summaryrefslogtreecommitdiff
path: root/nuttx/arch/rgmp/src/nuttx.c
blob: 234bb6dade14c10b792c893ee3c0dd7ad2d31549 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
/****************************************************************************
 * arch/rgmp/src/nuttx.c
 *
 *   Copyright (C) 2011 Yu Qiang. All rights reserved.
 *   Author: Yu Qiang <yuq825@gmail.com>
 *
 * This file is a part of NuttX:
 *
 *   Copyright (C) 2011, 2014 Gregory Nutt. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name NuttX nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include <rgmp/boot.h>
#include <rgmp/cxx.h>
#include <rgmp/memlayout.h>
#include <rgmp/allocator.h>
#include <rgmp/assert.h>
#include <rgmp/string.h>
#include <rgmp/arch/arch.h>

#include <nuttx/sched.h>
#include <nuttx/kmalloc.h>
#include <nuttx/arch.h>
#include <stdio.h>
#include <stdlib.h>
#include <arch/irq.h>
#include <arch/arch.h>

#include "task/task.h"
#include "sched/sched.h"
#include "group/group.h"

struct tcb_s *current_task = NULL;

/**
 * This function is called in non-interrupt context
 * to switch tasks.
 * Assumption: global interrupt is disabled.
 */
static inline void up_switchcontext(struct tcb_s *ctcb, struct tcb_s *ntcb)
{
    // do nothing if two tasks are the same
    if (ctcb == ntcb)
        return;

    // this function can not be called in interrupt
    if (up_interrupt_context()) {
        panic("%s: try to switch context in interrupt\n", __func__);
    }

    // start switch
    current_task = ntcb;
    rgmp_context_switch(ctcb ? &ctcb->xcp.ctx : NULL, &ntcb->xcp.ctx);
}

void up_initialize(void)
{
    extern pidhash_t g_pidhash[];
    extern void vdev_init(void);
    extern void nuttx_arch_init(void);

    // initialize the current_task to g_idletcb
    current_task = g_pidhash[PIDHASH(0)].tcb;

    // OS memory alloc system is ready
    use_os_kmalloc = 1;

    // rgmp vdev init
    vdev_init();

    nuttx_arch_init();

    // enable interrupt
    local_irq_enable();
}

void up_idle(void)
{
    arch_hlt();
}

void up_allocate_heap(void **heap_start, size_t *heap_size)
{
    void *boot_freemem = boot_alloc(0, sizeof(int));
    *heap_start = boot_freemem;
    *heap_size = KERNBASE + kmem_size - (uint32_t)boot_freemem;
}

int up_create_stack(struct tcb_s *tcb, size_t stack_size, uint8_t ttype)
{
    uint32_t *stack_alloc_ptr;
    int ret = ERROR;
    size_t *adj_stack_ptr;

    /* Move up to next even word boundary if necessary */

    size_t adj_stack_size = (stack_size + 3) & ~3;
    size_t adj_stack_words = adj_stack_size >> 2;

    /* Allocate the memory for the stack */

#if defined(CONFIG_BUILD_KERNEL) && defined(CONFIG_MM_KERNEL_HEAP)
    /* Use the kernel allocator if this is a kernel thread */

    if (ttype == TCB_FLAG_TTYPE_KERNEL) {
        stack_alloc_ptr = (uint32_t *)kmalloc(stack_size);
    } else
#endif
    {
        stack_alloc_ptr = (uint32_t*)kumm_malloc(adj_stack_size);
    }
    if (stack_alloc_ptr) {
        /* This is the address of the last word in the allocation */

        adj_stack_ptr = &stack_alloc_ptr[adj_stack_words - 1];

        /* Save the values in the TCB */

        tcb->adj_stack_size  = adj_stack_size;
        tcb->stack_alloc_ptr = stack_alloc_ptr;
        tcb->adj_stack_ptr   = (void *)((unsigned int)adj_stack_ptr & ~7);
        ret = OK;
    }
    return ret;
}

int up_use_stack(struct tcb_s *tcb, void *stack, size_t stack_size)
{
    /* Move up to next even word boundary if necessary */

    size_t adj_stack_size = stack_size & ~3;
    size_t adj_stack_words = adj_stack_size >> 2;

    /* This is the address of the last word in the allocation */

    size_t *adj_stack_ptr = &((size_t*)stack)[adj_stack_words - 1];

    /* Save the values in the TCB */

    tcb->adj_stack_size  = adj_stack_size;
    tcb->stack_alloc_ptr = stack;
    tcb->adj_stack_ptr   = (void *)((unsigned int)adj_stack_ptr & ~7);
    return OK;
}

#ifdef CONFIG_BUILD_KERNEL
FAR void *up_stack_frame(FAR struct tcb_s *tcb, size_t frame_size)
{
  uintptr_t topaddr;

  /* Align the frame_size */

  frame_size = (frame_size + 3) & ~3;

  /* Is there already a stack allocated? Is it big enough? */

  if (!tcb->stack_alloc_ptr || tcb->adj_stack_size <= frame_size) {
      return NULL;
  }

  /* Save the adjusted stack values in the struct tcb_s */

  topaddr              = (uintptr_t)tcb->adj_stack_ptr - frame_size;
  tcb->adj_stack_ptr   = (FAR void *)topaddr;
  tcb->adj_stack_size -= frame_size;

  /* Reset the initial state */

  up_initial_state(tcb);

  /* And return a pointer to the allocated memory region */

  return (FAR void *)(topaddr + sizeof(uint32_t));
}
#endif

void up_release_stack(struct tcb_s *dtcb, uint8_t ttype)
{
  /* Is there a stack allocated? */

  if (dtcb->stack_alloc_ptr) {
#if defined(CONFIG_BUILD_KERNEL) && defined(CONFIG_MM_KERNEL_HEAP)
      /* Use the kernel allocator if this is a kernel thread */

      if (ttype == TCB_FLAG_TTYPE_KERNEL) {
          kmm_free(dtcb->stack_alloc_ptr);
      } else
#endif
      {
        /* Use the user-space allocator if this is a task or pthread */

        kumm_free(dtcb->stack_alloc_ptr);
      }
  }

  /* Mark the stack freed */

  dtcb->stack_alloc_ptr = NULL;
  dtcb->adj_stack_size  = 0;
  dtcb->adj_stack_ptr   = NULL;
}

/****************************************************************************
 * Name: up_block_task
 *
 * Description:
 *   The currently executing task at the head of
 *   the ready to run list must be stopped.  Save its context
 *   and move it to the inactive list specified by task_state.
 *
 *   This function is called only from the NuttX scheduling
 *   logic.  Interrupts will always be disabled when this
 *   function is called.
 *
 * Inputs:
 *   tcb: Refers to a task in the ready-to-run list (normally
 *     the task at the head of the list).  It most be
 *     stopped, its context saved and moved into one of the
 *     waiting task lists.  It it was the task at the head
 *     of the ready-to-run list, then a context to the new
 *     ready to run task must be performed.
 *   task_state: Specifies which waiting task list should be
 *     hold the blocked task TCB.
 *
 ****************************************************************************/
void up_block_task(struct tcb_s *tcb, tstate_t task_state)
{
    /* Verify that the context switch can be performed */
    if ((tcb->task_state < FIRST_READY_TO_RUN_STATE) ||
        (tcb->task_state > LAST_READY_TO_RUN_STATE)) {
        warn("%s: task sched error\n", __func__);
        return;
    }
    else {
        struct tcb_s *rtcb = current_task;
        bool switch_needed;

        /* Remove the tcb task from the ready-to-run list.  If we
         * are blocking the task at the head of the task list (the
         * most likely case), then a context switch to the next
         * ready-to-run task is needed. In this case, it should
         * also be true that rtcb == tcb.
         */
        switch_needed = sched_removereadytorun(tcb);

        /* Add the task to the specified blocked task list */
        sched_addblocked(tcb, (tstate_t)task_state);

        /* Now, perform the context switch if one is needed */
        if (switch_needed) {
            struct tcb_s *nexttcb;
            // this part should not be executed in interrupt context
            if (up_interrupt_context()) {
                panic("%s: %d\n", __func__, __LINE__);
            }
            // If there are any pending tasks, then add them to the g_readytorun
            // task list now. It should be the up_realease_pending() called from
            // sched_unlock() to do this for disable preemption. But it block
            // itself, so it's OK.
            if (g_pendingtasks.head) {
                warn("Disable preemption failed for task block itself\n");
                sched_mergepending();
            }

            nexttcb = (struct tcb_s*)g_readytorun.head;

#ifdef CONFIG_ARCH_ADDRENV
            // Make sure that the address environment for the previously
            // running task is closed down gracefully (data caches dump,
            // MMU flushed) and set up the address environment for the new
            // thread at the head of the ready-to-run list.

            (void)group_addrenv(nexttcb);
#endif
            // context switch
            up_switchcontext(rtcb, nexttcb);
        }
    }
}

/****************************************************************************
 * Name: up_unblock_task
 *
 * Description:
 *   A task is currently in an inactive task list
 *   but has been prepped to execute.  Move the TCB to the
 *   ready-to-run list, restore its context, and start execution.
 *
 * Inputs:
 *   tcb: Refers to the tcb to be unblocked.  This tcb is
 *     in one of the waiting tasks lists.  It must be moved to
 *     the ready-to-run list and, if it is the highest priority
 *     ready to run taks, executed.
 *
 ****************************************************************************/
void up_unblock_task(struct tcb_s *tcb)
{
    /* Verify that the context switch can be performed */
    if ((tcb->task_state < FIRST_BLOCKED_STATE) ||
        (tcb->task_state > LAST_BLOCKED_STATE)) {
        warn("%s: task sched error\n", __func__);
        return;
    }
    else {
        struct tcb_s *rtcb = current_task;

        /* Remove the task from the blocked task list */
        sched_removeblocked(tcb);

        /* Reset its timeslice.  This is only meaningful for round
         * robin tasks but it doesn't here to do it for everything
         */
#if CONFIG_RR_INTERVAL > 0
        tcb->timeslice = MSEC2TICK(CONFIG_RR_INTERVAL);
#endif

        // Add the task in the correct location in the prioritized
        // g_readytorun task list.
        if (sched_addreadytorun(tcb) && !up_interrupt_context()) {
            /* The currently active task has changed! */

            struct tcb_s *nexttcb = (struct tcb_s*)g_readytorun.head;

#ifdef CONFIG_ARCH_ADDRENV
            // Make sure that the address environment for the previously
            // running task is closed down gracefully (data caches dump,
            // MMU flushed) and set up the address environment for the new
            // thread at the head of the ready-to-run list.

            (void)group_addrenv(nexttcb);
#endif
            // context switch

            up_switchcontext(rtcb, nexttcb);
        }
    }
}

/**
 * This function is called from sched_unlock() which will check not
 * in interrupt context and disable interrupt.
 */
void up_release_pending(void)
{
    struct tcb_s *rtcb = current_task;

    /* Merge the g_pendingtasks list into the g_readytorun task list */

    if (sched_mergepending()) {
        /* The currently active task has changed! */
        struct tcb_s *nexttcb = (struct tcb_s*)g_readytorun.head;
#ifdef CONFIG_ARCH_ADDRENV
        /* Make sure that the address environment for the previously
         * running task is closed down gracefully (data caches dump,
         * MMU flushed) and set up the address environment for the new
         * thread at the head of the ready-to-run list.
         */

        (void)group_addrenv(nexttcb);
#endif
        // context switch
        up_switchcontext(rtcb, nexttcb);
    }
}

void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
    /* Verify that the caller is sane */

    if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
        tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > UINT8_MIN
        || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
        || priority > SCHED_PRIORITY_MAX
#endif
        ) {
        warn("%s: task sched error\n", __func__);
        return;
    }
    else {
        struct tcb_s *rtcb = current_task;
        bool switch_needed;

        /* Remove the tcb task from the ready-to-run list.
         * sched_removereadytorun will return true if we just
         * remove the head of the ready to run list.
         */
        switch_needed = sched_removereadytorun(tcb);

        /* Setup up the new task priority */
        tcb->sched_priority = (uint8_t)priority;

        /* Return the task to the specified blocked task list.
         * sched_addreadytorun will return true if the task was
         * added to the new list.  We will need to perform a context
         * switch only if the EXCLUSIVE or of the two calls is non-zero
         * (i.e., one and only one the calls changes the head of the
         * ready-to-run list).
         */
        switch_needed ^= sched_addreadytorun(tcb);

        /* Now, perform the context switch if one is needed */
        if (switch_needed && !up_interrupt_context()) {
            struct tcb_s *nexttcb;
            // If there are any pending tasks, then add them to the g_readytorun
            // task list now. It should be the up_realease_pending() called from
            // sched_unlock() to do this for disable preemption. But it block
            // itself, so it's OK.
            if (g_pendingtasks.head) {
                warn("Disable preemption failed for reprioritize task\n");
                sched_mergepending();
            }

            nexttcb = (struct tcb_s*)g_readytorun.head;
#ifdef CONFIG_ARCH_ADDRENV
            /* Make sure that the address environment for the previously
             * running task is closed down gracefully (data caches dump,
             * MMU flushed) and set up the address environment for the new
             * thread at the head of the ready-to-run list.
             */

            (void)group_addrenv(nexttcb);
#endif
            // context switch
            up_switchcontext(rtcb, nexttcb);
        }
    }
}

void _exit(int status)
{
    struct tcb_s* tcb;

    /* Destroy the task at the head of the ready to run list. */

    (void)task_exit();

    /* Now, perform the context switch to the new ready-to-run task at the
     * head of the list.
     */

    tcb = (struct tcb_s*)g_readytorun.head;

#ifdef CONFIG_ARCH_ADDRENV
    /* Make sure that the address environment for the previously running
     * task is closed down gracefully (data caches dump, MMU flushed) and
     * set up the address environment for the new thread at the head of
     * the ready-to-run list.
     */

    (void)group_addrenv(tcb);
#endif

    /* Then switch contexts */

    up_switchcontext(NULL, tcb);
}

void up_assert(const uint8_t *filename, int line)
{
    fprintf(stderr, "Assertion failed at file:%s line: %d\n", filename, line);

    // in interrupt context or idle task means kernel error
    // which will stop the OS
    // if in user space just terminate the task
    if (up_interrupt_context() || current_task->pid == 0) {
        panic("%s: %d\n", __func__, __LINE__);
    }
    else {
        exit(EXIT_FAILURE);
    }
}

#ifndef CONFIG_DISABLE_SIGNALS

void up_schedule_sigaction(struct tcb_s *tcb, sig_deliver_t sigdeliver)
{
    /* Refuse to handle nested signal actions */
    if (!tcb->xcp.sigdeliver) {
        int flags;

        /* Make sure that interrupts are disabled */
        local_irq_save(flags);

        // First, handle some special cases when the signal is
        // being delivered to the currently executing task.
        if (tcb == current_task) {
            // CASE 1:  We are not in an interrupt handler and
            // a task is signalling itself for some reason.
            if (!up_interrupt_context()) {
                // In this case just deliver the signal now.
                sigdeliver(tcb);
            }
            // CASE 2:  We are in an interrupt handler AND the
            // interrupted task is the same as the one that
            // must receive the signal.
            else {
                tcb->xcp.sigdeliver = sigdeliver;
            }
        }

        // Otherwise, we are (1) signaling a task is not running
        // from an interrupt handler or (2) we are not in an
        // interrupt handler and the running task is signalling
        // some non-running task.
        else {
            tcb->xcp.sigdeliver = sigdeliver;
            push_xcptcontext(&tcb->xcp);
        }

        local_irq_restore(flags);
    }
}

#endif /* !CONFIG_DISABLE_SIGNALS */


bool up_interrupt_context(void)
{
    if (nest_irq)
        return true;
    return false;
}

#ifndef CONFIG_ARCH_NOINTC
void up_disable_irq(int irq)
{

}

void up_enable_irq(int irq)
{

}
#endif

#ifdef CONFIG_ARCH_IRQPRIO
int up_prioritize_irq(int irq, int priority)
{

}
#endif

void up_sigdeliver(struct Trapframe *tf)
{
    sig_deliver_t sigdeliver;

    pop_xcptcontext(&current_task->xcp);
    sigdeliver = current_task->xcp.sigdeliver;
    current_task->xcp.sigdeliver = NULL;
    local_irq_enable();
    sigdeliver(current_task);
    local_irq_disable();
}

#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)

void up_cxxinitialize(void)
{
    rgmp_cxx_init();
}

#endif