
+ * </pre>
+ * the [[Param]] instance corresponding to the `age` parameter would have a [[PType]] equal to
+ * the type [[scala.Int]]. However, in practice, this type will never be universally quantified.
+ */
type PType
-
+
/** the name of the parameter */
def label: String
/** the typeclass instance associated with this parameter
- *
- * This is the instance of the type `Typeclass[PType]` which will have been discovered by
- * implicit search, or derived by Magnolia.
- *
- * Its type is existentially quantified on this [[Param]] instance, and depending on the
- * nature of the particular typeclass, it may either accept or produce types which are also
- * existentially quantified on this same [[Param]] instance. */
+ *
+ * This is the instance of the type `Typeclass[PType]` which will have been discovered by
+ * implicit search, or derived by Magnolia.
+ *
+ * Its type is existentially quantified on this [[Param]] instance, and depending on the
+ * nature of the particular typeclass, it may either accept or produce types which are also
+ * existentially quantified on this same [[Param]] instance. */
def typeclass: Typeclass[PType]
/** provides the default value for this parameter, as defined in the case class constructor */
def default: Option[PType]
/** dereferences a value of the case class type, `Type`, to access the value of the parameter
- * being represented
- *
- * When programming generically, against an unknown case class, with unknown parameter names
- * and types, it is not possible to directly access the parameter values without reflection,
- * which is undesirable. This method, whose implementation is provided by the Magnolia macro,
- * will dereference a case class instance to access the parameter corresponding to this
- * [[Param]].
- *
- * Whilst the type of the resultant parameter value cannot be universally known at the use, its
- * type will be existentially quantified on this [[Param]] instance, and the return type of the
- * corresponding `typeclass` method will be existentially quantified on the same value. This is
- * sufficient for the compiler to determine that the two values are compatible, and the value may
- * be applied to the typeclass (in whatever way that particular typeclass provides).
- *
- * @param param the instance of the case class to be dereferenced
- * @return the parameter value */
+ * being represented
+ *
+ * When programming generically, against an unknown case class, with unknown parameter names
+ * and types, it is not possible to directly access the parameter values without reflection,
+ * which is undesirable. This method, whose implementation is provided by the Magnolia macro,
+ * will dereference a case class instance to access the parameter corresponding to this
+ * [[Param]].
+ *
+ * Whilst the type of the resultant parameter value cannot be universally known at the use, its
+ * type will be existentially quantified on this [[Param]] instance, and the return type of the
+ * corresponding `typeclass` method will be existentially quantified on the same value. This is
+ * sufficient for the compiler to determine that the two values are compatible, and the value may
+ * be applied to the typeclass (in whatever way that particular typeclass provides).
+ *
+ * @param param the instance of the case class to be dereferenced
+ * @return the parameter value */
def dereference(param: Type): PType
}
/** represents a case class or case object and the context required to construct a new typeclass
- * instance corresponding to it
- *
- * Instances of [[CaseClass]] provide access to all of the parameters of the case class, the full
- * name of the case class type, and a boolean to determine whether the type is a case class or case
- * object.
- *
- * @param typeName the name of the case class
- * @param isObject true only if this represents a case object rather than a case class
- * @param parametersArray an array of [[Param]] values for this case class
- * @tparam Typeclass type constructor for the typeclass being derived
- * @tparam Type generic type of this parameter */
-abstract class CaseClass[Typeclass[_], Type] private[magnolia](
+ * instance corresponding to it
+ *
+ * Instances of [[CaseClass]] provide access to all of the parameters of the case class, the full
+ * name of the case class type, and a boolean to determine whether the type is a case class or case
+ * object.
+ *
+ * @param typeName the name of the case class
+ * @param isObject true only if this represents a case object rather than a case class
+ * @param parametersArray an array of [[Param]] values for this case class
+ * @tparam Typeclass type constructor for the typeclass being derived
+ * @tparam Type generic type of this parameter */
+abstract class CaseClass[Typeclass[_], Type] private[magnolia] (
val typeName: String,
val isObject: Boolean,
- parametersArray: Array[Param[Typeclass, Type]]) {
+ parametersArray: Array[Param[Typeclass, Type]]
+) {
/** constructs a new instance of the case class type
- *
- * This method will be implemented by the Magnolia macro to make it possible to construct
- * instances of case classes generically in user code, that is, without knowing their type
- * concretely.
- *
- * To construct a new case class instance, the method takes a lambda which defines how each
- * parameter in the new case class should be constructed. See the [[Param]] class for more
- * information on constructing parameter values from a [[Param]] instance.
- *
- * @param makeParam lambda for converting a generic [[Param]] into the value to be used for
- * this parameter in the construction of a new instance of the case class
- * @return a new instance of the case class */
+ *
+ * This method will be implemented by the Magnolia macro to make it possible to construct
+ * instances of case classes generically in user code, that is, without knowing their type
+ * concretely.
+ *
+ * To construct a new case class instance, the method takes a lambda which defines how each
+ * parameter in the new case class should be constructed. See the [[Param]] class for more
+ * information on constructing parameter values from a [[Param]] instance.
+ *
+ * @param makeParam lambda for converting a generic [[Param]] into the value to be used for
+ * this parameter in the construction of a new instance of the case class
+ * @return a new instance of the case class */
def construct[Return](makeParam: Param[Typeclass, Type] => Return): Type
-
+
/** a sequence of [[Param]] objects representing all of the parameters in the case class
- *
- * For efficiency, this sequence is implemented by an `Array`, but upcast to a
- * [[scala.collection.Seq]] to hide the mutable collection API. */
+ *
+ * For efficiency, this sequence is implemented by an `Array`, but upcast to a
+ * [[scala.collection.Seq]] to hide the mutable collection API. */
def parameters: Seq[Param[Typeclass, Type]] = parametersArray
}
/** represents a sealed trait and the context required to construct a new typeclass instance
- * corresponding to it
- *
- * Instances of `SealedTrait` provide access to all of the component subtypes of the sealed trait
- * which form a coproduct, and to the fully-qualified name of the sealed trait.
- *
- * @param typeName the name of the sealed trait
- * @param subtypesArray an array of [[Subtype]] instances for each subtype in the sealed trait
- * @tparam Typeclass type constructor for the typeclass being derived
- * @tparam Type generic type of this parameter */
+ * corresponding to it
+ *
+ * Instances of `SealedTrait` provide access to all of the component subtypes of the sealed trait
+ * which form a coproduct, and to the fully-qualified name of the sealed trait.
+ *
+ * @param typeName the name of the sealed trait
+ * @param subtypesArray an array of [[Subtype]] instances for each subtype in the sealed trait
+ * @tparam Typeclass type constructor for the typeclass being derived
+ * @tparam Type generic type of this parameter */
final class SealedTrait[Typeclass[_], Type](val typeName: String,
subtypesArray: Array[Subtype[Typeclass, Type]]) {
@@ -135,16 +136,21 @@ final class SealedTrait[Typeclass[_], Type](val typeName: String,
def subtypes: Seq[Subtype[Typeclass, Type]] = subtypesArray
/** convenience method for delegating typeclass application to the typeclass corresponding to the
- * subtype of the sealed trait which matches the type of the `value`
- *
- * @tparam Return the return type of the lambda, which should be inferred
- * @param value the instance of the generic type whose value should be used to match on a
- * particular subtype of the sealed trait
- * @param handle lambda for applying the value to the typeclass for the particular subtype which
- * matches
- * @return the result of applying the `handle` lambda to subtype of the sealed trait which
- * matches the parameter `value` */
+ * subtype of the sealed trait which matches the type of the `value`
+ *
+ * @tparam Return the return type of the lambda, which should be inferred
+ * @param value the instance of the generic type whose value should be used to match on a
+ * particular subtype of the sealed trait
+ * @param handle lambda for applying the value to the typeclass for the particular subtype which
+ * matches
+ * @return the result of applying the `handle` lambda to subtype of the sealed trait which
+ * matches the parameter `value` */
def dispatch[Return](value: Type)(handle: Subtype[Typeclass, Type] => Return): Return =
- subtypes.map { sub => sub.cast.andThen { v => handle(sub) } }.reduce(_ orElse _)(value)
+ subtypes
+ .map { sub =>
+ sub.cast.andThen { v =>
+ handle(sub)
+ }
+ }
+ .reduce(_ orElse _)(value)
}
-
diff --git a/core/src/main/scala/magnolia.scala b/core/src/main/scala/magnolia.scala
index a2c164e..293d0f1 100644
--- a/core/src/main/scala/magnolia.scala
+++ b/core/src/main/scala/magnolia.scala
@@ -10,62 +10,67 @@ object Magnolia {
import CompileTimeState._
/** derives a generic typeclass instance for the type `T`
- *
- * This is a macro definition method which should be bound to a method defined inside a Magnolia
- * generic derivation object, that is, one which defines the methods `combine`, `dispatch` and
- * the type constructor, `Typeclass[_]`. This will typically look like,
- * <pre>
- * object Derivation {
- * // other definitions
- * implicit def gen[T]: Typeclass[T] = Magnolia.gen[T]
- * }
- * </pre>
- * which would support automatic derivation of typeclass instances by calling `Derivation.gen[T]`
- * or with `implicitly[Typeclass[T]]`, if the implicit method is imported into the current scope.
- *
- * The definition expects a type constructor called `Typeclass`, taking one *-kinded type
- * parameter to be defined on the same object as a means of determining how the typeclass should
- * be genericized. While this may be obvious for typeclasses like `Show[T]` which take only a
- * single type parameter, Magnolia can also derive typeclass instances for types such as
- * `Decoder[Format, Type]` which would typically fix the `Format` parameter while varying the
- * `Type` parameter.
- *
- * While there is no "interface" for a derivation, in the object-oriented sense, the Magnolia
- * macro expects to be able to call certain methods on the object within which it is bound to a
- * method.
- *
- * Specifically, for deriving case classes (product types), the macro will attempt to call the
- * `combine` method with an instance of [[CaseClass]], like so,
- * <pre>
- * &lt;derivation&gt;.combine(&lt;caseClass&gt;): Typeclass[T]
- * </pre>
- * That is to say, the macro expects there to exist a method called `combine` on the derivation
- * object, which may be called with the code above, and for it to return a type which conforms to
- * the type `Typeclass[T]`. The implementation of `combine` will therefore typically look like
- * this,
- * <pre>
- * def combine[T](caseClass: CaseClass[Typeclass, T]): Typeclass[T] = ...
- * </pre>
- * however, there is the flexibility to provide additional type parameters or additional implicit
- * parameters to the definition, provided these do not affect its ability to be invoked as
- * described above.
- *
- * Likewise, for deriving sealed traits (coproduct or sum types), the macro will attempt to call
- * the `dispatch` method with an instance of [[SealedTrait]], like so,
- * <pre>
- * &lt;derivation&gt;.dispatch(&lt;sealedTrait&gt;): Typeclass[T]
- * </pre>
- * so a definition such as,
- * <pre>
- * def dispatch[T](sealedTrait: SealedTrait[Typeclass, T]): Typeclass[T] = ...
- * </pre>
- * will suffice, however the qualifications regarding additional type parameters and implicit
- * parameters apply equally to `dispatch` as to `combine`.
- * */
+ *
+ * This is a macro definition method which should be bound to a method defined inside a Magnolia
+ * generic derivation object, that is, one which defines the methods `combine`, `dispatch` and
+ * the type constructor, `Typeclass[_]`. This will typically look like,
+ * <pre>
+ * object Derivation {
+ * // other definitions
+ * implicit def gen[T]: Typeclass[T] = Magnolia.gen[T]
+ * }
+ * </pre>
+ * which would support automatic derivation of typeclass instances by calling
+ * `Derivation.gen[T]` or with `implicitly[Typeclass[T]]`, if the implicit method is imported
+ * into the current scope.
+ *
+ * The definition expects a type constructor called `Typeclass`, taking one *-kinded type
+ * parameter to be defined on the same object as a means of determining how the typeclass should
+ * be genericized. While this may be obvious for typeclasses like `Show[T]` which take only a
+ * single type parameter, Magnolia can also derive typeclass instances for types such as
+ * `Decoder[Format, Type]` which would typically fix the `Format` parameter while varying the
+ * `Type` parameter.
+ *
+ * While there is no "interface" for a derivation, in the object-oriented sense, the Magnolia
+ * macro expects to be able to call certain methods on the object within which it is bound to a
+ * method.
+ *
+ * Specifically, for deriving case classes (product types), the macro will attempt to call the
+ * `combine` method with an instance of [[CaseClass]], like so,
+ * <pre>
+ * &lt;derivation&gt;.combine(&lt;caseClass&gt;): Typeclass[T]
+ * </pre>
+ * That is to say, the macro expects there to exist a method called `combine` on the derivation
+ * object, which may be called with the code above, and for it to return a type which conforms
+ * to the type `Typeclass[T]`. The implementation of `combine` will therefore typically look
+ * like this,
+ * <pre>
+ * def combine[T](caseClass: CaseClass[Typeclass, T]): Typeclass[T] = ...
+ * </pre>
+ * however, there is the flexibility to provide additional type parameters or additional
+ * implicit parameters to the definition, provided these do not affect its ability to be invoked
+ * as described above.
+ *
+ * Likewise, for deriving sealed traits (coproduct or sum types), the macro will attempt to call
+ * the `dispatch` method with an instance of [[SealedTrait]], like so,
+ * <pre>
+ * &lt;derivation&gt;.dispatch(&lt;sealedTrait&gt;): Typeclass[T]
+ * </pre>
+ * so a definition such as,
+ * <pre>
+ * def dispatch[T](sealedTrait: SealedTrait[Typeclass, T]): Typeclass[T] = ...
+ * </pre>
+ * will suffice, however the qualifications regarding additional type parameters and implicit
+ * parameters apply equally to `dispatch` as to `combine`.
+ * */
def gen[T: c.WeakTypeTag](c: whitebox.Context): c.Tree = {
import c.universe._
import scala.util.{Try, Success, Failure}
+ val magnoliaPkg = q"_root_.magnolia"
+ val magnoliaObj = q"$magnoliaPkg.Magnolia"
+ val arrayCls = tq"_root_.scala.Array"
+
val typeConstructor: c.Type =
c.prefix.tree.tpe.member(TypeName("Typeclass")).asType.toType.typeConstructor
@@ -74,70 +79,88 @@ object Magnolia {
case class Typeclass(typ: c.Type, tree: c.Tree)
- def recurse[T](path: TypePath, key: Type, value: TermName)(fn: => T):
- Option[T] = {
+ def recurse[T](path: TypePath, key: Type, value: TermName)(fn: => T): Option[T] = {
+ val oldRecursionStack = recursionStack.get(c.enclosingPosition)
recursionStack = recursionStack.updated(
c.enclosingPosition,
- recursionStack.get(c.enclosingPosition).map(_.push(path, key, value)).getOrElse(
- Stack(Map(), List(Frame(path, key, value)), Nil))
+ oldRecursionStack.map(_.push(path, key, value)).getOrElse {
+ Stack(Map(), List(Frame(path, key, value)), Nil)
+ }
)
- try Some(fn) catch { case e: Exception => None } finally {
+ try Some(fn)
+ catch { case e: Exception => None } finally {
val currentStack = recursionStack(c.enclosingPosition)
- recursionStack = recursionStack.updated(c.enclosingPosition,
- currentStack.pop())
+ recursionStack = recursionStack.updated(c.enclosingPosition, currentStack.pop())
}
}
val removeDeferred: Transformer = new Transformer {
override def transform(tree: Tree): Tree = tree match {
- case q"_root_.magnolia.Deferred.apply[$returnType](${Literal(Constant(method: String))})" =>
+ case q"$magnoliaPkg.Deferred.apply[$returnType](${Literal(Constant(method: String))})" =>
q"${TermName(method)}"
case _ =>
super.transform(tree)
}
}
- def typeclassTree(paramName: Option[String], genericType: Type, typeConstructor: Type,
+ def typeclassTree(paramName: Option[String],
+ genericType: Type,
+ typeConstructor: Type,
assignedName: TermName): Tree = {
-
+
val searchType = appliedType(typeConstructor, genericType)
-
- findType(genericType).map { methodName =>
+
+ val deferredRef = findType(genericType).map { methodName =>
val methodAsString = methodName.encodedName.toString
- q"_root_.magnolia.Deferred.apply[$searchType]($methodAsString)"
- }.orElse {
- val (inferredImplicit, newStack) = recursionStack(c.enclosingPosition).lookup(c)(searchType) {
- scala.util.Try {
- val genericTypeName: String = genericType.typeSymbol.name.encodedName.toString.toLowerCase
- val assignedName: TermName = TermName(c.freshName(s"${genericTypeName}Typeclass"))
- recurse(ChainedImplicit(genericType.toString), genericType, assignedName) {
- c.inferImplicitValue(searchType, false, false)
- }.get
- }.toOption.orElse(directInferImplicit(genericType, typeConstructor).map(_.tree))
- }
+ q"$magnoliaPkg.Deferred.apply[$searchType]($methodAsString)"
+ }
+
+ val foundImplicit = deferredRef.orElse {
+ val (inferredImplicit, newStack) =
+ recursionStack(c.enclosingPosition).lookup(c)(searchType) {
+ val implicitSearchTry = scala.util.Try {
+ val genericTypeName: String =
+ genericType.typeSymbol.name.encodedName.toString.toLowerCase
+
+ val assignedName: TermName = TermName(c.freshName(s"${genericTypeName}Typeclass"))
+
+ recurse(ChainedImplicit(genericType.toString), genericType, assignedName) {
+ c.inferImplicitValue(searchType, false, false)
+ }.get
+ }
+
+ implicitSearchTry.toOption.orElse(
+ directInferImplicit(genericType, typeConstructor).map(_.tree)
+ )
+ }
recursionStack = recursionStack.updated(c.enclosingPosition, newStack)
inferredImplicit
- }.getOrElse {
+ }
+
+ foundImplicit.getOrElse {
val currentStack: Stack = recursionStack(c.enclosingPosition)
val error = ImplicitNotFound(genericType.toString,
- recursionStack(c.enclosingPosition).frames.map(_.path))
+ recursionStack(c.enclosingPosition).frames.map(_.path))
val updatedStack = currentStack.copy(errors = error :: currentStack.errors)
recursionStack = recursionStack.updated(c.enclosingPosition, updatedStack)
- val stack = recursionStack(c.enclosingPosition).frames.map(_.path).mkString(" in ", "\n in ", "\n")
- c.abort(c.enclosingPosition, s"magnolia: could not find typeclass for type $genericType\n$stack")
+
+ val stackPaths = recursionStack(c.enclosingPosition).frames.map(_.path)
+ val stack = stackPaths.mkString(" in ", "\n in ", "\n")
+
+ c.abort(c.enclosingPosition,
+ s"magnolia: could not find typeclass for type $genericType\n$stack")
}
}
- def directInferImplicit(genericType: c.Type,
- typeConstructor: Type): Option[Typeclass] = {
+ def directInferImplicit(genericType: c.Type, typeConstructor: Type): Option[Typeclass] = {
val genericTypeName: String = genericType.typeSymbol.name.encodedName.toString.toLowerCase
val assignedName: TermName = TermName(c.freshName(s"${genericTypeName}Typeclass"))
val typeSymbol = genericType.typeSymbol
- val classType = if(typeSymbol.isClass) Some(typeSymbol.asClass) else None
+ val classType = if (typeSymbol.isClass) Some(typeSymbol.asClass) else None
val isCaseClass = classType.map(_.isCaseClass).getOrElse(false)
val isCaseObject = classType.map(_.isModuleClass).getOrElse(false)
val isSealedTrait = classType.map(_.isSealed).getOrElse(false)
@@ -146,78 +169,103 @@ object Magnolia {
val resultType = appliedType(typeConstructor, genericType)
// FIXME: Handle AnyVals
- val result = if(isCaseObject) {
+ val result = if (isCaseObject) {
// FIXME: look for an alternative which isn't deprecated on Scala 2.12+
val obj = genericType.typeSymbol.companionSymbol.asTerm
val className = obj.fullName
val impl = q"""
- ${c.prefix}.combine(_root_.magnolia.Magnolia.caseClass[$typeConstructor, $genericType](
- $className, true, new _root_.scala.Array(0), _ => $obj)
+ ${c.prefix}.combine($magnoliaObj.caseClass[$typeConstructor, $genericType](
+ $className, true, new $arrayCls(0), _ => $obj)
)
"""
Some(Typeclass(genericType, impl))
- } else if(isCaseClass) {
+ } else if (isCaseClass) {
val caseClassParameters = genericType.decls.collect {
case m: MethodSymbol if m.isCaseAccessor => m.asMethod
}
val className = genericType.typeSymbol.fullName
- case class CaseParam(sym: c.universe.MethodSymbol, typeclass: c.Tree, paramType: c.Type, ref: c.TermName)
-
- val caseParams: List[CaseParam] = caseClassParameters.foldLeft(List[CaseParam]()) { case (acc, param) =>
- val paramName = param.name.encodedName.toString
- val paramType = param.returnType.substituteTypes(genericType.etaExpand.typeParams, genericType.typeArgs)
+ case class CaseParam(sym: c.universe.MethodSymbol,
+ typeclass: c.Tree,
+ paramType: c.Type,
+ ref: c.TermName)
+
+ val caseParamsReversed: List[CaseParam] = caseClassParameters.foldLeft(List[CaseParam]()) {
+ case (acc, param) =>
+ val paramName = param.name.encodedName.toString
+ val paramType = param.returnType.substituteTypes(genericType.etaExpand.typeParams,
+ genericType.typeArgs)
+
+ val predefinedRef = acc.find(_.paramType == paramType)
+
+ val caseParamOpt = predefinedRef.map { backRef =>
+ CaseParam(param, q"()", paramType, backRef.ref) :: acc
+ }
+
+ caseParamOpt.getOrElse {
+ val derivedImplicit =
+ recurse(ProductType(paramName, genericType.toString), genericType, assignedName) {
+ typeclassTree(Some(paramName), paramType, typeConstructor, assignedName)
+ }.getOrElse(
+ c.abort(c.enclosingPosition, s"failed to get implicit for type $genericType")
+ )
+
+ val ref = TermName(c.freshName("paramTypeclass"))
+ val assigned = q"""val $ref = $derivedImplicit"""
+ CaseParam(param, assigned, paramType, ref) :: acc
+ }
+ }
- acc.find(_.paramType == paramType).map { backRef =>
- CaseParam(param, q"()", paramType, backRef.ref) :: acc
- }.getOrElse {
- val derivedImplicit = recurse(ProductType(paramName, genericType.toString), genericType,
- assignedName) {
- typeclassTree(Some(paramName), paramType, typeConstructor, assignedName)
- }.getOrElse(c.abort(c.enclosingPosition, s"failed to get implicit for type $genericType"))
-
- val ref = TermName(c.freshName("paramTypeclass"))
- val assigned = q"""val $ref = $derivedImplicit"""
- CaseParam(param, assigned, paramType, ref) :: acc
- }
- }.to[List].reverse
+ val caseParams = caseParamsReversed.reverse
val paramsVal: TermName = TermName(c.freshName("parameters"))
val fnVal: TermName = TermName(c.freshName("fn"))
-
+
val preAssignments = caseParams.map(_.typeclass)
-
+
val caseClassCompanion = genericType.companion
- val defaults = caseClassCompanion.decl(TermName("apply")).asMethod.paramLists.head.map(_.asTerm).zipWithIndex.map { case (p, idx) =>
- if(p.isParamWithDefault) q"_root_.scala.Some(${genericType.typeSymbol.companionSymbol.asTerm}.${TermName("apply$default$"+(idx + 1))})"
- else q"_root_.scala.None"
+ val constructorMethod = caseClassCompanion.decl(TermName("apply")).asMethod
+ val indexedConstructorParams = constructorMethod.paramLists.head.map(_.asTerm).zipWithIndex
+
+ val defaults = indexedConstructorParams.map {
+ case (p, idx) =>
+ if (p.isParamWithDefault) {
+ val method = TermName("apply$default$" + (idx + 1))
+ q"_root_.scala.Some(${genericType.typeSymbol.companionSymbol.asTerm}.$method)"
+ } else q"_root_.scala.None"
}
- val assignments = caseParams.zip(defaults).zipWithIndex.map { case ((CaseParam(param, typeclass, paramType, ref), defaultVal), idx) =>
- q"""$paramsVal($idx) = _root_.magnolia.Magnolia.param[$typeConstructor, $genericType, $paramType](
+ val assignments = caseParams.zip(defaults).zipWithIndex.map {
+ case ((CaseParam(param, typeclass, paramType, ref), defaultVal), idx) =>
+ q"""$paramsVal($idx) = $magnoliaObj.param[$typeConstructor, $genericType,
+ $paramType](
${param.name.toString}, $ref, $defaultVal, _.${TermName(param.name.toString)}
)"""
}
- Some(Typeclass(genericType,
- q"""{
+ Some(
+ Typeclass(
+ genericType,
+ q"""{
..$preAssignments
- val $paramsVal: _root_.scala.Array[Param[$typeConstructor, $genericType]] =
- new _root_.scala.Array(${assignments.length})
+ val $paramsVal: $arrayCls[Param[$typeConstructor, $genericType]] =
+ new $arrayCls(${assignments.length})
..$assignments
- ${c.prefix}.combine(_root_.magnolia.Magnolia.caseClass[$typeConstructor, $genericType](
+ ${c.prefix}.combine($magnoliaObj.caseClass[$typeConstructor, $genericType](
$className,
false,
$paramsVal,
($fnVal: Param[$typeConstructor, $genericType] => Any) =>
- new $genericType(..${caseParams.zipWithIndex.map { case (typeclass, idx) =>
- q"$fnVal($paramsVal($idx)).asInstanceOf[${typeclass.paramType}]"
+ new $genericType(..${caseParams.zipWithIndex.map {
+ case (typeclass, idx) =>
+ q"$fnVal($paramsVal($idx)).asInstanceOf[${typeclass.paramType}]"
} })
))
}"""
- ))
- } else if(isSealedTrait) {
+ )
+ )
+ } else if (isSealedTrait) {
val genericSubtypes = classType.get.knownDirectSubclasses.to[List]
val subtypes = genericSubtypes.map { sub =>
val typeArgs = sub.asType.typeSignature.baseType(genericType.typeSymbol).typeArgs
@@ -226,47 +274,55 @@ object Magnolia {
appliedType(sub.asType.toType.typeConstructor, newTypeParams)
}
- if(subtypes.isEmpty) {
+ if (subtypes.isEmpty) {
c.info(c.enclosingPosition,
- s"magnolia: could not find any direct subtypes of $typeSymbol", true)
-
+ s"magnolia: could not find any direct subtypes of $typeSymbol",
+ true)
+
c.abort(c.enclosingPosition, "")
}
-
+
val subtypesVal: TermName = TermName(c.freshName("subtypes"))
-
- val assignments = subtypes.map { searchType =>
+
+ val typeclasses = subtypes.map { searchType =>
recurse(CoproductType(genericType.toString), genericType, assignedName) {
(searchType, typeclassTree(None, searchType, typeConstructor, assignedName))
}.getOrElse {
c.abort(c.enclosingPosition, s"failed to get implicit for type $searchType")
}
- }.zipWithIndex.map { case ((typ, typeclass), idx) =>
- q"""$subtypesVal($idx) = _root_.magnolia.Magnolia.subtype[$typeConstructor, $genericType, $typ](
+ }
+
+ val assignments = typeclasses.zipWithIndex.map {
+ case ((typ, typeclass), idx) =>
+ q"""$subtypesVal($idx) = $magnoliaObj.subtype[$typeConstructor, $genericType, $typ](
${typ.typeSymbol.fullName},
$typeclass,
(t: $genericType) => t.isInstanceOf[$typ],
(t: $genericType) => t.asInstanceOf[$typ]
)"""
}
-
+
Some {
- Typeclass(genericType, q"""{
- val $subtypesVal: _root_.scala.Array[_root_.magnolia.Subtype[$typeConstructor, $genericType]] =
- new _root_.scala.Array(${assignments.size})
+ Typeclass(
+ genericType,
+ q"""{
+ val $subtypesVal: $arrayCls[_root_.magnolia.Subtype[$typeConstructor, $genericType]] =
+ new $arrayCls(${assignments.size})
..$assignments
${c.prefix}.dispatch(new _root_.magnolia.SealedTrait(
$genericTypeName,
- $subtypesVal: _root_.scala.Array[_root_.magnolia.Subtype[$typeConstructor, $genericType]])
+ $subtypesVal: $arrayCls[_root_.magnolia.Subtype[$typeConstructor, $genericType]])
): $resultType
- }""")
+ }"""
+ )
}
} else None
- result.map { case Typeclass(t, r) =>
- Typeclass(t, q"""{
+ result.map {
+ case Typeclass(t, r) =>
+ Typeclass(t, q"""{
def $assignedName: $resultType = $r
$assignedName
}""")
@@ -274,27 +330,27 @@ object Magnolia {
}
val genericType: Type = weakTypeOf[T]
-
+
val currentStack: Stack =
recursionStack.get(c.enclosingPosition).getOrElse(Stack(Map(), List(), List()))
-
+
val directlyReentrant = Some(genericType) == currentStack.frames.headOption.map(_.genericType)
-
- if(directlyReentrant) throw DirectlyReentrantException()
-
+
+ if (directlyReentrant) throw DirectlyReentrantException()
+
currentStack.errors.foreach { error =>
- if(!emittedErrors.contains(error)) {
+ if (!emittedErrors.contains(error)) {
emittedErrors += error
val trace = error.path.mkString("\n in ", "\n in ", "\n \n")
-
- val msg = s"magnolia: could not derive ${typeConstructor} instance for type "+
- s"${error.genericType}"
-
- c.info(c.enclosingPosition, msg+trace, true)
+
+ val msg = s"magnolia: could not derive ${typeConstructor} instance for type " +
+ s"${error.genericType}"
+
+ c.info(c.enclosingPosition, msg + trace, true)
}
}
- val result: Option[Tree] = if(!currentStack.frames.isEmpty) {
+ val result: Option[Tree] = if (!currentStack.frames.isEmpty) {
findType(genericType) match {
case None =>
directInferImplicit(genericType, typeConstructor).map(_.tree)
@@ -304,90 +360,100 @@ object Magnolia {
Some(q"_root_.magnolia.Deferred[$searchType]($methodAsString)")
}
} else directInferImplicit(genericType, typeConstructor).map(_.tree)
-
- if(currentStack.frames.isEmpty) recursionStack = ListMap()
- result.map { tree =>
- if(currentStack.frames.isEmpty) c.untypecheck(removeDeferred.transform(tree)) else tree
- }.getOrElse {
+ if (currentStack.frames.isEmpty) recursionStack = ListMap()
+
+ val dereferencedResult = result.map { tree =>
+ if (currentStack.frames.isEmpty) c.untypecheck(removeDeferred.transform(tree)) else tree
+ }
+
+ dereferencedResult.getOrElse {
c.abort(c.enclosingPosition, s"magnolia: could not infer typeclass for type $genericType")
}
}
/** constructs a new [[Subtype]] instance
- *
- * This method is intended to be called only from code generated by the Magnolia macro, and
- * should not be called directly from users' code. */
- def subtype[Tc[_], T, S <: T](name: String, tc: => Tc[S], isType: T => Boolean, asType: T => S) = new Subtype[Tc, T] {
- type SType = S
- def label: String = name
- def typeclass: Tc[SType] = tc
- def cast: PartialFunction[T, SType] = new PartialFunction[T, S] {
- def isDefinedAt(t: T) = isType(t)
- def apply(t: T): SType = asType(t)
+ *
+ * This method is intended to be called only from code generated by the Magnolia macro, and
+ * should not be called directly from users' code. */
+ def subtype[Tc[_], T, S <: T](name: String, tc: => Tc[S], isType: T => Boolean, asType: T => S) =
+ new Subtype[Tc, T] {
+ type SType = S
+ def label: String = name
+ def typeclass: Tc[SType] = tc
+ def cast: PartialFunction[T, SType] = new PartialFunction[T, S] {
+ def isDefinedAt(t: T) = isType(t)
+ def apply(t: T): SType = asType(t)
+ }
}
- }
/** constructs a new [[Param]] instance
- *
- * This method is intended to be called only from code generated by the Magnolia macro, and
- * should not be called directly from users' code. */
- def param[Tc[_], T, P](name: String, typeclassParam: Tc[P], defaultVal: => Option[P], deref: T => P) = new Param[Tc, T] {
+ *
+ * This method is intended to be called only from code generated by the Magnolia macro, and
+ * should not be called directly from users' code. */
+ def param[Tc[_], T, P](name: String,
+ typeclassParam: Tc[P],
+ defaultVal: => Option[P],
+ deref: T => P) = new Param[Tc, T] {
type PType = P
def label: String = name
def default: Option[PType] = defaultVal
def typeclass: Tc[PType] = typeclassParam
def dereference(t: T): PType = deref(t)
}
-
+
/** constructs a new [[CaseClass]] instance
- *
- * This method is intended to be called only from code generated by the Magnolia macro, and
- * should not be called directly from users' code. */
- def caseClass[Tc[_], T](name: String, obj: Boolean, params: Array[Param[Tc, T]], constructor: (Param[Tc, T] => Any) => T) =
+ *
+ * This method is intended to be called only from code generated by the Magnolia macro, and
+ * should not be called directly from users' code. */
+ def caseClass[Tc[_], T](name: String,
+ obj: Boolean,
+ params: Array[Param[Tc, T]],
+ constructor: (Param[Tc, T] => Any) => T) =
new CaseClass[Tc, T](name, obj, params) {
def construct[R](param: Param[Tc, T] => R): T = constructor(param)
}
}
-private[magnolia] case class DirectlyReentrantException() extends
- Exception("attempt to recurse directly")
+private[magnolia] case class DirectlyReentrantException()
+ extends Exception("attempt to recurse directly")
private[magnolia] object Deferred { def apply[T](method: String): T = ??? }
private[magnolia] object CompileTimeState {
sealed class TypePath(path: String) { override def toString = path }
- case class CoproductType(typeName: String) extends
- TypePath(s"coproduct type $typeName")
-
- case class ProductType(paramName: String, typeName: String) extends
- TypePath(s"parameter '$paramName' of product type $typeName")
-
- case class ChainedImplicit(typeName: String) extends
- TypePath(s"chained implicit of type $typeName")
+ case class CoproductType(typeName: String) extends TypePath(s"coproduct type $typeName")
+
+ case class ProductType(paramName: String, typeName: String)
+ extends TypePath(s"parameter '$paramName' of product type $typeName")
+
+ case class ChainedImplicit(typeName: String)
+ extends TypePath(s"chained implicit of type $typeName")
case class ImplicitNotFound(genericType: String, path: List[TypePath])
- case class Stack(cache: Map[whitebox.Context#Type, Option[whitebox.Context#Tree]], frames: List[Frame], errors: List[ImplicitNotFound]) {
-
+ case class Stack(cache: Map[whitebox.Context#Type, Option[whitebox.Context#Tree]],
+ frames: List[Frame],
+ errors: List[ImplicitNotFound]) {
+
def lookup(c: whitebox.Context)(t: c.Type)(orElse: => Option[c.Tree]): (Option[c.Tree], Stack) =
- if(cache.contains(t)) {
+ if (cache.contains(t)) {
(cache(t).asInstanceOf[Option[c.Tree]], this)
} else {
val value = orElse
(value, copy(cache.updated(t, value)))
}
- def push(path: TypePath, key: whitebox.Context#Type,
- value: whitebox.Context#TermName): Stack =
+ def push(path: TypePath, key: whitebox.Context#Type, value: whitebox.Context#TermName): Stack =
Stack(cache, Frame(path, key, value) :: frames, errors)
-
+
def pop(): Stack = Stack(cache, frames.tail, errors)
}
- case class Frame(path: TypePath, genericType: whitebox.Context#Type,
- term: whitebox.Context#TermName) {
+ case class Frame(path: TypePath,
+ genericType: whitebox.Context#Type,
+ term: whitebox.Context#TermName) {
def termName(c: whitebox.Context): c.TermName = term.asInstanceOf[c.TermName]
}