summaryrefslogblamecommitdiff
path: root/05-types.md
blob: 104608da6ac9c98957436c25e702f792d1dcbb7b (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014





















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                                                                                                                                                                                                                                                                                                                                               
Types
=====


\syntax\begin{lstlisting}
  Type              ::=  FunctionArgTypes `=>' Type
                      |  InfixType [ExistentialClause]
  FunctionArgTypes  ::= InfixType
                      | `(' [ ParamType {`,' ParamType } ] `)'
  ExistentialClause ::=  `forSome' `{' ExistentialDcl {semi ExistentialDcl} `}'
  ExistentialDcl    ::=  `type' TypeDcl 
                      |  `val' ValDcl
  InfixType         ::=  CompoundType {id [nl] CompoundType}
  CompoundType      ::=  AnnotType {`with' AnnotType} [Refinement]
                      |  Refinement
  AnnotType         ::=  SimpleType {Annotation}
  SimpleType        ::=  SimpleType TypeArgs
                      |  SimpleType `#' id
                      |  StableId
                      |  Path `.' `type'
                      |  `(' Types ')'
  TypeArgs          ::=  `[' Types `]'
  Types             ::=  Type {`,' Type}
\end{lstlisting}

We distinguish between first-order types and type constructors, which
take type parameters and yield types. A subset of first-order types
called {\em value types} represents sets of (first-class) values.
Value types are either {\em concrete} or {\em abstract}. 

Every concrete value type can be represented as a {\em class type}, i.e.\ a
type designator (\sref{sec:type-desig}) that refers to a
a class or a trait\footnote{We assume that objects and packages also implicitly
define a class (of the same name as the object or package, but
inaccessible to user programs).} (\sref{sec:class-defs}), or as a {\em
compound type} (\sref{sec:compound-types}) representing an
intersection of types, possibly with a refinement
(\sref{sec:refinements}) that further constrains the types of its
members.
\comment{A shorthand exists for denoting function types (\sref{sec:function-types}).  }
Abstract value types are introduced by type parameters (\sref{sec:type-params}) 
and abstract type bindings (\sref{sec:typedcl}). Parentheses in types can be used for
grouping.

%@M
Non-value types capture properties of identifiers that are not values
(\sref{sec:synthetic-types}). For example, a type constructor (\sref{sec:higherkinded-types}) does not directly specify a type of values. However, when a type constructor is applied to the correct type arguments, it yields a first-order type, which may be a value type. 

Non-value types are expressed indirectly in Scala. E.g., a method type is described by writing down a method signature, which in itself is not a real type, although it  gives rise to a corresponding method type (\sref{sec:method-types}). Type constructors are another example, as one can write \lstinline@type Swap[m[_, _], a,b] = m[b, a]@, but there is no syntax to write the corresponding anonymous type function directly.

\section{Paths}\label{sec:paths}\label{sec:stable-ids}

\syntax\begin{lstlisting}
  Path            ::=  StableId
                    |  [id `.'] this
  StableId        ::=  id
                    |  Path `.' id
                    |  [id '.'] `super' [ClassQualifier] `.' id
  ClassQualifier  ::= `[' id `]'
\end{lstlisting}

Paths are not types themselves, but they can be a part of named types
and in that function form a central role in Scala's type system.

A path is one of the following.
\begin{itemize}
\item
The empty path $\epsilon$ (which cannot be written explicitly in user programs).
\item
\lstinline@$C$.this@, where $C$ references a class. 
The path \code{this} is taken as a shorthand for \lstinline@$C$.this@ where 
$C$ is the name of the class directly enclosing the reference. 
\item
\lstinline@$p$.$x$@ where $p$ is a path and $x$ is a stable member of $p$.
{\em Stable members} are packages or members introduced by object definitions or 
by value definitions of non-volatile types
(\sref{sec:volatile-types}). 

\item
\lstinline@$C$.super.$x$@ or \lstinline@$C$.super[$M\,$].$x$@
where $C$ references a class and $x$ references a 
stable member of the super class or designated parent class $M$ of $C$. 
The prefix \code{super} is taken as a shorthand for \lstinline@$C$.super@ where 
$C$ is the name of the class directly enclosing the reference. 
\end{itemize}
A {\em stable identifier} is a path which ends in an identifier.

\section{Value Types}\label{sec:value-types}

Every value in Scala has a type which is of one of the following
forms.

\subsection{Singleton Types}
\label{sec:singleton-types}
\label{sec:type-stability}

\syntax\begin{lstlisting}
  SimpleType  ::=  Path `.' type
\end{lstlisting}

A singleton type is of the form \lstinline@$p$.type@, where $p$ is a
path pointing to a value expected to conform (\sref{sec:expr-typing})
to \lstinline@scala.AnyRef@.  The type denotes the set of values
consisting of \code{null} and the value denoted by $p$. 

A {\em stable type} is either a singleton type or a type which is
declared to be a subtype of trait \lstinline@scala.Singleton@.

\subsection{Type Projection}
\label{sec:type-project}

\syntax\begin{lstlisting} 
  SimpleType  ::=  SimpleType `#' id
\end{lstlisting}

A type projection \lstinline@$T$#$x$@ references the type member named
$x$ of type $T$. 
% The following is no longer necessary:
%If $x$ references an abstract type member, then $T$ must be a stable type (\sref{sec:singleton-types}). 

\subsection{Type Designators}
\label{sec:type-desig}

\syntax\begin{lstlisting}
  SimpleType  ::=  StableId
\end{lstlisting}

A type designator refers to a named value type. It can be simple or
qualified. All such type designators are shorthands for type projections.

Specifically, the unqualified type name $t$ where $t$ is bound in some
class, object, or package $C$ is taken as a shorthand for
\lstinline@$C$.this.type#$t$@. If $t$ is
not bound in a class, object, or package, then $t$ is taken as a
shorthand for \lstinline@$\epsilon$.type#$t$@.

A qualified type designator has the form \lstinline@$p$.$t$@ where $p$ is
a path (\sref{sec:paths}) and $t$ is a type name. Such a type designator is
equivalent to the type projection \lstinline@$p$.type#$t$@.

\example 
Some type designators and their expansions are listed below. We assume
a local type parameter $t$, a value \code{maintable}
with a type member \code{Node} and the standard class \lstinline@scala.Int@, 
\begin{lstlisting}
  t                     $\epsilon$.type#t
  Int                   scala.type#Int
  scala.Int             scala.type#Int
  data.maintable.Node   data.maintable.type#Node
\end{lstlisting}

\subsection{Parameterized Types}
\label{sec:param-types}

\syntax\begin{lstlisting}
  SimpleType      ::=  SimpleType TypeArgs
  TypeArgs        ::=  `[' Types `]'
\end{lstlisting}

A parameterized type $T[U_1 \commadots U_n]$ consists of a type
designator $T$ and type parameters $U_1 \commadots U_n$ where $n \geq
1$.  $T$ must refer to a type constructor which takes $n$ type
parameters $a_1 \commadots a_n$.

Say the type parameters have lower bounds $L_1 \commadots L_n$ and
upper bounds $U_1 \commadots U_n$.  The parameterized type is
well-formed if each actual type parameter {\em conforms to its
bounds}, i.e.\ $\sigma L_i <: T_i <: \sigma U_i$ where $\sigma$ is the
substitution $[a_1 := T_1 \commadots a_n := T_n]$.

\example\label{ex:param-types}
Given the partial type definitions:

\begin{lstlisting}
  class TreeMap[A <: Comparable[A], B] { $\ldots$ }
  class List[A] { $\ldots$ }
  class I extends Comparable[I] { $\ldots$ }
  
  class F[M[_], X] { $\ldots$ }
  class S[K <: String] { $\ldots$ }
  class G[M[ Z <: I ], I] { $\ldots$ }
\end{lstlisting}

the following parameterized types are well formed:

\begin{lstlisting}
  TreeMap[I, String]
  List[I]
  List[List[Boolean]]
  
  F[List, Int]
  G[S, String]
\end{lstlisting}

\example Given the type definitions of \ref{ex:param-types},
the following types are ill-formed:

\begin{lstlisting}
  TreeMap[I]            // illegal: wrong number of parameters
  TreeMap[List[I], Int] // illegal: type parameter not within bound
  
  F[Int, Boolean]       // illegal: Int is not a type constructor
  F[TreeMap, Int]       // illegal: TreeMap takes two parameters,
                        //   F expects a constructor taking one
  G[S, Int]             // illegal: S constrains its parameter to
                        //   conform to String,
                        // G expects type constructor with a parameter
                        //   that conforms to Int
\end{lstlisting}

\subsection{Tuple Types}\label{sec:tuple-types}

\syntax\begin{lstlisting}
  SimpleType    ::=   `(' Types ')'
\end{lstlisting}

A tuple type \lstinline@($T_1 \commadots T_n$)@ is an alias for the
class ~\lstinline@scala.Tuple$n$[$T_1 \commadots T_n$]@, where $n \geq
2$.

Tuple classes are case classes whose fields can be accessed using
selectors ~\code{_1}, ..., \lstinline@_$n$@. Their functionality is
abstracted in a corresponding \code{Product} trait. The $n$-ary tuple
class and product trait are defined at least as follows in the
standard Scala library (they might also add other methods and
implement other traits).

\begin{lstlisting}
case class Tuple$n$[+T1, ..., +T$n$](_1: T1, ..., _$n$: T$n$) 
extends Product$n$[T1, ..., T$n$] {}

trait Product$n$[+T1, +T2, +T$n$] {
  override def arity = $n$
  def _1: T1
  ...
  def _$n$:T$n$
}
\end{lstlisting}

\subsection{Annotated Types}

\syntax\begin{lstlisting}
  AnnotType  ::=  SimpleType {Annotation}
\end{lstlisting}

An annotated type ~$T$\lstinline@ $a_1 \ldots a_n$@
attaches annotations $a_1 \commadots a_n$ to the type $T$
(\sref{sec:annotations}).

\example The following type adds the \code{@suspendable}@ annotation to the type
\code{String}:
\begin{lstlisting}
  String @suspendable
\end{lstlisting}

\subsection{Compound Types}
\label{sec:compound-types}
\label{sec:refinements}

\syntax\begin{lstlisting}
  CompoundType    ::=  AnnotType {`with' AnnotType} [Refinement]
                    |  Refinement
  Refinement      ::=  [nl] `{' RefineStat {semi RefineStat} `}'
  RefineStat      ::=  Dcl
                    |  `type' TypeDef
                    |
\end{lstlisting}

A compound type ~\lstinline@$T_1$ with $\ldots$ with $T_n$ {$R\,$}@~
represents objects with members as given in the component types $T_1
\commadots T_n$ and the refinement \lstinline@{$R\,$}@. A refinement
\lstinline@{$R\,$}@ contains declarations and type definitions. 
If a declaration or definition overrides a declaration or definition in
one of the component types $T_1 \commadots T_n$, the usual rules for
overriding (\sref{sec:overriding}) apply; otherwise the declaration
or definition is said to be ``structural''\footnote{A reference to a
structurally defined member (method call or access to a value or
variable) may generate binary code that is significantly slower than
an equivalent code to a non-structural member.}. 

Within a method declaration in a structural refinement, the type of
any value parameter may only refer to type parameters or abstract
types that are contained inside the refinement. That is, it must refer
either to a type parameter of the method itself, or to a type
definition within the refinement. This restriction does not apply to
the function's result type.

If no refinement is given, the empty refinement is implicitly added,
i.e.\  ~\lstinline@$T_1$ with $\ldots$ with $T_n$@~ is a shorthand for
~\lstinline@$T_1$ with $\ldots$ with $T_n$ {}@.

A compound type may also consist of just a refinement
~\lstinline@{$R\,$}@ with no preceding component types. Such a type is
equivalent to ~\lstinline@AnyRef{$R\,$}@.

\example The following example shows how to declare and use a function which parameter's type contains a refinement with structural declarations.
\begin{lstlisting}[escapechar=\%]
  case class Bird (val name: String) extends Object {
  	def fly(height: Int) = ...
	...
  }
  case class Plane (val callsign: String) extends Object {
  	def fly(height: Int) = ...
	...
  }
  def takeoff(
  	    runway: Int,
        r: { val callsign: String; def fly(height: Int) }) = {
    tower.print(r.callsign + " requests take-off on runway " + runway)
    tower.read(r.callsign + " is clear f%%or take-off")
    r.fly(1000)
  }
  val bird = new Bird("Polly the parrot"){ val callsign = name }
  val a380 = new Plane("TZ-987")
  takeoff(42, bird)
  takeoff(89, a380)
\end{lstlisting}
Although ~\lstinline@Bird@ and ~\lstinline@Plane@ do not share any parent class other than ~\lstinline@Object@, the parameter ~\lstinline@r@ of function ~\lstinline@takeoff@ is defined using a refinement with structural declarations to accept any object that declares a value ~\lstinline@callsign@ and a ~\lstinline@fly@ function.

 
\subsection{Infix Types}\label{sec:infix-types}

\syntax\begin{lstlisting}
  InfixType     ::=  CompoundType {id [nl] CompoundType}
\end{lstlisting}
An infix type ~\lstinline@$T_1\;\op\;T_2$@~ consists of an infix
operator $\op$ which gets applied to two type operands $T_1$ and
$T_2$.  The type is equivalent to the type application $\op[T_1,
T_2]$.  The infix operator $\op$ may be an arbitrary identifier,
except for \code{*}, which is reserved as a postfix modifier 
denoting a repeated parameter type (\sref{sec:repeated-params}). 

All type infix operators have the same precedence; parentheses have to
be used for grouping. The associativity (\sref{sec:infix-operations})
of a type operator is determined as for term operators: type operators
ending in a colon `\lstinline@:@' are right-associative; all other
operators are left-associative.

In a sequence of consecutive type infix operations $t_0; \op_1; t_1;
\op_2 \ldots \op_n; t_n$, all operators $\op_1 \commadots \op_n$ must have the same
associativity. If they are all left-associative, the sequence is
interpreted as $(\ldots(t_0;\op_1;t_1);\op_2\ldots);\op_n;t_n$,
otherwise it is interpreted as $t_0;\op_1;(t_1;\op_2;(\ldots\op_n;t_n)\ldots)$.

\subsection{Function Types}
\label{sec:function-types}

\syntax\begin{lstlisting}
  Type              ::=  FunctionArgs `=>' Type
  FunctionArgs      ::=  InfixType
                      |  `(' [ ParamType {`,' ParamType } ] `)'
\end{lstlisting}
The type ~\lstinline@($T_1 \commadots T_n$) => $U$@~ represents the set of function
values that take arguments of types $T_1 \commadots T_n$ and yield
results of type $U$.  In the case of exactly one argument type
~\lstinline@$T$ => $U$@~ is a shorthand for ~\lstinline@($T\,$) => $U$@.  
An argument type of the form~\lstinline@=> T@
represents a call-by-name parameter (\sref{sec:by-name-params}) of type $T$.

Function types associate to the right, e.g.
~\lstinline@$S$ => $T$ => $U$@~ is the same as 
~\lstinline@$S$ => ($T$ => $U$)@.

Function types are shorthands for class types that define \code{apply}
functions.  Specifically, the $n$-ary function type 
~\lstinline@($T_1 \commadots T_n$) => U@~ is a shorthand for the class type
\lstinline@Function$n$[$T_1 \commadots T_n$,$U\,$]@. Such class
types are defined in the Scala library for $n$ between 0 and 9 as follows.
\begin{lstlisting}
package scala 
trait Function$n$[-$T_1 \commadots$ -$T_n$, +$R$] {
  def apply($x_1$: $T_1 \commadots x_n$: $T_n$): $R$ 
  override def toString = "<function>" 
}
\end{lstlisting}
Hence, function types are covariant (\sref{sec:variances}) in their
result type and contravariant in their argument types.


\subsection{Existential Types}
\label{sec:existential-types}

\syntax\begin{lstlisting}
  Type               ::= InfixType ExistentialClauses
  ExistentialClauses ::= `forSome' `{' ExistentialDcl 
                         {semi ExistentialDcl} `}'
  ExistentialDcl     ::= `type' TypeDcl 
                      |  `val' ValDcl
\end{lstlisting}
An existential type has the form ~\lstinline@$T$ forSome {$\,Q\,$}@~
where $Q$ is a sequence of type declarations \sref{sec:typedcl}.
Let $t_1[\tps_1] >: L_1 <: U_1 \commadots t_n[\tps_n] >: L_n <: U_n$ 
be the types declared in $Q$ (any of the 
type parameter sections \lstinline@[$\tps_i$]@ might be missing).
The scope of each type $t_i$ includes the type $T$ and the existential clause $Q$. 
The type variables $t_i$ are said to be {\em bound} in the type ~\lstinline@$T$ forSome {$\,Q\,$}@.
Type variables which occur in a type $T$ but which are not bound in $T$ are said
to be {\em free} in $T$.

A {\em type instance} of ~\lstinline@$T$ forSome {$\,Q\,$}@ 
is a type $\sigma T$ where $\sigma$ is a substitution over $t_1 \commadots t_n$
such that, for each $i$, $\sigma L_i \conforms \sigma t_i \conforms \sigma U_i$.
The set of values denoted by the existential type ~\lstinline@$T$ forSome {$\,Q\,$}@~
is the union of the set of values of all its type instances.

A {\em skolemization} of ~\lstinline@$T$ forSome {$\,Q\,$}@~ is
a type instance $\sigma T$, where $\sigma$ is the substitution
$[t'_1/t_1 \commadots t'_n/t_n]$ and each $t'_i$ is a fresh abstract type
with lower bound $\sigma L_i$ and upper bound $\sigma U_i$.

\subsubsection*{Simplification Rules}\label{sec:ex-simpl}

Existential types obey the following four equivalences:
\begin{enumerate}
\item
Multiple for-clauses in an existential type can be merged. E.g.,
~\lstinline@$T$ forSome {$\,Q\,$} forSome {$\,Q'\,$}@~
is equivalent to
~\lstinline@$T$ forSome {$\,Q\,$;$\,Q'\,$}@.
\item
Unused quantifications can be dropped. E.g.,
~\lstinline@$T$ forSome {$\,Q\,$;$\,Q'\,$}@~
where none of the types defined in $Q'$ are referred to by $T$ or $Q$,
is equivalent to
~\lstinline@$T$ forSome {$\,Q\,$}@.
\item
An empty quantification can be dropped. E.g.,
~\lstinline@$T$ forSome { }@~ is equivalent to ~\lstinline@$T$@.
\item
An existential type ~\lstinline@$T$ forSome {$\,Q\,$}@~ where $Q$ contains
a clause ~\lstinline@type $t[\tps] >: L <: U$@ is equivalent 
to the type ~\lstinline@$T'$ forSome {$\,Q\,$}@~ where $T'$ results from $T$ by replacing every
covariant occurrence (\sref{sec:variances}) of $t$ in $T$ by $U$ and by replacing every
contravariant occurrence of $t$ in $T$ by $L$.
\end{enumerate}

\subsubsection*{Existential Quantification over Values}\label{sec:val-existential-types}

As a syntactic convenience, the bindings clause
in an existential type may also contain
value declarations \lstinline@val $x$: $T$@. 
An existential type ~\lstinline@$T$ forSome { $Q$; val $x$: $S\,$;$\,Q'$ }@~
is treated as a shorthand for the type
~\lstinline@$T'$ forSome { $Q$; type $t$ <: $S$ with Singleton; $Q'$ }@, where $t$ is a fresh
type name and $T'$ results from $T$ by replacing every occurrence of 
\lstinline@$x$.type@ with $t$.

\subsubsection*{Placeholder Syntax for Existential Types}\label{sec:impl-existential-types}

\syntax\begin{lstlisting}
  WildcardType   ::=  `_' TypeBounds
\end{lstlisting}

Scala supports a placeholder syntax for existential types.
A {\em wildcard type} is of the form ~\lstinline@_$\;$>:$\,L\,$<:$\,U$@. Both bound
clauses may be omitted. If a lower bound clause \lstinline@>:$\,L$@ is missing, 
\lstinline@>:$\,$scala.Nothing@~
is assumed. If an upper bound clause ~\lstinline@<:$\,U$@ is missing, 
\lstinline@<:$\,$scala.Any@~ is assumed. A wildcard type is a shorthand for an 
existentially quantified type variable, where the existential quantification is implicit.

A wildcard type must appear as type argument of a parameterized type.
Let $T = p.c[\targs,T,\targs']$ be a parameterized type where $\targs, \targs'$ may be empty and
$T$ is a wildcard type ~\lstinline@_$\;$>:$\,L\,$<:$\,U$@. Then $T$ is equivalent to the existential
type 
\begin{lstlisting}
   $p.c[\targs,t,\targs']$ forSome { type $t$ >: $L$ <: $U$ }
\end{lstlisting}
where $t$ is some fresh type variable. 
Wildcard types may also appear as parts of infix types
(\sref{sec:infix-types}), function types (\sref{sec:function-types}),
or tuple types (\sref{sec:tuple-types}).
Their expansion is then the expansion in the equivalent parameterized
type.

\example Assume the class definitions
\begin{lstlisting}
class Ref[T]
abstract class Outer { type T } .
\end{lstlisting}
Here are some examples of existential types:
\begin{lstlisting}
Ref[T] forSome { type T <: java.lang.Number }
Ref[x.T] forSome { val x: Outer }
Ref[x_type # T] forSome { type x_type <: Outer with Singleton }
\end{lstlisting}
The last two types in this list are equivalent.
An alternative formulation of the first type above using wildcard syntax is:
\begin{lstlisting}
Ref[_ <: java.lang.Number]
\end{lstlisting}

\example The type \lstinline@List[List[_]]@ is equivalent to the existential type
\begin{lstlisting}
List[List[t] forSome { type t }] . 
\end{lstlisting}

\example Assume a covariant type
\begin{lstlisting}
class List[+T]
\end{lstlisting}
The type
\begin{lstlisting}
List[T] forSome { type T <: java.lang.Number }
\end{lstlisting}
is equivalent (by simplification rule 4 above) to
\begin{lstlisting}
List[java.lang.Number] forSome { type T <: java.lang.Number }
\end{lstlisting}
which is in turn equivalent (by simplification rules 2 and 3 above) to
\lstinline@List[java.lang.Number]@.

\section{Non-Value Types}
\label{sec:synthetic-types}

The types explained in the following do not denote sets of values, nor
do they appear explicitly in programs. They are introduced in this
report as the internal types of defined identifiers.

\subsection{Method Types}
\label{sec:method-types}

A method type is denoted internally as $(\Ps)U$, where $(\Ps)$ is a
sequence of parameter names and types $(p_1:T_1 \commadots p_n:T_n)$
for some $n \geq 0$ and $U$ is a (value or method) type.  This type
represents named methods that take arguments named $p_1 \commadots p_n$ 
of types $T_1 \commadots T_n$
and that return a result of type $U$.

Method types associate to the right: $(\Ps_1)(\Ps_2)U$ is
treated as $(\Ps_1)((\Ps_2)U)$.

A special case are types of methods without any parameters. They are
written here \lstinline@=> T@. Parameterless methods name expressions
that are re-evaluated each time the parameterless method name is
referenced.

Method types do not exist as types of values. If a method name is used
as a value, its type is implicitly converted to a corresponding
function type (\sref{sec:impl-conv}).

\example The declarations
\begin{lstlisting}
def a: Int
def b (x: Int): Boolean
def c (x: Int) (y: String, z: String): String
\end{lstlisting}
produce the typings
\begin{lstlisting}
a: => Int
b: (Int) Boolean
c: (Int) (String, String) String
\end{lstlisting}

\subsection{Polymorphic Method Types}
\label{sec:poly-types}

A polymorphic method type is denoted internally as ~\lstinline@[$\tps\,$]$T$@~ where
\lstinline@[$\tps\,$]@ is a type parameter section 
~\lstinline@[$a_1$ >: $L_1$ <: $U_1 \commadots a_n$ >: $L_n$ <: $U_n$]@~ 
for some $n \geq 0$ and $T$ is a
(value or method) type.  This type represents named methods that
take type arguments ~\lstinline@$S_1 \commadots S_n$@~ which
conform (\sref{sec:param-types}) to the lower bounds
~\lstinline@$L_1 \commadots L_n$@~ and the upper bounds
~\lstinline@$U_1 \commadots U_n$@~ and that yield results of type $T$.

\example The declarations
\begin{lstlisting}
def empty[A]: List[A]
def union[A <: Comparable[A]] (x: Set[A], xs: Set[A]): Set[A]
\end{lstlisting}
produce the typings
\begin{lstlisting}
empty : [A >: Nothing <: Any] List[A]
union : [A >: Nothing <: Comparable[A]] (x: Set[A], xs: Set[A]) Set[A]  .
\end{lstlisting}

\subsection{Type Constructors} %@M
\label{sec:higherkinded-types}
A type constructor is represented internally much like a polymorphic method type.
~\lstinline@[$\pm$ $a_1$ >: $L_1$ <: $U_1 \commadots \pm a_n$ >: $L_n$ <: $U_n$] $T$@~ represents a type that is expected by a type constructor parameter (\sref{sec:type-params}) or an abstract type constructor binding (\sref{sec:typedcl}) with the corresponding type parameter clause.

\example Consider this fragment of the \lstinline@Iterable[+X]@ class:
\begin{lstlisting}
trait Iterable[+X] {
  def flatMap[newType[+X] <: Iterable[X], S](f: X => newType[S]): newType[S]
}
\end{lstlisting}

Conceptually, the type constructor \lstinline@Iterable@ is a name for the anonymous type \lstinline@[+X] Iterable[X]@, which may be passed to the \lstinline@newType@ type constructor parameter in \lstinline@flatMap@.

\comment{
\subsection{Overloaded Types}
\label{sec:overloaded-types}

More than one values or methods are defined in the same scope with the
same name, we model

An overloaded type consisting of type alternatives $T_1 \commadots
T_n (n \geq 2)$ is denoted internally $T_1 \overload \ldots \overload T_n$.

\example The definitions
\begin{lstlisting}
def println: Unit 
def println(s: String): Unit = $\ldots$ 
def println(x: Float): Unit = $\ldots$ 
def println(x: Float, width: Int): Unit = $\ldots$ 
def println[A](x: A)(tostring: A => String): Unit = $\ldots$
\end{lstlisting}
define a single function \code{println} which has an overloaded
type.
\begin{lstlisting}
println:  => Unit $\overload$
          (String) Unit $\overload$
          (Float) Unit $\overload$
          (Float, Int) Unit $\overload$
          [A] (A) (A => String) Unit
\end{lstlisting}

\example The definitions
\begin{lstlisting}
def f(x: T): T = $\ldots$ 
val f = 0
\end{lstlisting}
define a function \code{f} which has type ~\lstinline@(x: T)T $\overload$ Int@.
}

\section{Base Types and Member Definitions}
\label{sec:base-classes-member-defs}

Types of class members depend on the way the members are referenced.
Central here are three notions, namely:
\begin{enumerate}
\item the notion of the set of base types of a type $T$,
\item the notion of a type $T$ in some class $C$ seen from some 
      prefix type $S$,
\item the notion of the set of member bindings of some type $T$.
\end{enumerate}
These notions are defined mutually recursively as follows.

1. The set of {\em base types} of a type is a set of class types, 
given as follows.
\begin{itemize}
\item
The base types of a class type $C$ with parents $T_1 \commadots T_n$ are
$C$ itself, as well as the base types of the compound type
~\lstinline@$T_1$ with $\ldots$ with $T_n$ {$R\,$}@.
\item
The base types of an aliased type are the base types of its alias.
\item
The base types of an abstract type are the base types of its upper bound.
\item
The base types of a parameterized type 
~\lstinline@$C$[$T_1 \commadots T_n$]@~ are the base types
of type $C$, where every occurrence of a type parameter $a_i$ 
of $C$ has been replaced by the corresponding parameter type $T_i$.
\item
The base types of a singleton type \lstinline@$p$.type@ are the base types of
the type of $p$.
\item
The base types of a compound type 
~\lstinline@$T_1$ with $\ldots$ with $T_n$ {$R\,$}@~ 
are the {\em reduced union} of the base
classes of all $T_i$'s. This means: 
Let the multi-set $\SS$ be the multi-set-union of the
base types of all $T_i$'s.
If $\SS$ contains several type instances of the same class, say
~\lstinline@$S^i$#$C$[$T^i_1 \commadots T^i_n$]@~ $(i \in I)$, then
all those instances 
are replaced by one of them which conforms to all
others. It is an error if no such instance exists. It follows that the reduced union, if it exists,
produces a set of class types, where different types are instances of different classes.
\item
The base types of a type selection \lstinline@$S$#$T$@ are
determined as follows. If $T$ is an alias or abstract type, the
previous clauses apply. Otherwise, $T$ must be a (possibly
parameterized) class type, which is defined in some class $B$.  Then
the base types of \lstinline@$S$#$T$@ are the base types of $T$
in $B$ seen from the prefix type $S$.
\item
The base types of an existential type \lstinline@$T$ forSome {$\,Q\,$}@ are
all types \lstinline@$S$ forSome {$\,Q\,$}@ where $S$ is a base type of $T$.
\end{itemize}

2. The notion of a type $T$
{\em in class $C$ seen from some prefix type
$S\,$} makes sense only if the prefix type $S$
has a type instance of class $C$ as a base type, say
~\lstinline@$S'$#$C$[$T_1 \commadots T_n$]@. Then we define as follows.
\begin{itemize}
 \item 
  If \lstinline@$S$ = $\epsilon$.type@, then $T$ in $C$ seen from $S$ is $T$ itself.
 \item
  Otherwise, if $S$ is an existential type ~\lstinline@$S'$ forSome {$\,Q\,$}@, and
  $T$ in $C$ seen from $S'$ is $T'$, 
  then $T$ in $C$ seen from $S$ is ~\lstinline@$T'$ forSome {$\,Q\,$}@.
 \item 
   Otherwise, if $T$ is the $i$'th type parameter of some class $D$, then
   \begin{itemize}
   \item
   If $S$ has a base type ~\lstinline@$D$[$U_1 \commadots U_n$]@, for some type parameters
   ~\lstinline@[$U_1 \commadots U_n$]@, then $T$ in $C$ seen from $S$ is $U_i$.
   \item
   Otherwise, if $C$ is defined in a class $C'$, then
   $T$ in $C$ seen from $S$ is the same as $T$ in $C'$ seen from $S'$.
   \item
   Otherwise, if $C$ is not defined in another class, then  
   $T$ in $C$ seen from $S$ is $T$ itself.
  \end{itemize}
\item
   Otherwise, 
   if $T$ is the singleton type \lstinline@$D$.this.type@ for some class $D$
   then
   \begin{itemize}
   \item
   If $D$ is a subclass of $C$ and 
   $S$ has a type instance of class $D$ among its base types,
   then $T$ in $C$ seen from $S$ is $S$.
   \item
   Otherwise, if $C$ is defined in a class $C'$, then
   $T$ in $C$ seen from $S$ is the same as $T$ in $C'$ seen from $S'$.
   \item
   Otherwise, if $C$ is not defined in another class, then  
   $T$ in $C$ seen from $S$ is $T$ itself.
   \end{itemize}
\item
  If $T$ is some other type, then the described mapping is performed
  to all its type components.
\end{itemize}

If $T$ is a possibly parameterized class type, where $T$'s class
is defined in some other class $D$, and $S$ is some prefix type,
then we use ``$T$ seen from $S$'' as a shorthand for
``$T$ in $D$ seen from $S$''.

3. The {\em member bindings} of a type $T$ are (1) all bindings $d$ such that
there exists a type instance of some class $C$ among the base types of $T$
and there exists a definition or declaration $d'$ in $C$
such that $d$ results from $d'$ by replacing every
type $T'$ in $d'$ by $T'$ in $C$ seen from $T$, and (2) all bindings
of the type's refinement (\sref{sec:refinements}), if it has one.

The {\em definition} of a type projection \lstinline@$S$#$t$@ is the member
binding $d_t$ of the type $t$ in $S$. In that case, we also say
that \lstinline@$S$#$t$@ {\em is defined by} $d_t$.
share a to
\section{Relations between types}

We define two relations between types.
\begin{quote}\begin{tabular}{l@{\gap}l@{\gap}l}
\em Type equivalence & $T \equiv U$ & $T$ and $U$ are interchangeable
in all contexts.
\\
\em Conformance & $T \conforms U$ & Type $T$ conforms to type $U$.
\end{tabular}\end{quote}

\subsection{Type Equivalence}
\label{sec:type-equiv}

Equivalence $(\equiv)$ between types is the smallest congruence\footnote{ A
congruence is an equivalence relation which is closed under formation
of contexts} such that the following holds:
\begin{itemize}
\item 
If $t$ is defined by a type alias ~\lstinline@type $t$ = $T$@, then $t$ is
equivalent to $T$.
\item
If a path $p$ has a singleton type ~\lstinline@$q$.type@, then
~\lstinline@$p$.type $\equiv q$.type@.
\item
If $O$ is defined by an object definition, and $p$ is a path
consisting only of package or object selectors and ending in $O$, then
~\lstinline@$O$.this.type $\equiv p$.type@.
\item
Two compound types (\sref{sec:compound-types}) are equivalent if the sequences of their component
are pairwise equivalent, and occur in the same order, and their
refinements are equivalent. Two refinements are equivalent if they
bind the same names and the modifiers, types and bounds of every
declared entity are equivalent in both refinements.
\item
Two method types (\sref{sec:method-types}) are equivalent if they have equivalent result types,
both have the same number of parameters, and corresponding parameters
have equivalent types.  Note that the names of parameters do not
matter for method type equivalence.
\item 
Two polymorphic method types (\sref{sec:poly-types}) are equivalent if they have the same number of
type parameters, and, after renaming one set of type parameters by
another, the result types as well as lower and upper bounds of
corresponding type parameters are equivalent.
\item 
Two existential types (\sref{sec:existential-types}) 
are equivalent if they have the same number of
quantifiers, and, after renaming one list of type quantifiers by
another, the quantified types as well as lower and upper bounds of
corresponding quantifiers are equivalent.
\item %@M
Two type constructors (\sref{sec:higherkinded-types}) are equivalent if they have the 
same number of type parameters, and, after renaming one list of type parameters by
another, the result types as well as variances, lower and upper bounds of
corresponding type parameters are equivalent.
\end{itemize}

\subsection{Conformance}
\label{sec:conformance}

The conformance relation $(\conforms)$ is the smallest 
transitive relation that satisfies the following conditions.
\begin{itemize}
\item Conformance includes equivalence. If $T \equiv U$ then $T \conforms U$.
\item For every value type $T$, 
      $\mbox{\code{scala.Nothing}} \conforms T \conforms \mbox{\code{scala.Any}}$. 
\item For every type constructor $T$ (with any number of type parameters), 
      $\mbox{\code{scala.Nothing}} \conforms T \conforms \mbox{\code{scala.Any}}$. %@M
      
\item For every class type $T$ such that $T \conforms
  \mbox{\code{scala.AnyRef}}$ and not $T \conforms \mbox{\code{scala.NotNull}}$
        one has $\mbox{\code{scala.Null}} \conforms T$.
\item A type variable or abstract type $t$ conforms to its upper bound and
      its lower bound conforms to $t$. 
\item A class type or parameterized type conforms to any of its
  base-types.
\item A singleton type \lstinline@$p$.type@ conforms to the type of
  the path $p$.
\item A singleton type \lstinline@$p$.type@ conforms to the type $\mbox{\code{scala.Singleton}}$.
\item A type projection \lstinline@$T$#$t$@ conforms to \lstinline@$U$#$t$@ if 
      $T$ conforms to $U$.
\item A parameterized type ~\lstinline@$T$[$T_1 \commadots T_n$]@~ conforms to 
      ~\lstinline@$T$[$U_1 \commadots U_n$]@~ if
      the following three conditions hold for $i = 1 \commadots n$. 
      \begin{itemize}
      \item
      If the $i$'th type parameter of $T$ is declared covariant, then $T_i \conforms U_i$.
      \item
      If the $i$'th type parameter of $T$ is declared contravariant, then $U_i \conforms T_i$.
      \item
      If the $i$'th type parameter of $T$ is declared neither covariant 
      nor contravariant, then $U_i \equiv T_i$.
      \end{itemize}
\item A compound type ~\lstinline@$T_1$ with $\ldots$ with $T_n$ {$R\,$}@~ conforms to
      each of its component types $T_i$.
\item If $T \conforms U_i$ for $i = 1 \commadots n$ and for every
      binding $d$ of a type or value $x$ in $R$ there exists a member
      binding of $x$ in $T$ which subsumes $d$, then $T$ conforms to the
      compound type ~\lstinline@$U_1$ with $\ldots$ with $U_n$ {$R\,$}@.
\item The existential type ~\lstinline@$T$ forSome {$\,Q\,$}@ conforms to 
      $U$ if its skolemization (\sref{sec:existential-types})
      conforms to $U$.
\item The type $T$ conforms to the existential type ~\lstinline@$U$ forSome {$\,Q\,$}@ 
      if $T$ conforms to one of the type instances (\sref{sec:existential-types}) 
      of ~\lstinline@$U$ forSome {$\,Q\,$}@.
\item If
        $T_i \equiv T'_i$ for $i = 1 \commadots n$ and $U$ conforms to $U'$ 
        then the method type $(p_1:T_1 \commadots p_n:T_n) U$ conforms to
        $(p'_1:T'_1 \commadots p'_n:T'_n) U'$.
\item The polymorphic type
$[a_1 >: L_1 <: U_1 \commadots a_n >: L_n <: U_n] T$ conforms to the polymorphic type
$[a_1 >: L'_1 <: U'_1 \commadots a_n >: L'_n <: U'_n] T'$ if, assuming
$L'_1 \conforms a_1 \conforms U'_1 \commadots L'_n \conforms a_n \conforms U'_n$ 
one has $T \conforms T'$ and $L_i \conforms L'_i$ and $U'_i \conforms U_i$
for $i = 1 \commadots n$.
%@M
\item Type constructors $T$ and $T'$ follow a similar discipline. We characterize $T$ and $T'$ by their type parameter clauses
$[a_1 \commadots a_n]$ and
$[a'_1 \commadots a'_n ]$, where an $a_i$ or $a'_i$ may include a variance annotation, a higher-order type parameter clause, and bounds. Then, $T$ conforms to $T'$ if any list $[t_1 \commadots t_n]$ -- with declared variances, bounds and higher-order type parameter clauses -- of valid type arguments for $T'$ is also a valid list of type arguments for $T$ and $T[t_1 \commadots t_n] \conforms T'[t_1 \commadots t_n]$. Note that this entails that:
      \begin{itemize}
      \item
      The bounds on $a_i$ must be weaker than the corresponding bounds declared for $a'_i$. 
      \item 
      The variance of $a_i$ must match the variance of $a'_i$, where covariance matches covariance, contravariance matches contravariance and any variance matches invariance.
      \item 
      Recursively, these restrictions apply to the corresponding higher-order type parameter clauses of $a_i$ and $a'_i$.
      \end{itemize}

\end{itemize}

A declaration or definition in some compound type of class type $C$
{\em subsumes} another
declaration of the same name in some compound type or class type $C'$, if one of the following holds.
\begin{itemize}
\item
A value declaration or definition that defines a name $x$ with type $T$ subsumes 
a value or method declaration that defines $x$ with type $T'$, provided $T \conforms T'$.
\item 
A method declaration or definition that defines a name $x$ with type $T$ subsumes 
a method declaration that defines $x$ with type $T'$, provided $T \conforms T'$.
\item
A type alias
$\TYPE;t[T_1 \commadots T_n]=T$ subsumes a type alias $\TYPE;t[T_1 \commadots T_n]=T'$ if %@M
$T \equiv T'$. 
\item 
A type declaration ~\lstinline@type $t$[$T_1 \commadots T_n$] >: $L$ <: $U$@~ subsumes %@M
a type declaration ~\lstinline@type $t$[$T_1 \commadots T_n$] >: $L'$ <: $U'$@~ if $L' \conforms L$ and %@M
$U \conforms U'$.
\item
A type or class definition that binds a type name $t$ subsumes an abstract
type declaration ~\lstinline@type t[$T_1 \commadots T_n$] >: L <: U@~ if %@M
$L \conforms t \conforms U$.
\end{itemize}

The $(\conforms)$ relation forms pre-order between types,
i.e.\ it is transitive and reflexive. {\em
least upper bounds} and {\em greatest lower bounds} of a set of types
are understood to be relative to that order.

\paragraph{Note} The least upper bound or greatest lower bound 
of a set of types does not always exist. For instance, consider
the class definitions
\begin{lstlisting}
class A[+T] {}
class B extends A[B] 
class C extends A[C] 
\end{lstlisting}
Then the types ~\lstinline@A[Any], A[A[Any]], A[A[A[Any]]], ...@~ form
a descending sequence of upper bounds for \code{B} and \code{C}. The
least upper bound would be the infinite limit of that sequence, which
does not exist as a Scala type. Since cases like this are in general
impossible to detect, a Scala compiler is free to reject a term
which has a type specified as a least upper or greatest lower bound,
and that bound would be more complex than some compiler-set
limit\footnote{The current Scala compiler limits the nesting level
of parameterization in such bounds to be at most two deeper than the maximum
nesting level of the operand types}.

The least upper bound or greatest lower bound might also not be
unique. For instance \code{A with B} and \code{B with A} are both
greatest lower of \code{A} and \code{B}. If there are several
least upper bounds or greatest lower bounds, the Scala compiler is
free to pick any one of them.

\subsection{Weak Conformance}\label{sec:weakconformance}

In some situations Scala uses a more genral conformance relation. A 
type $S$ {\em weakly conforms} 
to a type $T$, written $S \conforms_w
T$, if $S \conforms T$ or both $S$ and $T$ are primitive number types
and $S$ precedes $T$ in the following ordering.
\begin{lstlisting}
Byte $\conforms_w$ Short 
Short $\conforms_w$ Int
Char $\conforms_w$ Int
Int $\conforms_w$ Long
Long $\conforms_w$ Float
Float $\conforms_w$ Double
\end{lstlisting}

A {\em weak least upper bound} is a least upper bound with respect to
weak conformance.

\section{Volatile Types}
\label{sec:volatile-types}

Type volatility approximates the possibility that a type parameter or abstract type instance
of a type does not have any non-null values.  As explained in
(\sref{sec:paths}), a value member of a volatile type cannot appear in
a path.
  
A type is {\em volatile} if it falls into one of four categories:

A compound type ~\lstinline@$T_1$ with $\ldots$ with $T_n$ {$R\,$}@~
is volatile if one of the following two conditions hold.
\begin{enumerate}
\item One of $T_2 \commadots T_n$ is a type parameter or abstract type, or
\item $T_1$ is an abstract type and and either the refinement $R$ 
  or a type $T_j$ for $j > 1$ contributes an abstract member
  to the compound type, or
\item one of $T_1 \commadots T_n$ is a singleton type.
\end{enumerate}
Here, a type $S$ {\em contributes an abstract member} to a type $T$ if
$S$ contains an abstract member that is also a member of $T$.
A refinement $R$ contributes an abstract member to a type $T$ if $R$
contains an abstract declaration which is also a member of $T$.

A type designator is volatile if it is an alias of a volatile type, or
if it designates a type parameter or abstract type that has a volatile type as its
upper bound.

A singleton type \lstinline@$p$.type@ is volatile, if the underlying
type of path $p$ is volatile.

An existential type ~\lstinline@$T$ forSome {$\,Q\,$}@~ is volatile if
$T$ is volatile.

\section{Type Erasure}
\label{sec:erasure}

A type is called {\em generic} if it contains type arguments or type variables.
{\em Type erasure} is a mapping from (possibly generic) types to
non-generic types. We write $|T|$ for the erasure of type $T$.
The erasure mapping is defined as follows.
\begin{itemize}
\item The erasure of an alias type is the erasure of its right-hand side. %@M
\item The erasure of an abstract type is the erasure of its upper bound.
\item The erasure of the parameterized type \lstinline@scala.Array$[T_1]$@ is
 \lstinline@scala.Array$[|T_1|]$@.
 \item The erasure of every other parameterized type $T[T_1 \commadots T_n]$ is $|T|$.
\item The erasure of a singleton type \lstinline@$p$.type@ is the 
      erasure of the type of $p$.
\item The erasure of a type projection \lstinline@$T$#$x$@ is \lstinline@|$T$|#$x$@.
\item The erasure of a compound type 
~\lstinline@$T_1$ with $\ldots$ with $T_n$ {$R\,$}@ is the erasure of the intersection dominator of
  $T_1 \commadots T_n$.
\item The erasure of an existential type ~\lstinline@$T$ forSome {$\,Q\,$}@ 
      is $|T|$.
\end{itemize}

The {\em intersection dominator} of a list of types $T_1 \commadots
T_n$ is computed as follows.
Let $T_{i_1} \commadots T_{i_m}$ be the subsequence of types $T_i$  
which are not supertypes of some other type $T_j$. 
If this subsequence contains a type designator $T_c$ that refers to a class which is not a trait, 
the intersection dominator is $T_c$. Otherwise, the intersection
dominator is the first element of the subsequence, $T_{i_1}$.