aboutsummaryrefslogblamecommitdiff
path: root/src/google/protobuf/io/coded_stream_unittest.cc
blob: 6a6eafe9317052890ce86fa0c50b92806ae54a9e (plain) (tree)
1
2
3
4
5
6
7
8
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
                                                      
                                                   

                                     


                                                                         
  








                                                                         
  










                                                                        

















































                                                                          


                                                                         
























































































































































































































































































































































































































































































































































                                                                                   


































































                                                                      






































































































































































































































































































































                                                                                    
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// This file contains tests and benchmarks.

#include <vector>

#include <google/protobuf/io/coded_stream.h>

#include <limits.h>

#include <google/protobuf/stubs/common.h>
#include <google/protobuf/testing/googletest.h>
#include <gtest/gtest.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/stubs/strutil.h>


// This declares an unsigned long long integer literal in a portable way.
// (The original macro is way too big and ruins my formatting.)
#undef ULL
#define ULL(x) GOOGLE_ULONGLONG(x)

namespace google {
namespace protobuf {
namespace io {
namespace {

// ===================================================================
// Data-Driven Test Infrastructure

// TEST_1D and TEST_2D are macros I'd eventually like to see added to
// gTest.  These macros can be used to declare tests which should be
// run multiple times, once for each item in some input array.  TEST_1D
// tests all cases in a single input array.  TEST_2D tests all
// combinations of cases from two arrays.  The arrays must be statically
// defined such that the GOOGLE_ARRAYSIZE() macro works on them.  Example:
//
// int kCases[] = {1, 2, 3, 4}
// TEST_1D(MyFixture, MyTest, kCases) {
//   EXPECT_GT(kCases_case, 0);
// }
//
// This test iterates through the numbers 1, 2, 3, and 4 and tests that
// they are all grater than zero.  In case of failure, the exact case
// which failed will be printed.  The case type must be printable using
// ostream::operator<<.

// TODO(kenton):  gTest now supports "parameterized tests" which would be
//   a better way to accomplish this.  Rewrite when time permits.

#define TEST_1D(FIXTURE, NAME, CASES)                                      \
  class FIXTURE##_##NAME##_DD : public FIXTURE {                           \
   protected:                                                              \
    template <typename CaseType>                                           \
    void DoSingleCase(const CaseType& CASES##_case);                       \
  };                                                                       \
                                                                           \
  TEST_F(FIXTURE##_##NAME##_DD, NAME) {                                    \
    for (int i = 0; i < GOOGLE_ARRAYSIZE(CASES); i++) {                           \
      SCOPED_TRACE(testing::Message()                                      \
        << #CASES " case #" << i << ": " << CASES[i]);                     \
      DoSingleCase(CASES[i]);                                              \
    }                                                                      \
  }                                                                        \
                                                                           \
  template <typename CaseType>                                             \
  void FIXTURE##_##NAME##_DD::DoSingleCase(const CaseType& CASES##_case)

#define TEST_2D(FIXTURE, NAME, CASES1, CASES2)                             \
  class FIXTURE##_##NAME##_DD : public FIXTURE {                           \
   protected:                                                              \
    template <typename CaseType1, typename CaseType2>                      \
    void DoSingleCase(const CaseType1& CASES1##_case,                      \
                      const CaseType2& CASES2##_case);                     \
  };                                                                       \
                                                                           \
  TEST_F(FIXTURE##_##NAME##_DD, NAME) {                                    \
    for (int i = 0; i < GOOGLE_ARRAYSIZE(CASES1); i++) {                          \
      for (int j = 0; j < GOOGLE_ARRAYSIZE(CASES2); j++) {                        \
        SCOPED_TRACE(testing::Message()                                    \
          << #CASES1 " case #" << i << ": " << CASES1[i] << ", "           \
          << #CASES2 " case #" << j << ": " << CASES2[j]);                 \
        DoSingleCase(CASES1[i], CASES2[j]);                                \
      }                                                                    \
    }                                                                      \
  }                                                                        \
                                                                           \
  template <typename CaseType1, typename CaseType2>                        \
  void FIXTURE##_##NAME##_DD::DoSingleCase(const CaseType1& CASES1##_case, \
                                           const CaseType2& CASES2##_case)

// ===================================================================

class CodedStreamTest : public testing::Test {
 protected:
  static const int kBufferSize = 1024 * 64;
  static uint8 buffer_[kBufferSize];
};

uint8 CodedStreamTest::buffer_[CodedStreamTest::kBufferSize];

// We test each operation over a variety of block sizes to insure that
// we test cases where reads or writes cross buffer boundaries, cases
// where they don't, and cases where there is so much buffer left that
// we can use special optimized paths that don't worry about bounds
// checks.
const int kBlockSizes[] = {1, 2, 3, 5, 7, 13, 32, 1024};

// -------------------------------------------------------------------
// Varint tests.

struct VarintCase {
  uint8 bytes[10];          // Encoded bytes.
  int size;                 // Encoded size, in bytes.
  uint64 value;             // Parsed value.
};

inline std::ostream& operator<<(std::ostream& os, const VarintCase& c) {
  return os << c.value;
}

VarintCase kVarintCases[] = {
  // 32-bit values
  {{0x00}      , 1, 0},
  {{0x01}      , 1, 1},
  {{0x7f}      , 1, 127},
  {{0xa2, 0x74}, 2, (0x22 << 0) | (0x74 << 7)},          // 14882
  {{0xbe, 0xf7, 0x92, 0x84, 0x0b}, 5,                    // 2961488830
    (0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) |
    (ULL(0x0b) << 28)},

  // 64-bit
  {{0xbe, 0xf7, 0x92, 0x84, 0x1b}, 5,                    // 7256456126
    (0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) |
    (ULL(0x1b) << 28)},
  {{0x80, 0xe6, 0xeb, 0x9c, 0xc3, 0xc9, 0xa4, 0x49}, 8,  // 41256202580718336
    (0x00 << 0) | (0x66 << 7) | (0x6b << 14) | (0x1c << 21) |
    (ULL(0x43) << 28) | (ULL(0x49) << 35) | (ULL(0x24) << 42) |
    (ULL(0x49) << 49)},
  // 11964378330978735131
  {{0x9b, 0xa8, 0xf9, 0xc2, 0xbb, 0xd6, 0x80, 0x85, 0xa6, 0x01}, 10,
    (0x1b << 0) | (0x28 << 7) | (0x79 << 14) | (0x42 << 21) |
    (ULL(0x3b) << 28) | (ULL(0x56) << 35) | (ULL(0x00) << 42) |
    (ULL(0x05) << 49) | (ULL(0x26) << 56) | (ULL(0x01) << 63)},
};

TEST_2D(CodedStreamTest, ReadVarint32, kVarintCases, kBlockSizes) {
  memcpy(buffer_, kVarintCases_case.bytes, kVarintCases_case.size);
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    uint32 value;
    EXPECT_TRUE(coded_input.ReadVarint32(&value));
    EXPECT_EQ(static_cast<uint32>(kVarintCases_case.value), value);
  }

  EXPECT_EQ(kVarintCases_case.size, input.ByteCount());
}

TEST_2D(CodedStreamTest, ReadTag, kVarintCases, kBlockSizes) {
  memcpy(buffer_, kVarintCases_case.bytes, kVarintCases_case.size);
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    uint32 expected_value = static_cast<uint32>(kVarintCases_case.value);
    EXPECT_EQ(expected_value, coded_input.ReadTag());

    EXPECT_TRUE(coded_input.LastTagWas(expected_value));
    EXPECT_FALSE(coded_input.LastTagWas(expected_value + 1));
  }

  EXPECT_EQ(kVarintCases_case.size, input.ByteCount());
}

TEST_1D(CodedStreamTest, ExpectTag, kVarintCases) {
  // Leave one byte at the beginning of the buffer so we can read it
  // to force the first buffer to be loaded.
  buffer_[0] = '\0';
  memcpy(buffer_ + 1, kVarintCases_case.bytes, kVarintCases_case.size);
  ArrayInputStream input(buffer_, sizeof(buffer_));

  {
    CodedInputStream coded_input(&input);

    // Read one byte to force coded_input.Refill() to be called.  Otherwise,
    // ExpectTag() will return a false negative.
    uint8 dummy;
    coded_input.ReadRaw(&dummy, 1);
    EXPECT_EQ((uint)'\0', (uint)dummy);

    uint32 expected_value = static_cast<uint32>(kVarintCases_case.value);

    // ExpectTag() produces false negatives for large values.
    if (kVarintCases_case.size <= 2) {
      EXPECT_FALSE(coded_input.ExpectTag(expected_value + 1));
      EXPECT_TRUE(coded_input.ExpectTag(expected_value));
    } else {
      EXPECT_FALSE(coded_input.ExpectTag(expected_value));
    }
  }

  if (kVarintCases_case.size <= 2) {
    EXPECT_EQ(kVarintCases_case.size + 1, input.ByteCount());
  } else {
    EXPECT_EQ(1, input.ByteCount());
  }
}

TEST_2D(CodedStreamTest, ReadVarint64, kVarintCases, kBlockSizes) {
  memcpy(buffer_, kVarintCases_case.bytes, kVarintCases_case.size);
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    uint64 value;
    EXPECT_TRUE(coded_input.ReadVarint64(&value));
    EXPECT_EQ(kVarintCases_case.value, value);
  }

  EXPECT_EQ(kVarintCases_case.size, input.ByteCount());
}

TEST_2D(CodedStreamTest, WriteVarint32, kVarintCases, kBlockSizes) {
  if (kVarintCases_case.value > ULL(0x00000000FFFFFFFF)) {
    // Skip this test for the 64-bit values.
    return;
  }

  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    EXPECT_TRUE(coded_output.WriteVarint32(
      static_cast<uint32>(kVarintCases_case.value)));

    EXPECT_EQ(kVarintCases_case.size, coded_output.ByteCount());
  }

  EXPECT_EQ(kVarintCases_case.size, output.ByteCount());
  EXPECT_EQ(0,
    memcmp(buffer_, kVarintCases_case.bytes, kVarintCases_case.size));
}

TEST_2D(CodedStreamTest, WriteVarint64, kVarintCases, kBlockSizes) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    EXPECT_TRUE(coded_output.WriteVarint64(kVarintCases_case.value));

    EXPECT_EQ(kVarintCases_case.size, coded_output.ByteCount());
  }

  EXPECT_EQ(kVarintCases_case.size, output.ByteCount());
  EXPECT_EQ(0,
    memcmp(buffer_, kVarintCases_case.bytes, kVarintCases_case.size));
}

// This test causes gcc 3.3.5 (and earlier?) to give the cryptic error:
//   "sorry, unimplemented: `method_call_expr' not supported by dump_expr"
#if !defined(__GNUC__) || __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)

int32 kSignExtendedVarintCases[] = {
  0, 1, -1, 1237894, -37895138
};

TEST_2D(CodedStreamTest, WriteVarint32SignExtended,
        kSignExtendedVarintCases, kBlockSizes) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    EXPECT_TRUE(coded_output.WriteVarint32SignExtended(
      kSignExtendedVarintCases_case));

    if (kSignExtendedVarintCases_case < 0) {
      EXPECT_EQ(10, coded_output.ByteCount());
    } else {
      EXPECT_LE(coded_output.ByteCount(), 5);
    }
  }

  if (kSignExtendedVarintCases_case < 0) {
    EXPECT_EQ(10, output.ByteCount());
  } else {
    EXPECT_LE(output.ByteCount(), 5);
  }

  // Read value back in as a varint64 and insure it matches.
  ArrayInputStream input(buffer_, sizeof(buffer_));

  {
    CodedInputStream coded_input(&input);

    uint64 value;
    EXPECT_TRUE(coded_input.ReadVarint64(&value));

    EXPECT_EQ(kSignExtendedVarintCases_case, static_cast<int64>(value));
  }

  EXPECT_EQ(output.ByteCount(), input.ByteCount());
}

#endif


// -------------------------------------------------------------------
// Varint failure test.

struct VarintErrorCase {
  uint8 bytes[12];
  int size;
  bool can_parse;
};

inline std::ostream& operator<<(std::ostream& os, const VarintErrorCase& c) {
  return os << "size " << c.size;
}

const VarintErrorCase kVarintErrorCases[] = {
  // Control case.  (Insures that there isn't something else wrong that
  // makes parsing always fail.)
  {{0x00}, 1, true},

  // No input data.
  {{}, 0, false},

  // Input ends unexpectedly.
  {{0xf0, 0xab}, 2, false},

  // Input ends unexpectedly after 32 bits.
  {{0xf0, 0xab, 0xc9, 0x9a, 0xf8, 0xb2}, 6, false},

  // Longer than 10 bytes.
  {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01},
   11, false},
};

TEST_2D(CodedStreamTest, ReadVarint32Error, kVarintErrorCases, kBlockSizes) {
  memcpy(buffer_, kVarintErrorCases_case.bytes, kVarintErrorCases_case.size);
  ArrayInputStream input(buffer_, kVarintErrorCases_case.size,
                         kBlockSizes_case);
  CodedInputStream coded_input(&input);

  uint32 value;
  EXPECT_EQ(kVarintErrorCases_case.can_parse, coded_input.ReadVarint32(&value));
}

TEST_2D(CodedStreamTest, ReadVarint64Error, kVarintErrorCases, kBlockSizes) {
  memcpy(buffer_, kVarintErrorCases_case.bytes, kVarintErrorCases_case.size);
  ArrayInputStream input(buffer_, kVarintErrorCases_case.size,
                         kBlockSizes_case);
  CodedInputStream coded_input(&input);

  uint64 value;
  EXPECT_EQ(kVarintErrorCases_case.can_parse, coded_input.ReadVarint64(&value));
}

// -------------------------------------------------------------------
// VarintSize

struct VarintSizeCase {
  uint64 value;
  int size;
};

inline std::ostream& operator<<(std::ostream& os, const VarintSizeCase& c) {
  return os << c.value;
}

VarintSizeCase kVarintSizeCases[] = {
  {0u, 1},
  {1u, 1},
  {127u, 1},
  {128u, 2},
  {758923u, 3},
  {4000000000u, 5},
  {ULL(41256202580718336), 8},
  {ULL(11964378330978735131), 10},
};

TEST_1D(CodedStreamTest, VarintSize32, kVarintSizeCases) {
  if (kVarintSizeCases_case.value > 0xffffffffu) {
    // Skip 64-bit values.
    return;
  }

  EXPECT_EQ(kVarintSizeCases_case.size,
    CodedOutputStream::VarintSize32(
      static_cast<uint32>(kVarintSizeCases_case.value)));
}

TEST_1D(CodedStreamTest, VarintSize64, kVarintSizeCases) {
  EXPECT_EQ(kVarintSizeCases_case.size,
    CodedOutputStream::VarintSize64(kVarintSizeCases_case.value));
}

// -------------------------------------------------------------------
// Fixed-size int tests

struct Fixed32Case {
  uint8 bytes[sizeof(uint32)];          // Encoded bytes.
  uint32 value;                         // Parsed value.
};

struct Fixed64Case {
  uint8 bytes[sizeof(uint64)];          // Encoded bytes.
  uint64 value;                         // Parsed value.
};

inline std::ostream& operator<<(std::ostream& os, const Fixed32Case& c) {
  return os << "0x" << hex << c.value << dec;
}

inline std::ostream& operator<<(std::ostream& os, const Fixed64Case& c) {
  return os << "0x" << hex << c.value << dec;
}

Fixed32Case kFixed32Cases[] = {
  {{0xef, 0xcd, 0xab, 0x90}, 0x90abcdefu},
  {{0x12, 0x34, 0x56, 0x78}, 0x78563412u},
};

Fixed64Case kFixed64Cases[] = {
  {{0xef, 0xcd, 0xab, 0x90, 0x12, 0x34, 0x56, 0x78}, ULL(0x7856341290abcdef)},
  {{0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88}, ULL(0x8877665544332211)},
};

TEST_2D(CodedStreamTest, ReadLittleEndian32, kFixed32Cases, kBlockSizes) {
  memcpy(buffer_, kFixed32Cases_case.bytes, sizeof(kFixed32Cases_case.bytes));
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    uint32 value;
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(kFixed32Cases_case.value, value);
  }

  EXPECT_EQ(sizeof(uint32), input.ByteCount());
}

TEST_2D(CodedStreamTest, ReadLittleEndian64, kFixed64Cases, kBlockSizes) {
  memcpy(buffer_, kFixed64Cases_case.bytes, sizeof(kFixed64Cases_case.bytes));
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    uint64 value;
    EXPECT_TRUE(coded_input.ReadLittleEndian64(&value));
    EXPECT_EQ(kFixed64Cases_case.value, value);
  }

  EXPECT_EQ(sizeof(uint64), input.ByteCount());
}

TEST_2D(CodedStreamTest, WriteLittleEndian32, kFixed32Cases, kBlockSizes) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    EXPECT_TRUE(coded_output.WriteLittleEndian32(kFixed32Cases_case.value));

    EXPECT_EQ(sizeof(uint32), coded_output.ByteCount());
  }

  EXPECT_EQ(sizeof(uint32), output.ByteCount());
  EXPECT_EQ(0, memcmp(buffer_, kFixed32Cases_case.bytes, sizeof(uint32)));
}

TEST_2D(CodedStreamTest, WriteLittleEndian64, kFixed64Cases, kBlockSizes) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    EXPECT_TRUE(coded_output.WriteLittleEndian64(kFixed64Cases_case.value));

    EXPECT_EQ(sizeof(uint64), coded_output.ByteCount());
  }

  EXPECT_EQ(sizeof(uint64), output.ByteCount());
  EXPECT_EQ(0, memcmp(buffer_, kFixed64Cases_case.bytes, sizeof(uint64)));
}

// -------------------------------------------------------------------
// Raw reads and writes

const char kRawBytes[] = "Some bytes which will be writted and read raw.";

TEST_1D(CodedStreamTest, ReadRaw, kBlockSizes) {
  memcpy(buffer_, kRawBytes, sizeof(kRawBytes));
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);
  char read_buffer[sizeof(kRawBytes)];

  {
    CodedInputStream coded_input(&input);

    EXPECT_TRUE(coded_input.ReadRaw(read_buffer, sizeof(kRawBytes)));
    EXPECT_EQ(0, memcmp(kRawBytes, read_buffer, sizeof(kRawBytes)));
  }

  EXPECT_EQ(sizeof(kRawBytes), input.ByteCount());
}

TEST_1D(CodedStreamTest, WriteRaw, kBlockSizes) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedOutputStream coded_output(&output);

    EXPECT_TRUE(coded_output.WriteRaw(kRawBytes, sizeof(kRawBytes)));

    EXPECT_EQ(sizeof(kRawBytes), coded_output.ByteCount());
  }

  EXPECT_EQ(sizeof(kRawBytes), output.ByteCount());
  EXPECT_EQ(0, memcmp(buffer_, kRawBytes, sizeof(kRawBytes)));
}

TEST_1D(CodedStreamTest, ReadString, kBlockSizes) {
  memcpy(buffer_, kRawBytes, sizeof(kRawBytes));
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    string str;
    EXPECT_TRUE(coded_input.ReadString(&str, strlen(kRawBytes)));
    EXPECT_EQ(kRawBytes, str);
  }

  EXPECT_EQ(strlen(kRawBytes), input.ByteCount());
}

// Check to make sure ReadString doesn't crash on impossibly large strings.
TEST_1D(CodedStreamTest, ReadStringImpossiblyLarge, kBlockSizes) {
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    string str;
    // Try to read a gigabyte.
    EXPECT_FALSE(coded_input.ReadString(&str, 1 << 30));
  }
}


// -------------------------------------------------------------------
// Skip

const char kSkipTestBytes[] =
  "<Before skipping><To be skipped><After skipping>";
const char kSkipOutputTestBytes[] =
  "-----------------<To be skipped>----------------";

TEST_1D(CodedStreamTest, SkipInput, kBlockSizes) {
  memcpy(buffer_, kSkipTestBytes, sizeof(kSkipTestBytes));
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    string str;
    EXPECT_TRUE(coded_input.ReadString(&str, strlen("<Before skipping>")));
    EXPECT_EQ("<Before skipping>", str);
    EXPECT_TRUE(coded_input.Skip(strlen("<To be skipped>")));
    EXPECT_TRUE(coded_input.ReadString(&str, strlen("<After skipping>")));
    EXPECT_EQ("<After skipping>", str);
  }

  EXPECT_EQ(strlen(kSkipTestBytes), input.ByteCount());
}

// -------------------------------------------------------------------
// GetDirectBufferPointer

TEST_F(CodedStreamTest, GetDirectBufferPointerInput) {
  ArrayInputStream input(buffer_, sizeof(buffer_), 8);
  CodedInputStream coded_input(&input);

  const void* ptr;
  int size;

  EXPECT_TRUE(coded_input.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_, ptr);
  EXPECT_EQ(8, size);

  // Peeking again should return the same pointer.
  EXPECT_TRUE(coded_input.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_, ptr);
  EXPECT_EQ(8, size);

  // Skip forward in the same buffer then peek again.
  EXPECT_TRUE(coded_input.Skip(3));
  EXPECT_TRUE(coded_input.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_ + 3, ptr);
  EXPECT_EQ(5, size);

  // Skip to end of buffer and peek -- should get next buffer.
  EXPECT_TRUE(coded_input.Skip(5));
  EXPECT_TRUE(coded_input.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_ + 8, ptr);
  EXPECT_EQ(8, size);
}

TEST_F(CodedStreamTest, GetDirectBufferPointerOutput) {
  ArrayOutputStream output(buffer_, sizeof(buffer_), 8);
  CodedOutputStream coded_output(&output);

  void* ptr;
  int size;

  EXPECT_TRUE(coded_output.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_, ptr);
  EXPECT_EQ(8, size);

  // Peeking again should return the same pointer.
  EXPECT_TRUE(coded_output.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_, ptr);
  EXPECT_EQ(8, size);

  // Skip forward in the same buffer then peek again.
  EXPECT_TRUE(coded_output.Skip(3));
  EXPECT_TRUE(coded_output.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_ + 3, ptr);
  EXPECT_EQ(5, size);

  // Skip to end of buffer and peek -- should get next buffer.
  EXPECT_TRUE(coded_output.Skip(5));
  EXPECT_TRUE(coded_output.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_ + 8, ptr);
  EXPECT_EQ(8, size);

  // Skip over multiple buffers.
  EXPECT_TRUE(coded_output.Skip(22));
  EXPECT_TRUE(coded_output.GetDirectBufferPointer(&ptr, &size));
  EXPECT_EQ(buffer_ + 30, ptr);
  EXPECT_EQ(2, size);
}

// -------------------------------------------------------------------
// Limits

TEST_1D(CodedStreamTest, BasicLimit, kBlockSizes) {
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    CodedInputStream::Limit limit = coded_input.PushLimit(8);

    // Read until we hit the limit.
    uint32 value;
    EXPECT_EQ(8, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(4, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());
    EXPECT_FALSE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());

    coded_input.PopLimit(limit);

    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
  }

  EXPECT_EQ(12, input.ByteCount());
}

// Test what happens when we push two limits where the second (top) one is
// shorter.
TEST_1D(CodedStreamTest, SmallLimitOnTopOfBigLimit, kBlockSizes) {
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    CodedInputStream::Limit limit1 = coded_input.PushLimit(8);
    EXPECT_EQ(8, coded_input.BytesUntilLimit());
    CodedInputStream::Limit limit2 = coded_input.PushLimit(4);

    uint32 value;

    // Read until we hit limit2, the top and shortest limit.
    EXPECT_EQ(4, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());
    EXPECT_FALSE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());

    coded_input.PopLimit(limit2);

    // Read until we hit limit1.
    EXPECT_EQ(4, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());
    EXPECT_FALSE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());

    coded_input.PopLimit(limit1);

    // No more limits.
    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
  }

  EXPECT_EQ(12, input.ByteCount());
}

// Test what happens when we push two limits where the second (top) one is
// longer.  In this case, the top limit is shortened to match the previous
// limit.
TEST_1D(CodedStreamTest, BigLimitOnTopOfSmallLimit, kBlockSizes) {
  ArrayInputStream input(buffer_, sizeof(buffer_), kBlockSizes_case);

  {
    CodedInputStream coded_input(&input);

    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    CodedInputStream::Limit limit1 = coded_input.PushLimit(4);
    EXPECT_EQ(4, coded_input.BytesUntilLimit());
    CodedInputStream::Limit limit2 = coded_input.PushLimit(8);

    uint32 value;

    // Read until we hit limit2.  Except, wait!  limit1 is shorter, so
    // we end up hitting that first, despite having 4 bytes to go on
    // limit2.
    EXPECT_EQ(4, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());
    EXPECT_FALSE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());

    coded_input.PopLimit(limit2);

    // OK, popped limit2, now limit1 is on top, which we've already hit.
    EXPECT_EQ(0, coded_input.BytesUntilLimit());
    EXPECT_FALSE(coded_input.ReadLittleEndian32(&value));
    EXPECT_EQ(0, coded_input.BytesUntilLimit());

    coded_input.PopLimit(limit1);

    // No more limits.
    EXPECT_EQ(-1, coded_input.BytesUntilLimit());
    EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
  }

  EXPECT_EQ(8, input.ByteCount());
}

TEST_F(CodedStreamTest, ExpectAtEnd) {
  // Test ExpectAtEnd(), which is based on limits.
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);

  EXPECT_FALSE(coded_input.ExpectAtEnd());

  CodedInputStream::Limit limit = coded_input.PushLimit(4);

  uint32 value;
  EXPECT_TRUE(coded_input.ReadLittleEndian32(&value));
  EXPECT_TRUE(coded_input.ExpectAtEnd());

  coded_input.PopLimit(limit);
  EXPECT_FALSE(coded_input.ExpectAtEnd());
}

TEST_F(CodedStreamTest, NegativeLimit) {
  // Check what happens when we push a negative limit.
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);

  CodedInputStream::Limit limit = coded_input.PushLimit(-1234);
  // BytesUntilLimit() returns -1 to mean "no limit", which actually means
  // "the limit is INT_MAX relative to the beginning of the stream".
  EXPECT_EQ(-1, coded_input.BytesUntilLimit());
  coded_input.PopLimit(limit);
}

TEST_F(CodedStreamTest, NegativeLimitAfterReading) {
  // Check what happens when we push a negative limit.
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);
  ASSERT_TRUE(coded_input.Skip(128));

  CodedInputStream::Limit limit = coded_input.PushLimit(-64);
  // BytesUntilLimit() returns -1 to mean "no limit", which actually means
  // "the limit is INT_MAX relative to the beginning of the stream".
  EXPECT_EQ(-1, coded_input.BytesUntilLimit());
  coded_input.PopLimit(limit);
}

TEST_F(CodedStreamTest, OverflowLimit) {
  // Check what happens when we push a limit large enough that its absolute
  // position is more than 2GB into the stream.
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);
  ASSERT_TRUE(coded_input.Skip(128));

  CodedInputStream::Limit limit = coded_input.PushLimit(INT_MAX);
  // BytesUntilLimit() returns -1 to mean "no limit", which actually means
  // "the limit is INT_MAX relative to the beginning of the stream".
  EXPECT_EQ(-1, coded_input.BytesUntilLimit());
  coded_input.PopLimit(limit);
}

TEST_F(CodedStreamTest, TotalBytesLimit) {
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);
  coded_input.SetTotalBytesLimit(16, -1);

  string str;
  EXPECT_TRUE(coded_input.ReadString(&str, 16));

  vector<string> errors;

  {
    ScopedMemoryLog error_log;
    EXPECT_FALSE(coded_input.ReadString(&str, 1));
    errors = error_log.GetMessages(ERROR);
  }

  ASSERT_EQ(1, errors.size());
  EXPECT_PRED_FORMAT2(testing::IsSubstring,
    "A protocol message was rejected because it was too big", errors[0]);

  coded_input.SetTotalBytesLimit(32, -1);
  EXPECT_TRUE(coded_input.ReadString(&str, 16));
}

TEST_F(CodedStreamTest, TotalBytesLimitNotValidMessageEnd) {
  // total_bytes_limit_ is not a valid place for a message to end.

  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);

  // Set both total_bytes_limit and a regular limit at 16 bytes.
  coded_input.SetTotalBytesLimit(16, -1);
  CodedInputStream::Limit limit = coded_input.PushLimit(16);

  // Read 16 bytes.
  string str;
  EXPECT_TRUE(coded_input.ReadString(&str, 16));

  // Read a tag.  Should fail, but report being a valid endpoint since it's
  // a regular limit.
  EXPECT_EQ(0, coded_input.ReadTag());
  EXPECT_TRUE(coded_input.ConsumedEntireMessage());

  // Pop the limit.
  coded_input.PopLimit(limit);

  // Read a tag.  Should fail, and report *not* being a valid endpoint, since
  // this time we're hitting the total bytes limit.
  EXPECT_EQ(0, coded_input.ReadTag());
  EXPECT_FALSE(coded_input.ConsumedEntireMessage());
}

TEST_F(CodedStreamTest, RecursionLimit) {
  ArrayInputStream input(buffer_, sizeof(buffer_));
  CodedInputStream coded_input(&input);
  coded_input.SetRecursionLimit(4);

  // This is way too much testing for a counter.
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 1
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 2
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 3
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 4
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 5
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 6
  coded_input.DecrementRecursionDepth();                   // 5
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 6
  coded_input.DecrementRecursionDepth();                   // 5
  coded_input.DecrementRecursionDepth();                   // 4
  coded_input.DecrementRecursionDepth();                   // 3
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 4
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 5
  coded_input.DecrementRecursionDepth();                   // 4
  coded_input.DecrementRecursionDepth();                   // 3
  coded_input.DecrementRecursionDepth();                   // 2
  coded_input.DecrementRecursionDepth();                   // 1
  coded_input.DecrementRecursionDepth();                   // 0
  coded_input.DecrementRecursionDepth();                   // 0
  coded_input.DecrementRecursionDepth();                   // 0
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 1
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 2
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 3
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 4
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 5

  coded_input.SetRecursionLimit(6);
  EXPECT_TRUE(coded_input.IncrementRecursionDepth());      // 6
  EXPECT_FALSE(coded_input.IncrementRecursionDepth());     // 7
}

class ReallyBigInputStream : public ZeroCopyInputStream {
 public:
  ReallyBigInputStream() : backup_amount_(0), buffer_count_(0) {}
  ~ReallyBigInputStream() {}

  // implements ZeroCopyInputStream ----------------------------------
  bool Next(const void** data, int* size) {
    // We only expect BackUp() to be called at the end.
    EXPECT_EQ(0, backup_amount_);

    switch (buffer_count_++) {
      case 0:
        *data = buffer_;
        *size = sizeof(buffer_);
        return true;
      case 1:
        // Return an enormously large buffer that, when combined with the 1k
        // returned already, should overflow the total_bytes_read_ counter in
        // CodedInputStream.  Note that we'll only read the first 1024 bytes
        // of this buffer so it's OK that we have it point at buffer_.
        *data = buffer_;
        *size = INT_MAX;
        return true;
      default:
        return false;
    }
  }

  void BackUp(int count) {
    backup_amount_ = count;
  }

  bool Skip(int count)    { GOOGLE_LOG(FATAL) << "Not implemented."; return false; }
  int64 ByteCount() const { GOOGLE_LOG(FATAL) << "Not implemented."; return 0; }

  int backup_amount_;

 private:
  char buffer_[1024];
  int64 buffer_count_;
};

TEST_F(CodedStreamTest, InputOver2G) {
  // CodedInputStream should gracefully handle input over 2G and call
  // input.BackUp() with the correct number of bytes on destruction.
  ReallyBigInputStream input;

  vector<string> errors;

  {
    ScopedMemoryLog error_log;
    CodedInputStream coded_input(&input);
    string str;
    EXPECT_TRUE(coded_input.ReadString(&str, 512));
    EXPECT_TRUE(coded_input.ReadString(&str, 1024));
    errors = error_log.GetMessages(ERROR);
  }

  EXPECT_EQ(INT_MAX - 512, input.backup_amount_);
  EXPECT_EQ(0, errors.size());
}

// ===================================================================


}  // namespace
}  // namespace io
}  // namespace protobuf
}  // namespace google