aboutsummaryrefslogblamecommitdiff
path: root/src/google/protobuf/map.h
blob: 023ed9718d4a825275ff33d6e6f9467ed1b3a5b7 (plain) (tree)
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
































                                                                         
                                       
                   
                                                   

                  
 
                                         

                                                
                                             

                                       


                                  



                    


                                                                      


                                   

                  

                                              
                    




                                                    














                                                    








                                                                        








































































                                                        
                             









                                               




























                                                                  

                                              

                                                                     

                     





                                            











                                                                
     

                                           




                                      





                                            

















                                                        





















































                                                    
                                     




















































































































































                                                                           






                                                                                      
                               



                                                        
                                                                            


                                                   

               



                                                             

   



                  
                                         


                           
                                                                                    










                                                                               

                                   









                                            

                           
 
                            
                     




                                                   
                      


                               
   

                       


                                                       

                                       
                          
                                                                       
                     


                               

                        
 








                                    
 
         









                                                                          




































                                                                                   
                                                                     


                                                                     

                                                 



                                                                                       
                                                                                                 



                               
                     

     

                                                                           
                                                 
      















                                                         



                                                   
 
           
                                      
                        




                              



                                                                              
                      











































                                                                                
                                   

































































































































































































































                                                                                
                                                                          
















































































































































































































































































































































































































                                                                                
 
        
              
                       





















                                                                           
                      

                                                                              
                                                                    
                                                      
                                                                          

          




                                                                
 






                                                                   

                                  



                           

                   


                                                                               

                                                                              


                                                                  

                                                                              
                       



                
                           

    

                                                                                
                                                
                                                                    

          









                                                              

                            



                           

                   


                                                                   
 





                                                                             

                                                                  


                                                              

                                                                  
                       



                     
 
                
                           

    















                                                                     



                                                   



                                                                         


                                      

                                                                        
                         
                                            


















                                                                              

                                                            

                                                  

                                                                       

                                      

                                                                 
   


















                                                                  


                                                             








                                                                              
            





                                                                    











                                                
                    
                                        

                            

               
                


               







                                                

                                             

                           

     
                                         


                                    



                                         


                 






                                                                 





                                                                               



























                                                                           
                          







                                                                      
 
                                         
                                           




                                                                
                                      


                        
                      






                                                             





                                                              











                                                                             
     

                                           
   


                                                              
                               
   


                                              
                                  
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef GOOGLE_PROTOBUF_MAP_H__
#define GOOGLE_PROTOBUF_MAP_H__

#include <google/protobuf/stubs/hash.h>
#include <iterator>
#include <limits>  // To support Visual Studio 2008
#include <set>
#include <utility>

#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/generated_enum_util.h>
#include <google/protobuf/map_type_handler.h>
#include <google/protobuf/message.h>
#include <google/protobuf/descriptor.h>
#if __cpp_exceptions && LANG_CXX11
#include <random>
#endif

namespace google {
namespace protobuf {

// The Map and MapIterator types are provided by this header file.
// Please avoid using other types defined here, unless they are public
// types within Map or MapIterator, such as Map::value_type.
template <typename Key, typename T>
class Map;

class MapIterator;

template <typename Enum> struct is_proto_enum;

namespace internal {
template <typename Key, typename T,
          WireFormatLite::FieldType key_wire_type,
          WireFormatLite::FieldType value_wire_type,
          int default_enum_value>
class MapFieldLite;

template <typename Key, typename T,
          WireFormatLite::FieldType key_wire_type,
          WireFormatLite::FieldType value_wire_type,
          int default_enum_value>
class MapField;

template <typename Key, typename T>
class TypeDefinedMapFieldBase;

class DynamicMapField;

class GeneratedMessageReflection;
}  // namespace internal

#define TYPE_CHECK(EXPECTEDTYPE, METHOD)                        \
  if (type() != EXPECTEDTYPE) {                                 \
    GOOGLE_LOG(FATAL)                                                  \
        << "Protocol Buffer map usage error:\n"                 \
        << METHOD << " type does not match\n"                   \
        << "  Expected : "                                      \
        << FieldDescriptor::CppTypeName(EXPECTEDTYPE) << "\n"   \
        << "  Actual   : "                                      \
        << FieldDescriptor::CppTypeName(type());                \
  }

// MapKey is an union type for representing any possible
// map key.
class LIBPROTOBUF_EXPORT MapKey {
 public:
  MapKey() : type_(0) {
  }
  MapKey(const MapKey& other) : type_(0) {
    CopyFrom(other);
  }

  ~MapKey() {
    if (type_ == FieldDescriptor::CPPTYPE_STRING) {
      delete val_.string_value_;
    }
  }

  FieldDescriptor::CppType type() const {
    if (type_ == 0) {
      GOOGLE_LOG(FATAL)
          << "Protocol Buffer map usage error:\n"
          << "MapKey::type MapKey is not initialized. "
          << "Call set methods to initialize MapKey.";
    }
    return (FieldDescriptor::CppType)type_;
  }

  void SetInt64Value(int64 value) {
    SetType(FieldDescriptor::CPPTYPE_INT64);
    val_.int64_value_ = value;
  }
  void SetUInt64Value(uint64 value) {
    SetType(FieldDescriptor::CPPTYPE_UINT64);
    val_.uint64_value_ = value;
  }
  void SetInt32Value(int32 value) {
    SetType(FieldDescriptor::CPPTYPE_INT32);
    val_.int32_value_ = value;
  }
  void SetUInt32Value(uint32 value) {
    SetType(FieldDescriptor::CPPTYPE_UINT32);
    val_.uint32_value_ = value;
  }
  void SetBoolValue(bool value) {
    SetType(FieldDescriptor::CPPTYPE_BOOL);
    val_.bool_value_ = value;
  }
  void SetStringValue(const string& val) {
    SetType(FieldDescriptor::CPPTYPE_STRING);
    *val_.string_value_ = val;
  }

  int64 GetInt64Value() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_INT64,
               "MapKey::GetInt64Value");
    return val_.int64_value_;
  }
  uint64 GetUInt64Value() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT64,
               "MapKey::GetUInt64Value");
    return val_.uint64_value_;
  }
  int32 GetInt32Value() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_INT32,
               "MapKey::GetInt32Value");
    return val_.int32_value_;
  }
  uint32 GetUInt32Value() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT32,
               "MapKey::GetUInt32Value");
    return val_.uint32_value_;
  }
  bool GetBoolValue() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_BOOL,
               "MapKey::GetBoolValue");
    return val_.bool_value_;
  }
  const string& GetStringValue() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_STRING,
               "MapKey::GetStringValue");
    return *val_.string_value_;
  }

  bool operator<(const MapKey& other) const {
    if (type_ != other.type_) {
      // We could define a total order that handles this case, but
      // there currently no need.  So, for now, fail.
      GOOGLE_LOG(FATAL) << "Unsupported: type mismatch";
    }
    switch (type()) {
      case FieldDescriptor::CPPTYPE_DOUBLE:
      case FieldDescriptor::CPPTYPE_FLOAT:
      case FieldDescriptor::CPPTYPE_ENUM:
      case FieldDescriptor::CPPTYPE_MESSAGE:
        GOOGLE_LOG(FATAL) << "Unsupported";
        return false;
      case FieldDescriptor::CPPTYPE_STRING:
        return *val_.string_value_ < *other.val_.string_value_;
      case FieldDescriptor::CPPTYPE_INT64:
        return val_.int64_value_ < other.val_.int64_value_;
      case FieldDescriptor::CPPTYPE_INT32:
        return val_.int32_value_ < other.val_.int32_value_;
      case FieldDescriptor::CPPTYPE_UINT64:
        return val_.uint64_value_ < other.val_.uint64_value_;
      case FieldDescriptor::CPPTYPE_UINT32:
        return val_.uint32_value_ < other.val_.uint32_value_;
      case FieldDescriptor::CPPTYPE_BOOL:
        return val_.bool_value_ < other.val_.bool_value_;
    }
    return false;
  }

  bool operator==(const MapKey& other) const {
    if (type_ != other.type_) {
      // To be consistent with operator<, we don't allow this either.
      GOOGLE_LOG(FATAL) << "Unsupported: type mismatch";
    }
    switch (type()) {
      case FieldDescriptor::CPPTYPE_DOUBLE:
      case FieldDescriptor::CPPTYPE_FLOAT:
      case FieldDescriptor::CPPTYPE_ENUM:
      case FieldDescriptor::CPPTYPE_MESSAGE:
        GOOGLE_LOG(FATAL) << "Unsupported";
        break;
      case FieldDescriptor::CPPTYPE_STRING:
        return *val_.string_value_ == *other.val_.string_value_;
      case FieldDescriptor::CPPTYPE_INT64:
        return val_.int64_value_ == other.val_.int64_value_;
      case FieldDescriptor::CPPTYPE_INT32:
        return val_.int32_value_ == other.val_.int32_value_;
      case FieldDescriptor::CPPTYPE_UINT64:
        return val_.uint64_value_ == other.val_.uint64_value_;
      case FieldDescriptor::CPPTYPE_UINT32:
        return val_.uint32_value_ == other.val_.uint32_value_;
      case FieldDescriptor::CPPTYPE_BOOL:
        return val_.bool_value_ == other.val_.bool_value_;
    }
    GOOGLE_LOG(FATAL) << "Can't get here.";
    return false;
  }

  void CopyFrom(const MapKey& other) {
    SetType(other.type());
    switch (type_) {
      case FieldDescriptor::CPPTYPE_DOUBLE:
      case FieldDescriptor::CPPTYPE_FLOAT:
      case FieldDescriptor::CPPTYPE_ENUM:
      case FieldDescriptor::CPPTYPE_MESSAGE:
        GOOGLE_LOG(FATAL) << "Unsupported";
        break;
      case FieldDescriptor::CPPTYPE_STRING:
        *val_.string_value_ = *other.val_.string_value_;
        break;
      case FieldDescriptor::CPPTYPE_INT64:
        val_.int64_value_ = other.val_.int64_value_;
        break;
      case FieldDescriptor::CPPTYPE_INT32:
        val_.int32_value_ = other.val_.int32_value_;
        break;
      case FieldDescriptor::CPPTYPE_UINT64:
        val_.uint64_value_ = other.val_.uint64_value_;
        break;
      case FieldDescriptor::CPPTYPE_UINT32:
        val_.uint32_value_ = other.val_.uint32_value_;
        break;
      case FieldDescriptor::CPPTYPE_BOOL:
        val_.bool_value_ = other.val_.bool_value_;
        break;
    }
  }

 private:
  template <typename K, typename V>
  friend class internal::TypeDefinedMapFieldBase;
  friend class MapIterator;
  friend class internal::DynamicMapField;

  union KeyValue {
    KeyValue() {}
    string* string_value_;
    int64 int64_value_;
    int32 int32_value_;
    uint64 uint64_value_;
    uint32 uint32_value_;
    bool bool_value_;
  } val_;

  void SetType(FieldDescriptor::CppType type) {
    if (type_ == type) return;
    if (type_ == FieldDescriptor::CPPTYPE_STRING) {
      delete val_.string_value_;
    }
    type_ = type;
    if (type_ == FieldDescriptor::CPPTYPE_STRING) {
      val_.string_value_ = new string;
    }
  }

  // type_ is 0 or a valid FieldDescriptor::CppType.
  int type_;
};

// MapValueRef points to a map value.
class LIBPROTOBUF_EXPORT MapValueRef {
 public:
  MapValueRef() : data_(NULL), type_(0) {}

  void SetInt64Value(int64 value) {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_INT64,
               "MapValueRef::SetInt64Value");
    *reinterpret_cast<int64*>(data_) = value;
  }
  void SetUInt64Value(uint64 value) {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT64,
               "MapValueRef::SetUInt64Value");
    *reinterpret_cast<uint64*>(data_) = value;
  }
  void SetInt32Value(int32 value) {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_INT32,
               "MapValueRef::SetInt32Value");
    *reinterpret_cast<int32*>(data_) = value;
  }
  void SetUInt32Value(uint32 value) {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT32,
               "MapValueRef::SetUInt32Value");
    *reinterpret_cast<uint32*>(data_) = value;
  }
  void SetBoolValue(bool value) {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_BOOL,
               "MapValueRef::SetBoolValue");
    *reinterpret_cast<bool*>(data_) = value;
  }
  // TODO(jieluo) - Checks that enum is member.
  void SetEnumValue(int value) {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_ENUM,
               "MapValueRef::SetEnumValue");
    *reinterpret_cast<int*>(data_) = value;
  }
  void SetStringValue(const string& value) {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_STRING,
               "MapValueRef::SetStringValue");
    *reinterpret_cast<string*>(data_) = value;
  }
  void SetFloatValue(float value) {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_FLOAT,
               "MapValueRef::SetFloatValue");
    *reinterpret_cast<float*>(data_) = value;
  }
  void SetDoubleValue(double value) {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_DOUBLE,
               "MapValueRef::SetDoubleValue");
    *reinterpret_cast<double*>(data_) = value;
  }

  int64 GetInt64Value() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_INT64,
               "MapValueRef::GetInt64Value");
    return *reinterpret_cast<int64*>(data_);
  }
  uint64 GetUInt64Value() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT64,
               "MapValueRef::GetUInt64Value");
    return *reinterpret_cast<uint64*>(data_);
  }
  int32 GetInt32Value() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_INT32,
               "MapValueRef::GetInt32Value");
    return *reinterpret_cast<int32*>(data_);
  }
  uint32 GetUInt32Value() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT32,
               "MapValueRef::GetUInt32Value");
    return *reinterpret_cast<uint32*>(data_);
  }
  bool GetBoolValue() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_BOOL,
               "MapValueRef::GetBoolValue");
    return *reinterpret_cast<bool*>(data_);
  }
  int GetEnumValue() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_ENUM,
               "MapValueRef::GetEnumValue");
    return *reinterpret_cast<int*>(data_);
  }
  const string& GetStringValue() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_STRING,
               "MapValueRef::GetStringValue");
    return *reinterpret_cast<string*>(data_);
  }
  float GetFloatValue() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_FLOAT,
               "MapValueRef::GetFloatValue");
    return *reinterpret_cast<float*>(data_);
  }
  double GetDoubleValue() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_DOUBLE,
               "MapValueRef::GetDoubleValue");
    return *reinterpret_cast<double*>(data_);
  }

  const Message& GetMessageValue() const {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_MESSAGE,
               "MapValueRef::GetMessageValue");
    return *reinterpret_cast<Message*>(data_);
  }

  Message* MutableMessageValue() {
    TYPE_CHECK(FieldDescriptor::CPPTYPE_MESSAGE,
               "MapValueRef::MutableMessageValue");
    return reinterpret_cast<Message*>(data_);
  }

 private:
  template <typename K, typename V,
            internal::WireFormatLite::FieldType key_wire_type,
            internal::WireFormatLite::FieldType value_wire_type,
            int default_enum_value>
  friend class internal::MapField;
  template <typename K, typename V>
  friend class internal::TypeDefinedMapFieldBase;
  friend class MapIterator;
  friend class internal::GeneratedMessageReflection;
  friend class internal::DynamicMapField;

  void SetType(FieldDescriptor::CppType type) {
    type_ = type;
  }

  FieldDescriptor::CppType type() const {
    if (type_ == 0 || data_ == NULL) {
      GOOGLE_LOG(FATAL)
          << "Protocol Buffer map usage error:\n"
          << "MapValueRef::type MapValueRef is not initialized.";
    }
    return (FieldDescriptor::CppType)type_;
  }
  void SetValue(const void* val) {
    data_ = const_cast<void*>(val);
  }
  void CopyFrom(const MapValueRef& other) {
    type_ = other.type_;
    data_ = other.data_;
  }
  // Only used in DynamicMapField
  void DeleteData() {
    switch (type_) {
#define HANDLE_TYPE(CPPTYPE, TYPE)                              \
      case google::protobuf::FieldDescriptor::CPPTYPE_##CPPTYPE: {        \
        delete reinterpret_cast<TYPE*>(data_);                  \
        break;                                                  \
      }
      HANDLE_TYPE(INT32, int32);
      HANDLE_TYPE(INT64, int64);
      HANDLE_TYPE(UINT32, uint32);
      HANDLE_TYPE(UINT64, uint64);
      HANDLE_TYPE(DOUBLE, double);
      HANDLE_TYPE(FLOAT, float);
      HANDLE_TYPE(BOOL, bool);
      HANDLE_TYPE(STRING, string);
      HANDLE_TYPE(ENUM, int32);
      HANDLE_TYPE(MESSAGE, Message);
#undef HANDLE_TYPE
    }
  }
  // data_ point to a map value. MapValueRef does not
  // own this value.
  void* data_;
  // type_ is 0 or a valid FieldDescriptor::CppType.
  int type_;
};

#undef TYPE_CHECK

// This is the class for google::protobuf::Map's internal value_type. Instead of using
// std::pair as value_type, we use this class which provides us more control of
// its process of construction and destruction.
template <typename Key, typename T>
class MapPair {
 public:
  typedef const Key first_type;
  typedef T second_type;

  MapPair(const Key& other_first, const T& other_second)
      : first(other_first), second(other_second) {}
  explicit MapPair(const Key& other_first) : first(other_first), second() {}
  MapPair(const MapPair& other)
      : first(other.first), second(other.second) {}

  ~MapPair() {}

  // Implicitly convertible to std::pair of compatible types.
  template <typename T1, typename T2>
  operator std::pair<T1, T2>() const {
    return std::pair<T1, T2>(first, second);
  }

  const Key first;
  T second;

 private:
  friend class ::google::protobuf::Arena;
  friend class Map<Key, T>;
};

// google::protobuf::Map is an associative container type used to store protobuf map
// fields.  Each Map instance may or may not use a different hash function, a
// different iteration order, and so on.  E.g., please don't examine
// implementation details to decide if the following would work:
//  Map<int, int> m0, m1;
//  m0[0] = m1[0] = m0[1] = m1[1] = 0;
//  assert(m0.begin()->first == m1.begin()->first);  // Bug!
//
// Map's interface is similar to std::unordered_map, except that Map is not
// designed to play well with exceptions.  Mutations to a Map do not invalidate
// a Map's iterators, pointers to elements, or references to elements.  Except
// for erase(iterator), any non-const method can reorder iterators.
template <typename Key, typename T>
class Map {
 public:
  typedef Key key_type;
  typedef T mapped_type;
  typedef MapPair<Key, T> value_type;

  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef value_type& reference;
  typedef const value_type& const_reference;

  typedef size_t size_type;
  typedef hash<Key> hasher;

  Map(bool old_style = true)
      : arena_(NULL),
        default_enum_value_(0),
        old_style_(old_style) {
    Init();
  }
  explicit Map(Arena* arena, bool old_style = true)
      : arena_(arena),
        default_enum_value_(0),
        old_style_(old_style) {
    Init();
  }
  Map(const Map& other)
      : arena_(NULL),
        default_enum_value_(other.default_enum_value_),
        old_style_(other.old_style_) {
    Init();
    insert(other.begin(), other.end());
  }
  template <class InputIt>
  Map(const InputIt& first, const InputIt& last, bool old_style = true)
      : arena_(NULL),
        default_enum_value_(0),
        old_style_(old_style) {
    Init();
    insert(first, last);
  }

  ~Map() {
    clear();
    if (arena_ == NULL) {
      if (old_style_)
        delete deprecated_elements_;
      else
        delete elements_;
    }
  }

 private:
  void Init() {
    if (old_style_)
      deprecated_elements_ = Arena::Create<DeprecatedInnerMap>(
          arena_, 0, hasher(), equal_to<Key>(),
          MapAllocator<std::pair<const Key, MapPair<Key, T>*> >(arena_));
    else
      elements_ =
          Arena::Create<InnerMap>(arena_, 0, hasher(), Allocator(arena_));
  }

  // re-implement std::allocator to use arena allocator for memory allocation.
  // Used for google::protobuf::Map implementation. Users should not use this class
  // directly.
  template <typename U>
  class MapAllocator {
   public:
    typedef U value_type;
    typedef value_type* pointer;
    typedef const value_type* const_pointer;
    typedef value_type& reference;
    typedef const value_type& const_reference;
    typedef size_t size_type;
    typedef ptrdiff_t difference_type;

    MapAllocator() : arena_(NULL) {}
    explicit MapAllocator(Arena* arena) : arena_(arena) {}
    template <typename X>
    MapAllocator(const MapAllocator<X>& allocator)
        : arena_(allocator.arena_) {}

    pointer allocate(size_type n, const_pointer hint = 0) {
      // If arena is not given, malloc needs to be called which doesn't
      // construct element object.
      if (arena_ == NULL) {
        return reinterpret_cast<pointer>(malloc(n * sizeof(value_type)));
      } else {
        return reinterpret_cast<pointer>(
            Arena::CreateArray<uint8>(arena_, n * sizeof(value_type)));
      }
    }

    void deallocate(pointer p, size_type n) {
      if (arena_ == NULL) {
        free(p);
      }
    }

#if __cplusplus >= 201103L && !defined(GOOGLE_PROTOBUF_OS_APPLE) && \
    !defined(GOOGLE_PROTOBUF_OS_NACL) &&                            \
    !defined(GOOGLE_PROTOBUF_OS_ANDROID) &&                         \
    !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
    template<class NodeType, class... Args>
    void construct(NodeType* p, Args&&... args) {
      // Clang 3.6 doesn't compile static casting to void* directly. (Issue #1266)
      // According C++ standard 5.2.9/1: "The static_cast operator shall not cast
      // away constness". So first the maybe const pointer is casted to const void* and
      // after the const void* is const casted.
      new (const_cast<void*>(static_cast<const void*>(p))) NodeType(std::forward<Args>(args)...);
    }

    template<class NodeType>
    void destroy(NodeType* p) {
      p->~NodeType();
    }
#else
    void construct(pointer p, const_reference t) { new (p) value_type(t); }

    void destroy(pointer p) { p->~value_type(); }
#endif

    template <typename X>
    struct rebind {
      typedef MapAllocator<X> other;
    };

    template <typename X>
    bool operator==(const MapAllocator<X>& other) const {
      return arena_ == other.arena_;
    }

    template <typename X>
    bool operator!=(const MapAllocator<X>& other) const {
      return arena_ != other.arena_;
    }

    // To support Visual Studio 2008
    size_type max_size() const {
      return std::numeric_limits<size_type>::max();
    }

   private:
    typedef void DestructorSkippable_;
    Arena* const arena_;

    template <typename X>
    friend class MapAllocator;
  };

  // InnerMap's key type is Key and its value type is value_type*.  We use a
  // custom class here and for Node, below, to ensure that k_ is at offset 0,
  // allowing safe conversion from pointer to Node to pointer to Key, and vice
  // versa when appropriate.
  class KeyValuePair {
   public:
    KeyValuePair(const Key& k, value_type* v) : k_(k), v_(v) {}

    const Key& key() const { return k_; }
    Key& key() { return k_; }
    value_type* const value() const { return v_; }
    value_type*& value() { return v_; }

   private:
    Key k_;
    value_type* v_;
  };

  typedef MapAllocator<KeyValuePair> Allocator;

  // InnerMap is a generic hash-based map.  It doesn't contain any
  // protocol-buffer-specific logic.  It is a chaining hash map with the
  // additional feature that some buckets can be converted to use an ordered
  // container.  This ensures O(lg n) bounds on find, insert, and erase, while
  // avoiding the overheads of ordered containers most of the time.
  //
  // The implementation doesn't need the full generality of unordered_map,
  // and it doesn't have it.  More bells and whistles can be added as needed.
  // Some implementation details:
  // 1. The hash function has type hasher and the equality function
  //    equal_to<Key>.  We inherit from hasher to save space
  //    (empty-base-class optimization).
  // 2. The number of buckets is a power of two.
  // 3. Buckets are converted to trees in pairs: if we convert bucket b then
  //    buckets b and b^1 will share a tree.  Invariant: buckets b and b^1 have
  //    the same non-NULL value iff they are sharing a tree.  (An alternative
  //    implementation strategy would be to have a tag bit per bucket.)
  // 4. As is typical for hash_map and such, the Keys and Values are always
  //    stored in linked list nodes.  Pointers to elements are never invalidated
  //    until the element is deleted.
  // 5. The trees' payload type is pointer to linked-list node.  Tree-converting
  //    a bucket doesn't copy Key-Value pairs.
  // 6. Once we've tree-converted a bucket, it is never converted back. However,
  //    the items a tree contains may wind up assigned to trees or lists upon a
  //    rehash.
  // 7. The code requires no C++ features from C++11 or later.
  // 8. Mutations to a map do not invalidate the map's iterators, pointers to
  //    elements, or references to elements.
  // 9. Except for erase(iterator), any non-const method can reorder iterators.
  class InnerMap : private hasher {
   public:
    typedef value_type* Value;

    InnerMap(size_type n, hasher h, Allocator alloc)
        : hasher(h),
          num_elements_(0),
          seed_(Seed()),
          table_(NULL),
          alloc_(alloc) {
      n = TableSize(n);
      table_ = CreateEmptyTable(n);
      num_buckets_ = index_of_first_non_null_ = n;
    }

    ~InnerMap() {
      if (table_ != NULL) {
        clear();
        Dealloc<void*>(table_, num_buckets_);
      }
    }

   private:
    enum { kMinTableSize = 8 };

    // Linked-list nodes, as one would expect for a chaining hash table.
    struct Node {
      KeyValuePair kv;
      Node* next;
    };

    // This is safe only if the given pointer is known to point to a Key that is
    // part of a Node.
    static Node* NodePtrFromKeyPtr(Key* k) {
      return reinterpret_cast<Node*>(k);
    }

    static Key* KeyPtrFromNodePtr(Node* node) { return &node->kv.key(); }

    // Trees.  The payload type is pointer to Key, so that we can query the tree
    // with Keys that are not in any particular data structure.  When we insert,
    // though, the pointer is always pointing to a Key that is inside a Node.
    struct KeyCompare {
      bool operator()(const Key* n0, const Key* n1) const { return *n0 < *n1; }
    };
    typedef typename Allocator::template rebind<Key*>::other KeyPtrAllocator;
    typedef std::set<Key*, KeyCompare, KeyPtrAllocator> Tree;

    // iterator and const_iterator are instantiations of iterator_base.
    template <typename KeyValueType>
    class iterator_base {
     public:
      typedef KeyValueType& reference;
      typedef KeyValueType* pointer;
      typedef typename Tree::iterator TreeIterator;

      // Invariants:
      // node_ is always correct. This is handy because the most common
      // operations are operator* and operator-> and they only use node_.
      // When node_ is set to a non-NULL value, all the other non-const fields
      // are updated to be correct also, but those fields can become stale
      // if the underlying map is modified.  When those fields are needed they
      // are rechecked, and updated if necessary.
      iterator_base() : node_(NULL) {}

      explicit iterator_base(const InnerMap* m) : m_(m) {
        SearchFrom(m->index_of_first_non_null_);
      }

      // Any iterator_base can convert to any other.  This is overkill, and we
      // rely on the enclosing class to use it wisely.  The standard "iterator
      // can convert to const_iterator" is OK but the reverse direction is not.
      template <typename U>
      explicit iterator_base(const iterator_base<U>& it)
          : node_(it.node_),
            m_(it.m_),
            bucket_index_(it.bucket_index_),
            tree_it_(it.tree_it_) {}

      iterator_base(Node* n, const InnerMap* m, size_type index)
          : node_(n),
            m_(m),
            bucket_index_(index) {}

      iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
          : node_(NodePtrFromKeyPtr(*tree_it)),
            m_(m),
            bucket_index_(index),
            tree_it_(tree_it) {
        // Invariant: iterators that use tree_it_ have an even bucket_index_.
        GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0);
      }

      // Advance through buckets, looking for the first that isn't empty.
      // If nothing non-empty is found then leave node_ == NULL.
      void SearchFrom(size_type start_bucket) {
        node_ = NULL;
        for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
             bucket_index_++) {
          if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
            node_ = static_cast<Node*>(m_->table_[bucket_index_]);
            break;
          } else if (m_->TableEntryIsTree(bucket_index_)) {
            Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
            GOOGLE_DCHECK(!tree->empty());
            tree_it_ = tree->begin();
            node_ = NodePtrFromKeyPtr(*tree_it_);
            break;
          }
        }
      }

      reference operator*() const { return node_->kv; }
      pointer operator->() const { return &(operator*()); }

      friend bool operator==(const iterator_base& a, const iterator_base& b) {
        return a.node_ == b.node_;
      }
      friend bool operator!=(const iterator_base& a, const iterator_base& b) {
        return a.node_ != b.node_;
      }

      iterator_base& operator++() {
        if (node_->next == NULL) {
          const bool is_list = revalidate_if_necessary();
          if (is_list) {
            SearchFrom(bucket_index_ + 1);
          } else {
            GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0);
            Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
            if (++tree_it_ == tree->end()) {
              SearchFrom(bucket_index_ + 2);
            } else {
              node_ = NodePtrFromKeyPtr(*tree_it_);
            }
          }
        } else {
          node_ = node_->next;
        }
        return *this;
      }

      iterator_base operator++(int /* unused */) {
        iterator_base tmp = *this;
        ++*this;
        return tmp;
      }

      // Assumes node_ and m_ are correct and non-NULL, but other fields may be
      // stale.  Fix them as needed.  Then return true iff node_ points to a
      // Node in a list.
      bool revalidate_if_necessary() {
        GOOGLE_DCHECK(node_ != NULL && m_ != NULL);
        // Force bucket_index_ to be in range.
        bucket_index_ &= (m_->num_buckets_ - 1);
        // Common case: the bucket we think is relevant points to node_.
        if (m_->table_[bucket_index_] == static_cast<void*>(node_))
          return true;
        // Less common: the bucket is a linked list with node_ somewhere in it,
        // but not at the head.
        if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
          Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
          while ((l = l->next) != NULL) {
            if (l == node_) {
              return true;
            }
          }
        }
        // Well, bucket_index_ still might be correct, but probably
        // not.  Revalidate just to be sure.  This case is rare enough that we
        // don't worry about potential optimizations, such as having a custom
        // find-like method that compares Node* instead of const Key&.
        iterator_base i(m_->find(*KeyPtrFromNodePtr(node_)));
        bucket_index_ = i.bucket_index_;
        tree_it_ = i.tree_it_;
        return m_->TableEntryIsList(bucket_index_);
      }

      Node* node_;
      const InnerMap* m_;
      size_type bucket_index_;
      TreeIterator tree_it_;
    };

   public:
    typedef iterator_base<KeyValuePair> iterator;
    typedef iterator_base<const KeyValuePair> const_iterator;

    iterator begin() { return iterator(this); }
    iterator end() { return iterator(); }
    const_iterator begin() const { return const_iterator(this); }
    const_iterator end() const { return const_iterator(); }

    void clear() {
      for (size_type b = 0; b < num_buckets_; b++) {
        if (TableEntryIsNonEmptyList(b)) {
          Node* node = static_cast<Node*>(table_[b]);
          table_[b] = NULL;
          do {
            Node* next = node->next;
            DestroyNode(node);
            node = next;
          } while (node != NULL);
        } else if (TableEntryIsTree(b)) {
          Tree* tree = static_cast<Tree*>(table_[b]);
          GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
          table_[b] = table_[b + 1] = NULL;
          typename Tree::iterator tree_it = tree->begin();
          do {
            Node* node = NodePtrFromKeyPtr(*tree_it);
            typename Tree::iterator next = tree_it;
            ++next;
            tree->erase(tree_it);
            DestroyNode(node);
            tree_it = next;
          } while (tree_it != tree->end());
          DestroyTree(tree);
          b++;
        }
      }
      num_elements_ = 0;
      index_of_first_non_null_ = num_buckets_;
    }

    const hasher& hash_function() const { return *this; }

    static size_type max_size() {
      return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
    }
    size_type size() const { return num_elements_; }
    bool empty() const { return size() == 0; }

    iterator find(const Key& k) { return iterator(FindHelper(k).first); }
    const_iterator find(const Key& k) const { return FindHelper(k).first; }

    // In traditional C++ style, this performs "insert if not present."
    std::pair<iterator, bool> insert(const KeyValuePair& kv) {
      std::pair<const_iterator, size_type> p = FindHelper(kv.key());
      // Case 1: key was already present.
      if (p.first.node_ != NULL)
        return std::make_pair(iterator(p.first), false);
      // Case 2: insert.
      if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
        p = FindHelper(kv.key());
      }
      const size_type b = p.second;  // bucket number
      Node* node = Alloc<Node>(1);
      alloc_.construct(&node->kv, kv);
      iterator result = InsertUnique(b, node);
      ++num_elements_;
      return std::make_pair(result, true);
    }

    // The same, but if an insertion is necessary then the value portion of the
    // inserted key-value pair is left uninitialized.
    std::pair<iterator, bool> insert(const Key& k) {
      std::pair<const_iterator, size_type> p = FindHelper(k);
      // Case 1: key was already present.
      if (p.first.node_ != NULL)
        return std::make_pair(iterator(p.first), false);
      // Case 2: insert.
      if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
        p = FindHelper(k);
      }
      const size_type b = p.second;  // bucket number
      Node* node = Alloc<Node>(1);
      typedef typename Allocator::template rebind<Key>::other KeyAllocator;
      KeyAllocator(alloc_).construct(&node->kv.key(), k);
      iterator result = InsertUnique(b, node);
      ++num_elements_;
      return std::make_pair(result, true);
    }

    Value& operator[](const Key& k) {
      KeyValuePair kv(k, Value());
      return insert(kv).first->value();
    }

    void erase(iterator it) {
      GOOGLE_DCHECK_EQ(it.m_, this);
      const bool is_list = it.revalidate_if_necessary();
      const size_type b = it.bucket_index_;
      Node* const item = it.node_;
      if (is_list) {
        GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
        Node* head = static_cast<Node*>(table_[b]);
        head = EraseFromLinkedList(item, head);
        table_[b] = static_cast<void*>(head);
      } else {
        GOOGLE_DCHECK(TableEntryIsTree(b));
        Tree* tree = static_cast<Tree*>(table_[b]);
        tree->erase(it.tree_it_);
        if (tree->empty()) {
          DestroyTree(tree);
          table_[b] = table_[b ^ 1] = NULL;
        }
      }
      DestroyNode(item);
      --num_elements_;
      if (GOOGLE_PREDICT_FALSE(b == index_of_first_non_null_)) {
        while (index_of_first_non_null_ < num_buckets_ &&
               table_[index_of_first_non_null_] == 0) {
          ++index_of_first_non_null_;
        }
      }
    }

   private:
    std::pair<const_iterator, size_type> FindHelper(const Key& k) const {
      size_type b = BucketNumber(k);
      if (TableEntryIsNonEmptyList(b)) {
        Node* node = static_cast<Node*>(table_[b]);
        do {
          if (IsMatch(*KeyPtrFromNodePtr(node), k)) {
            return std::make_pair(const_iterator(node, this, b), b);
          } else {
            node = node->next;
          }
        } while (node != NULL);
      } else if (TableEntryIsTree(b)) {
        GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
        b &= ~static_cast<size_t>(1);
        Tree* tree = static_cast<Tree*>(table_[b]);
        Key* key = const_cast<Key*>(&k);
        typename Tree::iterator tree_it = tree->find(key);
        if (tree_it != tree->end()) {
          return std::make_pair(const_iterator(tree_it, this, b), b);
        }
      }
      return std::make_pair(end(), b);
    }

    // Insert the given Node in bucket b.  If that would make bucket b too big,
    // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
    // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
    // bucket.  num_elements_ is not modified.
    iterator InsertUnique(size_type b, Node* node) {
      // In practice, the code that led to this point may have already
      // determined whether we are inserting into an empty list, a short list,
      // or whatever.  But it's probably cheap enough to recompute that here;
      // it's likely that we're inserting into an empty or short list.
      iterator result;
      GOOGLE_DCHECK(find(*KeyPtrFromNodePtr(node)) == end());
      if (TableEntryIsEmpty(b)) {
        result = InsertUniqueInList(b, node);
      } else if (TableEntryIsNonEmptyList(b)) {
        if (GOOGLE_PREDICT_FALSE(TableEntryIsTooLong(b))) {
          TreeConvert(b);
          result = InsertUniqueInTree(b, node);
        } else {
          result = InsertUniqueInList(b, node);
        }
      } else {
        result = InsertUniqueInTree(b, node);
      }
      index_of_first_non_null_ =
          std::min(index_of_first_non_null_, result.bucket_index_);
      return result;
    }

    // Helper for InsertUnique.  Handles the case where bucket b is a
    // not-too-long linked list.
    iterator InsertUniqueInList(size_type b, Node* node) {
      node->next = static_cast<Node*>(table_[b]);
      table_[b] = static_cast<void*>(node);
      return iterator(node, this, b);
    }

    // Helper for InsertUnique.  Handles the case where bucket b points to a
    // Tree.
    iterator InsertUniqueInTree(size_type b, Node* node) {
      GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
      // Maintain the invariant that node->next is NULL for all Nodes in Trees.
      node->next = NULL;
      return iterator(static_cast<Tree*>(table_[b])
                      ->insert(KeyPtrFromNodePtr(node))
                      .first,
                      this, b & ~static_cast<size_t>(1));
    }

    // Returns whether it did resize.  Currently this is only used when
    // num_elements_ increases, though it could be used in other situations.
    // It checks for load too low as well as load too high: because any number
    // of erases can occur between inserts, the load could be as low as 0 here.
    // Resizing to a lower size is not always helpful, but failing to do so can
    // destroy the expected big-O bounds for some operations. By having the
    // policy that sometimes we resize down as well as up, clients can easily
    // keep O(size()) = O(number of buckets) if they want that.
    bool ResizeIfLoadIsOutOfRange(size_type new_size) {
      const size_type kMaxMapLoadTimes16 = 12;  // controls RAM vs CPU tradeoff
      const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
      const size_type lo_cutoff = hi_cutoff / 4;
      // We don't care how many elements are in trees.  If a lot are,
      // we may resize even though there are many empty buckets.  In
      // practice, this seems fine.
      if (GOOGLE_PREDICT_FALSE(new_size >= hi_cutoff)) {
        if (num_buckets_ <= max_size() / 2) {
          Resize(num_buckets_ * 2);
          return true;
        }
      } else if (GOOGLE_PREDICT_FALSE(new_size <= lo_cutoff &&
                               num_buckets_ > kMinTableSize)) {
        size_type lg2_of_size_reduction_factor = 1;
        // It's possible we want to shrink a lot here... size() could even be 0.
        // So, estimate how much to shrink by making sure we don't shrink so
        // much that we would need to grow the table after a few inserts.
        const size_type hypothetical_size = new_size * 5 / 4 + 1;
        while ((hypothetical_size << lg2_of_size_reduction_factor) <
               hi_cutoff) {
          ++lg2_of_size_reduction_factor;
        }
        size_type new_num_buckets = std::max<size_type>(
            kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
        if (new_num_buckets != num_buckets_) {
          Resize(new_num_buckets);
          return true;
        }
      }
      return false;
    }

    // Resize to the given number of buckets.
    void Resize(size_t new_num_buckets) {
      GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
      void** const old_table = table_;
      const size_type old_table_size = num_buckets_;
      num_buckets_ = new_num_buckets;
      table_ = CreateEmptyTable(num_buckets_);
      const size_type start = index_of_first_non_null_;
      index_of_first_non_null_ = 0;
      for (size_type i = start; i < old_table_size; i++) {
        if (TableEntryIsNonEmptyList(old_table, i)) {
          TransferList(old_table, i);
        } else if (TableEntryIsTree(old_table, i)) {
          TransferTree(old_table, i++);
        }
      }
      Dealloc<void*>(old_table, old_table_size);
    }

    void TransferList(void* const* table, size_type index) {
      Node* node = static_cast<Node*>(table[index]);
      do {
        Node* next = node->next;
        InsertUnique(BucketNumber(*KeyPtrFromNodePtr(node)), node);
        node = next;
      } while (node != NULL);
    }

    void TransferTree(void* const* table, size_type index) {
      Tree* tree = static_cast<Tree*>(table[index]);
      typename Tree::iterator tree_it = tree->begin();
      do {
        Node* node = NodePtrFromKeyPtr(*tree_it);
        InsertUnique(BucketNumber(**tree_it), node);
      } while (++tree_it != tree->end());
      DestroyTree(tree);
    }

    Node* EraseFromLinkedList(Node* item, Node* head) {
      if (head == item) {
        return head->next;
      } else {
        head->next = EraseFromLinkedList(item, head->next);
        return head;
      }
    }

    bool TableEntryIsEmpty(size_type b) const {
      return TableEntryIsEmpty(table_, b);
    }
    bool TableEntryIsNonEmptyList(size_type b) const {
      return TableEntryIsNonEmptyList(table_, b);
    }
    bool TableEntryIsTree(size_type b) const {
      return TableEntryIsTree(table_, b);
    }
    bool TableEntryIsList(size_type b) const {
      return TableEntryIsList(table_, b);
    }
    static bool TableEntryIsEmpty(void* const* table, size_type b) {
      return table[b] == 0;
    }
    static bool TableEntryIsNonEmptyList(void* const* table, size_type b) {
      return table[b] != 0 && table[b] != table[b ^ 1];
    }
    static bool TableEntryIsTree(void* const* table, size_type b) {
      return !TableEntryIsEmpty(table, b) &&
          !TableEntryIsNonEmptyList(table, b);
    }
    static bool TableEntryIsList(void* const* table, size_type b) {
      return !TableEntryIsTree(table, b);
    }

    void TreeConvert(size_type b) {
      GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
      typename Allocator::template rebind<Tree>::other tree_allocator(alloc_);
      Tree* tree = tree_allocator.allocate(1);
      // We want to use the three-arg form of construct, if it exists, but we
      // create a temporary and use the two-arg construct that's known to exist.
      // It's clunky, but the compiler should be able to generate more-or-less
      // the same code.
      tree_allocator.construct(tree,
                               Tree(KeyCompare(), KeyPtrAllocator(alloc_)));
      // Now the tree is ready to use.
      size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
      GOOGLE_DCHECK_EQ(count, tree->size());
      table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
    }

    // Copy a linked list in the given bucket to a tree.
    // Returns the number of things it copied.
    size_type CopyListToTree(size_type b, Tree* tree) {
      size_type count = 0;
      Node* node = static_cast<Node*>(table_[b]);
      while (node != NULL) {
        tree->insert(KeyPtrFromNodePtr(node));
        ++count;
        Node* next = node->next;
        node->next = NULL;
        node = next;
      }
      return count;
    }

    // Return whether table_[b] is a linked list that seems awfully long.
    // Requires table_[b] to point to a non-empty linked list.
    bool TableEntryIsTooLong(size_type b) {
      const int kMaxLength = 8;
      size_type count = 0;
      Node* node = static_cast<Node*>(table_[b]);
      do {
        ++count;
        node = node->next;
      } while (node != NULL);
      // Invariant: no linked list ever is more than kMaxLength in length.
      GOOGLE_DCHECK_LE(count, kMaxLength);
      return count >= kMaxLength;
    }

    size_type BucketNumber(const Key& k) const {
      // We inherit from hasher, so one-arg operator() provides a hash function.
      size_type h = (*this)(k);
      // To help prevent people from making assumptions about the hash function,
      // we use the seed differently depending on NDEBUG.  The default hash
      // function, the seeding, etc., are all likely to change in the future.
#ifndef NDEBUG
      return (h * (seed_ | 1)) & (num_buckets_ - 1);
#else
      return (h + seed_) & (num_buckets_ - 1);
#endif
    }

    bool IsMatch(const Key& k0, const Key& k1) const {
      return std::equal_to<Key>()(k0, k1);
    }

    // Return a power of two no less than max(kMinTableSize, n).
    // Assumes either n < kMinTableSize or n is a power of two.
    size_type TableSize(size_type n) {
      return n < kMinTableSize ? kMinTableSize : n;
    }

    // Use alloc_ to allocate an array of n objects of type U.
    template <typename U>
    U* Alloc(size_type n) {
      typedef typename Allocator::template rebind<U>::other alloc_type;
      return alloc_type(alloc_).allocate(n);
    }

    // Use alloc_ to deallocate an array of n objects of type U.
    template <typename U>
    void Dealloc(U* t, size_type n) {
      typedef typename Allocator::template rebind<U>::other alloc_type;
      alloc_type(alloc_).deallocate(t, n);
    }

    void DestroyNode(Node* node) {
      alloc_.destroy(&node->kv);
      Dealloc<Node>(node, 1);
    }

    void DestroyTree(Tree* tree) {
      typename Allocator::template rebind<Tree>::other tree_allocator(alloc_);
      tree_allocator.destroy(tree);
      tree_allocator.deallocate(tree, 1);
    }

    void** CreateEmptyTable(size_type n) {
      GOOGLE_DCHECK(n >= kMinTableSize);
      GOOGLE_DCHECK_EQ(n & (n - 1), 0);
      void** result = Alloc<void*>(n);
      memset(result, 0, n * sizeof(result[0]));
      return result;
    }

    // Return a randomish value.
    size_type Seed() const {
      // random_device can throw, so avoid it unless we are compiling with
      // exceptions enabled.
#if __cpp_exceptions && LANG_CXX11
      try {
        std::random_device rd;
        std::knuth_b knuth(rd());
        std::uniform_int_distribution<size_type> u;
        return u(knuth);
      } catch (...) { }
#endif
      size_type s = static_cast<size_type>(reinterpret_cast<uintptr_t>(this));
#if defined(__x86_64__) && defined(__GNUC__)
      uint32 hi, lo;
      asm("rdtsc" : "=a" (lo), "=d" (hi));
      s += ((static_cast<uint64>(hi) << 32) | lo);
#endif
      return s;
    }

    size_type num_elements_;
    size_type num_buckets_;
    size_type seed_;
    size_type index_of_first_non_null_;
    void** table_;  // an array with num_buckets_ entries
    Allocator alloc_;
    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
  };  // end of class InnerMap

  typedef hash_map<Key, value_type*, hash<Key>, equal_to<Key>,
                   MapAllocator<std::pair<const Key, MapPair<Key, T>*> > >
      DeprecatedInnerMap;

 public:
  // Iterators
  class iterator_base {
   public:
    // We support "old style" and "new style" iterators for now. This is
    // temporary.  Also, for "iterator()" we have an unknown category.
    // TODO(gpike): get rid of this.
    enum IteratorStyle { kUnknown, kOld, kNew };
    explicit iterator_base(IteratorStyle style) : iterator_style_(style) {}

    bool OldStyle() const {
      GOOGLE_DCHECK_NE(iterator_style_, kUnknown);
      return iterator_style_ == kOld;
    }
    bool UnknownStyle() const {
      return iterator_style_ == kUnknown;
    }
    bool SameStyle(const iterator_base& other) const {
      return iterator_style_ == other.iterator_style_;
    }

   private:
    IteratorStyle iterator_style_;
  };

  class const_iterator
      : private iterator_base,
        public std::iterator<std::forward_iterator_tag, value_type, ptrdiff_t,
                             const value_type*, const value_type&> {
    typedef typename InnerMap::const_iterator InnerIt;
    typedef typename DeprecatedInnerMap::const_iterator DeprecatedInnerIt;

   public:
    const_iterator() : iterator_base(iterator_base::kUnknown) {}
    explicit const_iterator(const DeprecatedInnerIt& dit)
        : iterator_base(iterator_base::kOld), dit_(dit) {}
    explicit const_iterator(const InnerIt& it)
        : iterator_base(iterator_base::kNew), it_(it) {}

    const_iterator(const const_iterator& other)
        : iterator_base(other), it_(other.it_), dit_(other.dit_) {}

    const_reference operator*() const {
      return this->OldStyle() ? *dit_->second : *it_->value();
    }
    const_pointer operator->() const { return &(operator*()); }

    const_iterator& operator++() {
      if (this->OldStyle())
        ++dit_;
      else
        ++it_;
      return *this;
    }
    const_iterator operator++(int) {
      return this->OldStyle() ? const_iterator(dit_++) : const_iterator(it_++);
    }

    friend bool operator==(const const_iterator& a, const const_iterator& b) {
      if (!a.SameStyle(b)) return false;
      if (a.UnknownStyle()) return true;
      return a.OldStyle() ? (a.dit_ == b.dit_) : (a.it_ == b.it_);
    }
    friend bool operator!=(const const_iterator& a, const const_iterator& b) {
      return !(a == b);
    }

   private:
    InnerIt it_;
    DeprecatedInnerIt dit_;
  };

  class iterator : private iterator_base,
                   public std::iterator<std::forward_iterator_tag, value_type> {
    typedef typename InnerMap::iterator InnerIt;
    typedef typename DeprecatedInnerMap::iterator DeprecatedInnerIt;

   public:
    iterator() : iterator_base(iterator_base::kUnknown) {}
    explicit iterator(const DeprecatedInnerIt& dit)
        : iterator_base(iterator_base::kOld), dit_(dit) {}
    explicit iterator(const InnerIt& it)
        : iterator_base(iterator_base::kNew), it_(it) {}

    reference operator*() const {
      return this->OldStyle() ? *dit_->second : *it_->value();
    }
    pointer operator->() const { return &(operator*()); }

    iterator& operator++() {
      if (this->OldStyle())
        ++dit_;
      else
        ++it_;
      return *this;
    }
    iterator operator++(int) {
      return this->OldStyle() ? iterator(dit_++) : iterator(it_++);
    }

    // Allow implicit conversion to const_iterator.
    operator const_iterator() const {
      return this->OldStyle() ?
          const_iterator(typename DeprecatedInnerMap::const_iterator(dit_)) :
          const_iterator(typename InnerMap::const_iterator(it_));
    }

    friend bool operator==(const iterator& a, const iterator& b) {
      if (!a.SameStyle(b)) return false;
      if (a.UnknownStyle()) return true;
      return a.OldStyle() ? a.dit_ == b.dit_ : a.it_ == b.it_;
    }
    friend bool operator!=(const iterator& a, const iterator& b) {
      return !(a == b);
    }

   private:
    friend class Map;

    InnerIt it_;
    DeprecatedInnerIt dit_;
  };

  iterator begin() {
    return old_style_ ? iterator(deprecated_elements_->begin())
                      : iterator(elements_->begin());
  }
  iterator end() {
    return old_style_ ? iterator(deprecated_elements_->end())
                      : iterator(elements_->end());
  }
  const_iterator begin() const {
    return old_style_ ? const_iterator(deprecated_elements_->begin())
                      : const_iterator(iterator(elements_->begin()));
  }
  const_iterator end() const {
    return old_style_ ? const_iterator(deprecated_elements_->end())
                      : const_iterator(iterator(elements_->end()));
  }
  const_iterator cbegin() const { return begin(); }
  const_iterator cend() const { return end(); }

  // Capacity
  size_type size() const {
    return old_style_ ? deprecated_elements_->size() : elements_->size();
  }
  bool empty() const { return size() == 0; }

  // Element access
  T& operator[](const key_type& key) {
    value_type** value =
        old_style_ ? &(*deprecated_elements_)[key] : &(*elements_)[key];
    if (*value == NULL) {
      *value = CreateValueTypeInternal(key);
      internal::MapValueInitializer<google::protobuf::is_proto_enum<T>::value,
                                    T>::Initialize((*value)->second,
                                                   default_enum_value_);
    }
    return (*value)->second;
  }
  const T& at(const key_type& key) const {
    const_iterator it = find(key);
    GOOGLE_CHECK(it != end());
    return it->second;
  }
  T& at(const key_type& key) {
    iterator it = find(key);
    GOOGLE_CHECK(it != end());
    return it->second;
  }

  // Lookup
  size_type count(const key_type& key) const {
    if (find(key) != end()) assert(key == find(key)->first);
    return find(key) == end() ? 0 : 1;
  }
  const_iterator find(const key_type& key) const {
    return old_style_ ? const_iterator(deprecated_elements_->find(key))
        : const_iterator(iterator(elements_->find(key)));
  }
  iterator find(const key_type& key) {
    return old_style_ ? iterator(deprecated_elements_->find(key))
                      : iterator(elements_->find(key));
  }
  std::pair<const_iterator, const_iterator> equal_range(
      const key_type& key) const {
    const_iterator it = find(key);
    if (it == end()) {
      return std::pair<const_iterator, const_iterator>(it, it);
    } else {
      const_iterator begin = it++;
      return std::pair<const_iterator, const_iterator>(begin, it);
    }
  }
  std::pair<iterator, iterator> equal_range(const key_type& key) {
    iterator it = find(key);
    if (it == end()) {
      return std::pair<iterator, iterator>(it, it);
    } else {
      iterator begin = it++;
      return std::pair<iterator, iterator>(begin, it);
    }
  }

  // insert
  std::pair<iterator, bool> insert(const value_type& value) {
    if (old_style_) {
      iterator it = find(value.first);
      if (it != end()) {
        return std::pair<iterator, bool>(it, false);
      } else {
        return std::pair<iterator, bool>(
            iterator(deprecated_elements_->insert(std::pair<Key, value_type*>(
                value.first, CreateValueTypeInternal(value))).first), true);
      }
    } else {
      std::pair<typename InnerMap::iterator, bool> p =
          elements_->insert(value.first);
      if (p.second) {
        p.first->value() = CreateValueTypeInternal(value);
      }
      return std::pair<iterator, bool>(iterator(p.first), p.second);
    }
  }
  template <class InputIt>
  void insert(InputIt first, InputIt last) {
    for (InputIt it = first; it != last; ++it) {
      iterator exist_it = find(it->first);
      if (exist_it == end()) {
        operator[](it->first) = it->second;
      }
    }
  }

  // Erase and clear
  size_type erase(const key_type& key) {
    iterator it = find(key);
    if (it == end()) {
      return 0;
    } else {
      erase(it);
      return 1;
    }
  }
  iterator erase(iterator pos) {
    if (arena_ == NULL) delete pos.operator->();
    iterator i = pos++;
    if (old_style_)
      deprecated_elements_->erase(i.dit_);
    else
      elements_->erase(i.it_);
    return pos;
  }
  void erase(iterator first, iterator last) {
    while (first != last) {
      first = erase(first);
    }
  }
  void clear() { erase(begin(), end()); }

  // Assign
  Map& operator=(const Map& other) {
    if (this != &other) {
      clear();
      insert(other.begin(), other.end());
    }
    return *this;
  }

  // Access to hasher.  Currently this returns a copy, but it may
  // be modified to return a const reference in the future.
  hasher hash_function() const {
    return old_style_ ? deprecated_elements_->hash_function()
                      : elements_->hash_function();
  }

 private:
  // Set default enum value only for proto2 map field whose value is enum type.
  void SetDefaultEnumValue(int default_enum_value) {
    default_enum_value_ = default_enum_value;
  }

  value_type* CreateValueTypeInternal(const Key& key) {
    if (arena_ == NULL) {
      return new value_type(key);
    } else {
      value_type* value = reinterpret_cast<value_type*>(
          Arena::CreateArray<uint8>(arena_, sizeof(value_type)));
      Arena::CreateInArenaStorage(const_cast<Key*>(&value->first), arena_);
      Arena::CreateInArenaStorage(&value->second, arena_);
      const_cast<Key&>(value->first) = key;
      return value;
    }
  }

  value_type* CreateValueTypeInternal(const value_type& value) {
    if (arena_ == NULL) {
      return new value_type(value);
    } else {
      value_type* p = reinterpret_cast<value_type*>(
          Arena::CreateArray<uint8>(arena_, sizeof(value_type)));
      Arena::CreateInArenaStorage(const_cast<Key*>(&p->first), arena_);
      Arena::CreateInArenaStorage(&p->second, arena_);
      const_cast<Key&>(p->first) = value.first;
      p->second = value.second;
      return p;
    }
  }

  Arena* arena_;
  int default_enum_value_;
  // The following is a tagged union because we support two map styles
  // for now.
  // TODO(gpike): get rid of the old style.
  const bool old_style_;
  union {
    InnerMap* elements_;
    DeprecatedInnerMap* deprecated_elements_;
  };

  friend class ::google::protobuf::Arena;
  typedef void InternalArenaConstructable_;
  typedef void DestructorSkippable_;
  template <typename K, typename V,
            internal::WireFormatLite::FieldType key_wire_type,
            internal::WireFormatLite::FieldType value_wire_type,
            int default_enum_value>
  friend class internal::MapFieldLite;
};

}  // namespace protobuf
}  // namespace google

GOOGLE_PROTOBUF_HASH_NAMESPACE_DECLARATION_START
template<>
struct hash<google::protobuf::MapKey> {
  size_t
  operator()(const google::protobuf::MapKey& map_key) const {
    switch (map_key.type()) {
      case google::protobuf::FieldDescriptor::CPPTYPE_DOUBLE:
      case google::protobuf::FieldDescriptor::CPPTYPE_FLOAT:
      case google::protobuf::FieldDescriptor::CPPTYPE_ENUM:
      case google::protobuf::FieldDescriptor::CPPTYPE_MESSAGE:
        GOOGLE_LOG(FATAL) << "Unsupported";
        break;
      case google::protobuf::FieldDescriptor::CPPTYPE_STRING:
        return hash<string>()(map_key.GetStringValue());
      case google::protobuf::FieldDescriptor::CPPTYPE_INT64:
        return hash< ::google::protobuf::int64>()(map_key.GetInt64Value());
      case google::protobuf::FieldDescriptor::CPPTYPE_INT32:
        return hash< ::google::protobuf::int32>()(map_key.GetInt32Value());
      case google::protobuf::FieldDescriptor::CPPTYPE_UINT64:
        return hash< ::google::protobuf::uint64>()(map_key.GetUInt64Value());
      case google::protobuf::FieldDescriptor::CPPTYPE_UINT32:
        return hash< ::google::protobuf::uint32>()(map_key.GetUInt32Value());
      case google::protobuf::FieldDescriptor::CPPTYPE_BOOL:
        return hash<bool>()(map_key.GetBoolValue());
    }
    GOOGLE_LOG(FATAL) << "Can't get here.";
    return 0;
  }
  bool
  operator()(const google::protobuf::MapKey& map_key1,
             const google::protobuf::MapKey& map_key2) const {
    return map_key1 < map_key2;
  }
};
GOOGLE_PROTOBUF_HASH_NAMESPACE_DECLARATION_END

#endif  // GOOGLE_PROTOBUF_MAP_H__