summaryrefslogblamecommitdiff
path: root/src/compiler/scala/tools/nsc/transform/SpecializeTypes.scala
blob: 7ac989374b3a7b208210062ed4e0347ec671f382 (plain) (tree)
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099




















                                                                              
                                                                                              





































                                                                                                



                                                              





                                                                                      


                                                    




















































































































                                                                                                            


                                                                       
                                           
































                                                                                                           
















                                                                    
                       









































                                                                                                           



                                                                         



                                                                               


































































































































































































































































                                                                                                                                              
                                                                                                   



                                                                                         
 


                                                              

                                                                                                                   

                                                      

                                                                                                                         






















































































































































                                                                                                                  


























































































































































































































































































































































































                                                                                                                                         
                                                                                    









































































































                                                                                                    
                                  









                                                                               
                                          

























                                                                                                      
package scala.tools.nsc.transform

import scala.tools.nsc.symtab.Flags
import scala.tools.nsc.util.FreshNameCreator
import scala.tools.nsc.util.Position

import scala.collection.{mutable, immutable}

/** Specialize code on types.
 */
abstract class SpecializeTypes extends InfoTransform with TypingTransformers {
  import global._
  import Flags._
  /** the name of the phase: */
  val phaseName: String = "specialize"

  /** This phase changes base classes. */
  override def changesBaseClasses = true
  override def keepsTypeParams = true

  /** Concrete types for specialization */
//  final lazy val concreteTypes = List(definitions.IntClass.tpe, definitions.DoubleClass.tpe)

  type TypeEnv = immutable.Map[Symbol, Type]
  def emptyEnv: TypeEnv = immutable.ListMap.empty[Symbol, Type]

  object TypeEnv {
    /** Return a new type environment binding specialized type parameters of sym to
     *  the given args. Expects the lists to have the same length.
     */
    def fromSpecialization(sym: Symbol, args: List[Type]): TypeEnv = {
      assert(sym.info.typeParams.length == args.length, sym + " args: " + args)
      var env = emptyEnv
      for ((tvar, tpe) <- sym.info.typeParams.zip(args) if tvar.hasAnnotation(SpecializedClass))
        env = env + ((tvar, tpe))
      env
    }

    /** Is this typeenv included in `other'? All type variables in this environement
     *  are defined in `other' and bound to the same type.
     */
    def includes(t1: TypeEnv, t2: TypeEnv) = {
      t1 forall { kv =>
        t2.get(kv._1) match {
          case Some(v2) => v2 == kv._2
          case _ => false
        }
      }
    }

    /** Reduce the given environment to contain mappins only for type variables in tps. */
    def reduce(env: TypeEnv, tps: immutable.Set[Symbol]): TypeEnv = {
      env filter { kv => tps.contains(kv._1)}
    }

    /** Is the given environment a valid specialization for sym?
     *  It is valid if each binding is from a @specialized type parameter in sym (or its owner)
     *  to a type for which `sym' is specialized.
     */
    def isValid(env: TypeEnv, sym: Symbol): Boolean = {
      def validBinding(tvar: Symbol, tpe: Type, sym: Symbol) =
        (tvar.hasAnnotation(SpecializedClass)
         && sym.typeParams.contains(tvar)
         && concreteTypes(tvar).contains(tpe))
      env forall { binding =>
        val (tvar, tpe) = binding
//         log("isValid: " + env + " sym: " + sym + " sym.tparams: " + sym.typeParams)
//         log("Flag " + tvar + ": " + tvar.hasAnnotation(SpecializedClass))
//         log("tparams contains: " + sym.typeParams.contains(tvar))
//         log("concreteTypes: " + concreteTypes.contains(tpe))
        (validBinding(tvar, tpe, sym)
         || ((sym.owner != definitions.RootClass)
             && validBinding(tvar, tpe, sym.owner)))
      }
    }
  }

  /** For a given class and concrete type arguments, give its specialized class */
  val specializedClass: mutable.Map[(Symbol, TypeEnv), Symbol] = new mutable.HashMap

  /** Map a method symbol to a list of its specialized overloads in the same class. */
  private val overloads: mutable.Map[Symbol, List[Overload]] = new mutable.HashMap[Symbol, List[Overload]] {
    override def default(key: Symbol): List[Overload] = Nil
  }

  case class Overload(sym: Symbol, env: TypeEnv) {
    override def toString: String =
      "specalized overload " + sym + " in " + env
  }

  /** The annotation used to mark specialized type parameters. */
  lazy val SpecializedClass = definitions.getClass("scala.specialized")

  protected def newTransformer(unit: CompilationUnit): Transformer =
    new SpecializationTransformer(unit)

  abstract class SpecializedInfo {
    def target: Symbol

    /** Are type bounds of @specialized type parameters of 'target' now in 'env'? */
    def typeBoundsIn(env: TypeEnv) = false

    /** A degenerated method has @specialized type parameters that appear only in
     *  type bounds of other @specialized type parameters (and not in its result type).
     */
    def degenerate = false
  }

  /** Symbol is a special overloaded method of 'original', in the environment env. */
  case class SpecialOverload(original: Symbol, env: TypeEnv) extends SpecializedInfo {
    def target = original
  }

  /** Symbol is a method that should be forwarded to 't' */
  case class Forward(t: Symbol) extends SpecializedInfo {
    def target = t
  }

  /** Symbol is a specialized accessor for the `target' field. */
  case class SpecializedAccessor(target: Symbol) extends SpecializedInfo

  /** Symbol is a specialized method whose body should be the target's method body. */
  case class Implementation(target: Symbol) extends SpecializedInfo

  /** Symbol is a normalized member of 'target'. */
  case class NormalizedMember(target: Symbol) extends SpecializedInfo {

    /** Type bounds of a @specialized type var are now in the environment. */
    override def typeBoundsIn(env: TypeEnv): Boolean = {
      target.info.typeParams exists { tvar =>
        (tvar.hasAnnotation(SpecializedClass)
         && (specializedTypeVars(tvar.info.bounds) exists env.isDefinedAt))
      }
    }

    override lazy val degenerate = {
      log("degenerate: " + target +
              " stv tparams: " + specializedTypeVars(target.info.typeParams map (_.info)) +
              " stv info: " + specializedTypeVars(target.info.resultType))
      !(specializedTypeVars(target.info.typeParams map (_.info))
        -- specializedTypeVars(target.info.resultType)).isEmpty
    }
  }

  /** Map a symbol to additional information on specialization. */
  private val info: mutable.Map[Symbol, SpecializedInfo] = new mutable.HashMap[Symbol, SpecializedInfo]

  /** Has `clazz' any type parameters that need be specialized? */
  def hasSpecializedParams(clazz: Symbol): Boolean =
    !specializedParams(clazz).isEmpty

  /** Return specialized type paramters. */
  def specializedParams(sym: Symbol): List[Symbol] =
    splitParams(sym.info.typeParams)._1

  def splitParams(tps: List[Symbol]) =
    tps.partition(_.hasAnnotation(SpecializedClass))

  def unspecializedArgs(sym: Symbol, args: List[Type]): List[Type] =
    for ((tvar, tpe) <- sym.info.typeParams.zip(args) if !tvar.hasAnnotation(SpecializedClass))
      yield tpe

  val specializedType = new TypeMap {
    override def apply(tp: Type): Type = tp match {
      case TypeRef(pre, sym, args) if !args.isEmpty =>
        val pre1 = this(pre)
        val args1 = args map this
        val unspecArgs = unspecializedArgs(sym, args)
        specializedClass.get((sym, TypeEnv.fromSpecialization(sym, args1))) match {
          case Some(sym1) =>
            assert(sym1.info.typeParams.length == unspecArgs.length, sym1)
            typeRef(pre1, sym1, unspecArgs)
          case None =>
            typeRef(pre1, sym, args1)
        }
      case _ => mapOver(tp)
    }
  }

  /** Return the specialized overload of sym in the given env, if any. */
  def overload(sym: Symbol, env: TypeEnv) =
    overloads(sym).find(ov => TypeEnv.includes(ov.env, env))

  /** Return the specialized name of 'sym' in the given environment. It
   *  guarantees the same result regardless of the map order by sorting
   *  type variables alphabetically.
   */
  private def specializedName(sym: Symbol, env: TypeEnv): Name = {
    val tvars = if (sym.isClass) env.keySet
                else specializedTypeVars(sym.info).intersect(env.keySet)
    val (methparams, others) = tvars.toList.partition(_.owner.isMethod)
    val tvars1 = methparams.sort(_.name.toString < _.name.toString)
    val tvars2 = others.sort(_.name.toString < _.name.toString)
    log("specName(" + sym + ") env " + env)
    specializedName(sym.name, tvars1 map env, tvars2 map env)
  }

  /** Specialize name for the two list of types. The first one denotes
   *  specialization on method type parameters, the second on outer environment.
   */
  private def specializedName(name: Name, types1: List[Type], types2: List[Type]): Name = {
    def split: (String, String, String) = {
      if (name.endsWith("$sp")) {
        val name1 = name.subName(0, name.length - 3)
        val idxC = name1.lastPos('c')
        val idxM = name1.lastPos('m', idxC)
        (name1.subName(0, idxM - 1).toString,
         name1.subName(idxC + 1, name1.length).toString,
         name1.subName(idxM + 1, idxC).toString)
      } else
        (name.toString, "", "")
    }

    if (nme.INITIALIZER == name || (types1.isEmpty && types2.isEmpty))
      name
    else if (nme.isSetterName(name))
      nme.getterToSetter(specializedName(nme.setterToGetter(name), types1, types2))
    else if (nme.isLocalName(name))
      nme.getterToLocal(specializedName(nme.localToGetter(name), types1, types2))
    else {
      val (base, cs, ms) = split
      newTermName(base + "$"
                  + "m" + ms + types1.map(t => definitions.abbrvTag(t.typeSymbol)).mkString("", "", "")
                  + "c" + cs + types2.map(t => definitions.abbrvTag(t.typeSymbol)).mkString("", "", "$sp"))
    }
  }

  lazy val primitiveTypes = Map(
    "Boolean" -> definitions.BooleanClass.tpe,
    "Byte"    -> definitions.ByteClass.tpe,
    "Short"   -> definitions.ShortClass.tpe,
    "Char"    -> definitions.CharClass.tpe,
    "Int"     -> definitions.IntClass.tpe,
    "Long"    -> definitions.LongClass.tpe,
    "Float"   -> definitions.FloatClass.tpe,
    "Double"  -> definitions.DoubleClass.tpe)



  /** Parse the given string into the list of types it contains.
   *
   *  @param str comma-separated string of distinct primitive types.
   */
  def parseTypes(str: String): List[Type] = {
    if (str.trim == "")
      List()
    else {
      val buf = new mutable.ListBuffer[Type]
      for (t <- str.split(','))
        primitiveTypes.get(t.trim) match {
          case Some(tpe) => buf += tpe
          case None =>
            error("Invalid type " + t + ". Expected one of " + primitiveTypes.keys.mkString("", ", ", "."))
        }
      buf.toList
    }
  }

  /** Return the concrete types `sym' should be specialized at.
   */
  def concreteTypes(sym: Symbol): List[Type] =
    sym.getAnnotation(SpecializedClass) match {
      case Some(AnnotationInfo(_, args, _)) =>
        args match {
          case Literal(ct) :: _ =>
            val tpes = parseTypes(ct.stringValue)
            log(sym + " specialized on " + tpes)
            tpes
          case _ =>
            log(sym + " specialized on everything")
            primitiveTypes.values.toList
        }
      case _ =>
        Nil
    }

  /** Return a list of all type environements for all specializations
   *  of @specialized types in `tps'.
   */
  private def specializations(tps: List[Symbol]): List[TypeEnv] = {
    val stps = tps filter (_.hasAnnotation(SpecializedClass))
    val env = immutable.HashMap.empty[Symbol, Type]
    count(stps, concreteTypes _) map { tps =>
      immutable.HashMap.empty[Symbol, Type] ++ (stps zip tps)
    }
  }

  /** Generate all arrangements with repetitions from the list of values,
   *  with 'pos' positions. For example, count(2, List(1, 2)) yields
   *  List(List(1, 1), List(1, 2), List(2, 1), List(2, 2))
   */
  private def count[A, V](xs: List[A], values: A => List[V]): List[List[V]] = {
    if (xs.isEmpty) Nil
    else if (xs.tail.isEmpty) values(xs.head) map (_ :: Nil)
    else for (v <- values(xs.head); vs <- count(xs.tail, values)) yield v :: vs
  }

  /** Does the given tpe need to be specialized in the environment 'env'? */
  private def needsSpecialization(env: TypeEnv, sym: Symbol): Boolean = {
    def needsIt(tpe: Type): Boolean =  tpe match {
      case TypeRef(pre, sym, args) =>
        (env.keys.contains(sym)
         || (args exists needsIt))
      case PolyType(tparams, resTpe) => needsIt(resTpe)
      case MethodType(argTpes, resTpe) =>
        (argTpes exists (sym => needsIt(sym.tpe))) || needsIt(resTpe)
      case ClassInfoType(parents, stats, sym) =>
        stats.toList exists (s => needsIt(s.info))
      case _ => false
    }

    (needsIt(sym.tpe)
     || (isNormalizedMember(sym) && info(sym).typeBoundsIn(env)))

  }

  def isNormalizedMember(m: Symbol): Boolean =
    (m.hasFlag(SPECIALIZED) && (info.get(m) match {
      case Some(NormalizedMember(_)) => true
      case _ => false
    }))


  private def specializedTypeVars(tpe: List[Type]): immutable.Set[Symbol] =
    tpe.foldLeft(immutable.ListSet.empty[Symbol]: immutable.Set[Symbol]) {
      (s, tp) => s ++ specializedTypeVars(tp)
    }

  /** Return the set of @specialized type variables mentioned by the given type. */
  private def specializedTypeVars(tpe: Type): immutable.Set[Symbol] = tpe match {
    case TypeRef(pre, sym, args) =>
      if (sym.isTypeParameter && sym.hasAnnotation(SpecializedClass))
        specializedTypeVars(args) + sym
      else
        specializedTypeVars(args)
    case PolyType(tparams, resTpe) =>
      specializedTypeVars(tparams map (_.info)) ++ specializedTypeVars(resTpe)
    case MethodType(argSyms, resTpe) =>
      specializedTypeVars(argSyms map (_.tpe)) ++ specializedTypeVars(resTpe)
    case ExistentialType(_, res) => specializedTypeVars(res)
    case AnnotatedType(_, tp, _) => specializedTypeVars(tp)
    case TypeBounds(hi, lo) => specializedTypeVars(hi) ++ specializedTypeVars(lo)
    case _ => immutable.ListSet.empty[Symbol]
  }

  /** Specialize 'clazz', in the environment `outerEnv`. The outer
   *  environment contains bindings for specialized types of enclosing
   *  classes.
   *
   *  A class C is specialized w.r.t to its own specialized type params
   *  `stps`, by specializing its members, and creating a new class for
   *  each combination of `stps`.
   */
  def specializeClass(clazz: Symbol, outerEnv: TypeEnv): List[Symbol] = {
    def specializedClass(env: TypeEnv, normMembers: List[Symbol]): Symbol = {
      val cls = clazz.owner.newClass(clazz.pos, specializedName(clazz, env))
                              .setFlag(SPECIALIZED | clazz.flags)
                              .resetFlag(CASE)
      cls.sourceFile = clazz.sourceFile
      currentRun.symSource(cls) = clazz.sourceFile // needed later on by mixin

      typeEnv(cls) = env
      this.specializedClass((clazz, env)) = cls

      val decls1 = newScope

      val specializedInfoType: Type = {
        val (_, unspecParams) = splitParams(clazz.info.typeParams)
        val tparams1 = cloneSymbols(unspecParams, cls)
        var parents = List(subst(env, clazz.tpe).subst(unspecParams, tparams1 map (_.tpe)))
        if (parents.head.typeSymbol.isTrait)
          parents = parents.head.parents.head :: parents
        val infoType = ClassInfoType(parents, decls1, cls)
        if (tparams1.isEmpty) infoType else PolyType(tparams1, infoType)
      }

      atPhase(phase.next)(cls.setInfo(specializedInfoType))

      val fullEnv = outerEnv ++ env

      /** Enter 'sym' in the scope of the current specialized class. It's type is
       *  mapped through the active environment, binding type variables to concrete
       *  types. The existing typeEnv for `sym' is composed with the current active
       *  environment
       */
      def enterMember(sym: Symbol): Symbol = {
        typeEnv(sym) = fullEnv ++ typeEnv(sym) // append the full environment
        sym.setInfo(sym.info.substThis(clazz, ThisType(cls)))
        decls1.enter(subst(fullEnv)(sym))
      }

      /** Create and enter in scope an overriden symbol m1 for `m' that forwards
       *  to `om'. `om' is a fresh, special overload of m1 that is an implementation
       *  of `m'. For example, for a
       *
       *  class Foo[@specialized A] {
       *    def m(x: A) = <body>
       *  }
       *  , for class Foo$I extends Foo[Int], this method enters two new symbols in
       *  the scope of Foo$I:
       *
       *    def m(x: Int) = m$I(x)
       *    def m$I(x: Int) = <body>/adapted to env {A -> Int}
       */
      def forwardToOverload(m: Symbol): Symbol = {
        val specMember = enterMember(m.cloneSymbol(cls)).setFlag(OVERRIDE | SPECIALIZED).resetFlag(DEFERRED | CASEACCESSOR)
        val om = specializedOverload(cls, m, env).setFlag(OVERRIDE)

        var original = info.get(m) match {
          case Some(NormalizedMember(tg)) => tg
          case _ => m
        }

        info(specMember)  = Forward(om)
        info(om) = Implementation(original)
        typeEnv(om) = env ++ typeEnv(m) // add the environment for any method tparams

        enterMember(om)
      }

      log("specializedClass: " + cls)
      for (m <- normMembers if needsSpecialization(outerEnv ++ env, m) && satisfiable(fullEnv)) {
        log(" * looking at: " + m)
        if (!m.isDeferred) concreteSpecMethods += m

        // specialized members have to be overridable. Fields should not
        // have the field CASEACCESSOR (messes up patmatch)
        if (m.hasFlag(PRIVATE))
          m.resetFlag(PRIVATE | CASEACCESSOR).setFlag(PROTECTED)

        if (m.isConstructor) {
          val specCtor = enterMember(m.cloneSymbol(cls).setFlag(SPECIALIZED))
          info(specCtor) = Forward(m)

        } else if (isNormalizedMember(m)) {  // methods added by normalization
          val NormalizedMember(original) = info(m)
          if (!conflicting(env ++ typeEnv(m))) {
            if (info(m).degenerate) {
              log("degenerate normalized member " + m + " info(m): " + info(m))
              val specMember = enterMember(m.cloneSymbol(cls)).setFlag(SPECIALIZED).resetFlag(DEFERRED)
              info(specMember) = Implementation(original)
              typeEnv(specMember) = env ++ typeEnv(m)
            } else {
              val om = forwardToOverload(m)
              log("normalizedMember " + m + " om: " + om + " typeEnv(om): " + typeEnv(om))
            }
          } else
            log("conflicting env for " + m + " env: " + env)

        } else if (m.isDeferred) { // abstract methods
          val specMember = enterMember(m.cloneSymbol(cls)).setFlag(SPECIALIZED).resetFlag(DEFERRED)
          log("deferred " + specMember.fullNameString + " is forwarded")

          info(specMember) = new Forward(specMember) {
            override def target = m.owner.info.member(specializedName(m, env))
          }

        } else if (m.isMethod && !m.hasFlag(ACCESSOR)) { // other concrete methods
          forwardToOverload(m)

        } else if (m.isValue && !m.isMethod) { // concrete value definition
          def mkAccessor(field: Symbol, name: Name) = {
            val sym = cls.newMethod(field.pos, name)
                .setFlag(SPECIALIZED | m.getter(clazz).flags)
                .resetFlag(LOCAL | PARAMACCESSOR | CASEACCESSOR) // we rely on the super class to initialize param accessors
            info(sym) = SpecializedAccessor(field)
            sym
          }

          def overrideIn(clazz: Symbol, sym: Symbol) = {
            val sym1 = sym.cloneSymbol(clazz)
                          .setFlag(OVERRIDE | SPECIALIZED)
                          .resetFlag(DEFERRED | CASEACCESSOR | ACCESSOR)
            sym1.setInfo(sym1.info.asSeenFrom(clazz.tpe, sym1.owner))
          }

          val specVal = specializedOverload(cls, m, env)

          concreteSpecMethods += m
          specVal.asInstanceOf[TermSymbol].setAlias(m)

          enterMember(specVal)
          // create accessors
          log("m: " + m + " isLocal: " + nme.isLocalName(m.name) + " specVal: " + specVal.name + " isLocal: " + nme.isLocalName(specVal.name))
          if (nme.isLocalName(m.name)) {
            val specGetter = mkAccessor(specVal, nme.localToGetter(specVal.name)).setInfo(MethodType(List(), specVal.info))
            val origGetter = overrideIn(cls, m.getter(clazz))
            info(origGetter) = Forward(specGetter)
            enterMember(specGetter)
            enterMember(origGetter)
            log("created accessors: " + specGetter + " orig: " + origGetter)

            clazz.caseFieldAccessors.find(_.name.startsWith(m.name)) foreach { cfa =>
              val cfaGetter = overrideIn(cls, cfa)
              info(cfaGetter) = SpecializedAccessor(specVal)
              enterMember(cfaGetter)
              log("found case field accessor for " + m + " added override " + cfaGetter);
            }

            if (specVal.isVariable) {
              val specSetter = mkAccessor(specVal, nme.getterToSetter(specGetter.name))
                .resetFlag(STABLE)
              specSetter.setInfo(MethodType(specSetter.newSyntheticValueParams(List(specVal.info)),
                                            definitions.UnitClass.tpe))
              val origSetter = overrideIn(cls, m.setter(clazz))
              info(origSetter) = Forward(specSetter)
              enterMember(specSetter)
              enterMember(origSetter)
            }
          } else { // if there are no accessors, specialized methods will need to access this field in specialized subclasses
            m.resetFlag(PRIVATE)
            specVal.resetFlag(PRIVATE)
          }
        }
      }
      cls
    }

    val decls1 = (clazz.info.decls.toList flatMap { m: Symbol =>
      normalizeMember(m.owner, m, outerEnv) flatMap { normalizedMember =>
        val ms = specializeMember(m.owner, normalizedMember, outerEnv, clazz.info.typeParams)
        if (normalizedMember.isMethod) {
          val newTpe = subst(outerEnv, normalizedMember.info)
          if (newTpe != normalizedMember.info) // only do it when necessary, otherwise the method type might be at a later phase already
            normalizedMember.updateInfo(newTpe) :: ms
          else
            normalizedMember :: ms
        } else
          normalizedMember :: ms
      }
    })

    var hasSubclasses = false
    for (env <- specializations(clazz.info.typeParams) if satisfiable(env)) {
      val spc = specializedClass(env, decls1)
      log("entered " + spc + " in " + clazz.owner)
      hasSubclasses = true
      atPhase(phase.next)(clazz.owner.info.decls enter spc) //!! assumes fully specialized classes
    }
    if (hasSubclasses) clazz.resetFlag(FINAL)
    decls1
  }

  /** Expand member `sym' to a set of normalized members. Normalized members
   *  are monomorphic or polymorphic only in non-specialized types.
   *
   *  Given method m[@specialized T, U](x: T, y: U) it returns
   *     m[T, U](x: T, y: U),
   *     m$I[ U](x: Int, y: U),
   *     m$D[ U](x: Double, y: U)
   */
  private def normalizeMember(owner: Symbol, sym: Symbol, outerEnv: TypeEnv): List[Symbol] = {
    if (sym.isMethod && !sym.info.typeParams.isEmpty) {
      val (stps, tps) = splitParams(sym.info.typeParams)
      val res = sym :: (for (env <- specializations(stps) if needsSpecialization(env, sym)) yield {
        val keys = env.keys.toList;
        val vals = env.values.toList
        val specMember =  sym.cloneSymbol(owner).setFlag(SPECIALIZED).resetFlag(DEFERRED)
        specMember.name = specializedName(sym, env)

        typeEnv(specMember) = outerEnv ++ env
        val tps1 = cloneSymbols(tps)
        for (tp <- tps1) tp.setInfo(tp.info.subst(keys, vals))
        // the cloneInfo is necessary so that method parameter symbols are cloned at the new owner
        val methodType = sym.info.resultType.subst(keys ::: tps, vals ::: (tps1 map (_.tpe))).cloneInfo(specMember)

        specMember.setInfo(polyType(tps1, methodType))

        log("expanded member: " + sym  + ": " + sym.info + " -> " + specMember + ": " + specMember.info + " env: " + env)
        info(specMember) = NormalizedMember(sym)
        overloads(sym) = Overload(specMember, env) :: overloads(sym)
        specMember
      })
      //stps foreach (_.removeAttribute(SpecializedClass))
      res
    } else List(sym)
  }

  /** Specialize member `m' w.r.t. to the outer environment and the type parameters of
   *  the innermost enclosing class.
   *
   *  Turns 'private' into 'protected' for members that need specialization.
   *
   *  Return a list of symbols that are specializations of 'sym', owned by 'owner'.
   */
  private def specializeMember(owner: Symbol, sym: Symbol, outerEnv: TypeEnv, tps: List[Symbol]): List[Symbol] = {
    def specializeOn(tparams: List[Symbol]): List[Symbol] =
      for (spec <- specializations(tparams)) yield {
        if (sym.hasFlag(PRIVATE)) sym.resetFlag(PRIVATE).setFlag(PROTECTED)
        val specMember = subst(outerEnv)(specializedOverload(owner, sym, spec))
        typeEnv(specMember) = outerEnv ++ spec
        overloads(sym) = Overload(specMember, spec) :: overloads(sym)
        specMember
      }

    if (sym.isMethod) {
//      log("specializeMember " + sym + " with own stps: " + specializedTypes(sym.info.typeParams))
      val tps1 = if (sym.isConstructor) tps filter (tp => sym.info.paramTypes.contains(tp)) else tps
      val tps2 = tps1 intersect specializedTypeVars(sym.info).toList
      if (!sym.isDeferred) concreteSpecMethods += sym

      specializeOn(tps2) map {m => info(m) = SpecialOverload(sym, typeEnv(m)); m}
    } else
      List()
  }

  /** Return the specialized overload of `m', in the given environment. */
  private def specializedOverload(owner: Symbol, sym: Symbol, env: TypeEnv): Symbol = {
    val specMember = sym.cloneSymbol(owner) // this method properly duplicates the symbol's info
    specMember.name = specializedName(sym, env)

    specMember.setInfo(subst(env, specMember.info))
      .setFlag(SPECIALIZED)
      .resetFlag(DEFERRED | CASEACCESSOR | ACCESSOR)
  }

  /** For each method m that overrides inherited method m', add a special
   *  overload method `om' that overrides the corresponding overload in the
   *  superclass. For the following example:
   *
   *  class IntFun extends Function1[Int, Int] {
   *     def apply(x: Int): Int = ..
   *  }
   *
   *  this method will return List('apply$spec$II')
   */
  private def specialOverrides(clazz: Symbol): List[Symbol] = {
    log("specialOverrides(" + clazz + ")")
    val opc = new overridingPairs.Cursor(clazz)
    val oms = new mutable.ListBuffer[Symbol]
    while (opc.hasNext) {
//       log("\toverriding pairs: " + opc.overridden.fullNameString + ": " + opc.overridden.info
//               + "> " + opc.overriding.fullNameString + ": " + opc.overriding.info)
      if (!specializedTypeVars(opc.overridden.info).isEmpty) {
//        log("\t\tspecializedTVars: " + specializedTypeVars(opc.overridden.info))
        val env = unify(opc.overridden.info, opc.overriding.info, emptyEnv)
        log("\t\tenv: " + env)
        if (!env.isEmpty
            && TypeEnv.isValid(env, opc.overridden)
            && opc.overridden.owner.info.decl(specializedName(opc.overridden, env)) != NoSymbol) {
          log("Added specialized overload for " + opc.overriding.fullNameString + " in env: " + env)
          val om = specializedOverload(clazz, opc.overridden, env)
          if (!opc.overriding.isDeferred) {
            concreteSpecMethods += opc.overriding
            info(om) = Implementation(opc.overriding)
            info(opc.overriding)  = Forward(om)
          }
          overloads(opc.overriding) = Overload(om, env) :: overloads(opc.overriding)
          oms += om
          atPhase(phase.next)(
            assert(opc.overridden.owner.info.decl(om.name) != NoSymbol,
                   "Could not find " + om.name + " in " + opc.overridden.owner.info.decls))
        }
      }
      opc.next
    }
    oms.toList
  }

  /** Return the most general type environment that specializes tp1 to tp2.
   *  It only allows binding of type parameters annotated with @specialized.
   *  Fails if such an environment cannot be found.
   */
  private def unify(tp1: Type, tp2: Type, env: TypeEnv): TypeEnv = (tp1, tp2) match {
    case (TypeRef(_, sym1, _), _) if sym1.hasAnnotation(SpecializedClass) =>
      if (definitions.isValueType(tp2.typeSymbol))
        env + ((sym1, tp2))
      else
        env
    case (TypeRef(_, sym1, args1), TypeRef(_, sym2, args2)) =>
      unify(args1, args2, env)
    case (TypeRef(_, sym1, _), _) if sym1.isTypeParameterOrSkolem =>
      env
    case (MethodType(params1, res1), MethodType(params2, res2)) =>
      unify(res1 :: (params1 map (_.tpe)), res2 :: (params2 map (_.tpe)), env)
    case (PolyType(tparams1, res1), PolyType(tparams2, res2)) =>
      unify(res1, res2, env)
    case (PolyType(_, res), other) =>
      unify(res, other, env)
    case (ThisType(_), ThisType(_)) => env
    case (_, SingleType(_, _)) => unify(tp1, tp2.underlying, env)
    case (SingleType(_, _), _) => unify(tp1.underlying, tp2, env)
    case (ThisType(_), _) => unify(tp1.widen, tp2, env)
    case (_, ThisType(_)) => unify(tp1, tp2.widen, env)
    case (RefinedType(_, _), RefinedType(_, _)) => env
    case (AnnotatedType(_, tp1, _), tp2) => unify(tp2, tp1, env)
    case (ExistentialType(_, res1), _) => unify(tp2, res1, env)
  }

  private def unify(tp1: List[Type], tp2: List[Type], env: TypeEnv): TypeEnv =
    tp1.zip(tp2).foldLeft(env) { (env, args) =>
      unify(args._1, args._2, env)
    }

  private def specializedTypes(tps: List[Symbol]) = tps.filter(_.hasAnnotation(SpecializedClass))

  /** Map class symbols to the type environments where they were created. */
  val typeEnv: mutable.Map[Symbol, TypeEnv] = new mutable.HashMap[Symbol, TypeEnv] {
    override def default(key: Symbol) = emptyEnv
  }

  /** Apply type bindings in the given environement `env' to all declarations.  */
  private def subst(env: TypeEnv, decls: List[Symbol]): List[Symbol] =
    decls map subst(env)

  private def subst(env: TypeEnv, tpe: Type): Type = {
    // disabled because of bugs in std. collections
    //val (keys, values) = env.iterator.toList.unzip
    val keys = env.keysIterator.toList
    val values = env.valuesIterator.toList
    tpe.subst(keys, values)
  }

  private def subst(env: TypeEnv)(decl: Symbol): Symbol = {
    val tpe = subst(env, decl.info)
    decl.setInfo(if (decl.isConstructor) tpe match {
      case MethodType(args, resTpe) => MethodType(args, decl.owner.tpe)
    } else tpe)
  }

  /** Type transformation.
   */
  override def transformInfo(sym: Symbol, tpe: Type): Type = {
    val res = tpe match {
      case PolyType(targs, ClassInfoType(base, decls, clazz)) =>
        val parents = base map specializedType
        PolyType(targs, ClassInfoType(parents, newScope(specializeClass(clazz, typeEnv(clazz))), clazz))

      case ClassInfoType(base, decls, clazz) =>
//        val parents = base map specializedType
//        log("set parents of " + clazz + " to: " + parents)
        val res = ClassInfoType(base map specializedType, newScope(specializeClass(clazz, typeEnv(clazz))), clazz)
        res

      case _ =>
        tpe
    }
    res

  }

  def conflicting(env: TypeEnv): Boolean = {
    val silent = (pos: Position, str: String) => ()
    conflicting(env, silent)
  }

  /** Is any type variable in `env' conflicting with any if its type bounds, when
   *  type bindings in `env' are taken into account?
   *
   *  A conflicting type environment could still be satisfiable.
   */
  def conflicting(env: TypeEnv, warn: (Position, String) => Unit): Boolean =
    env exists { case (tvar, tpe) =>
      if (!(subst(env, tvar.info.bounds.lo) <:< tpe) && (tpe <:< subst(env, tvar.info.bounds.hi))) {
        warn(tvar.pos, "Bounds prevent specialization for " + tvar)
        true
      } else false
  }

  /** The type environemnt is sound w.r.t. to all type bounds or only soft
   *  conflicts appear. An environment is sound if all bindings are within
   *  the bounds of the given type variable. A soft conflict is a binding
   *  that does not fall within the bounds, but whose bounds contain
   *  type variables that are @specialized, (that could become satisfiable).
   */
  def satisfiable(env: TypeEnv, warn: (Position, String) => Unit): Boolean = {
    def matches(tpe1: Type, tpe2: Type): Boolean = {
      val t1 = subst(env, tpe1)
      val t2 = subst(env, tpe2)
      ((t1 <:< t2)
        || !specializedTypeVars(t1).isEmpty
        || !specializedTypeVars(t2).isEmpty)
     }

    env forall { case (tvar, tpe) =>
      ((matches(tvar.info.bounds.lo, tpe)
       && matches(tpe, tvar.info.bounds.hi))
       || { warn(tvar.pos, "Bounds prevent specialization of " + tvar);
             log("specvars: "
                     + tvar.info.bounds.lo + ": " + specializedTypeVars(tvar.info.bounds.lo)
                     + " " + subst(env, tvar.info.bounds.hi) + ": " + specializedTypeVars(subst(env, tvar.info.bounds.hi)))
            false })
    }
  }

  def satisfiable(env: TypeEnv): Boolean = {
    val silent = (pos: Position, str: String) => ()
    satisfiable(env, silent)
  }

  import java.io.PrintWriter

  /*************************** Term transformation ************************************/

  class Duplicator extends {
    val global: SpecializeTypes.this.global.type = SpecializeTypes.this.global
  } with typechecker.Duplicators

  import global.typer.typed

  def specializeCalls(unit: CompilationUnit) = new TypingTransformer(unit) {
    /** Map a specializable method to it's rhs, when not deferred. */
    val body: mutable.Map[Symbol, Tree] = new mutable.HashMap

    /** Map a specializable method to its value parameter symbols. */
    val parameters: mutable.Map[Symbol, List[List[Symbol]]] = new mutable.HashMap

    /** The current fresh name creator. */
    implicit val fresh: FreshNameCreator = unit.fresh

    /** Collect method bodies that are concrete specialized methods.
     */
    class CollectMethodBodies extends Traverser {
      override def traverse(tree: Tree) = tree match {
        case  DefDef(mods, name, tparams, vparamss, tpt, rhs) if concreteSpecMethods(tree.symbol) || tree.symbol.isConstructor =>
          log("adding body of " + tree.symbol)
          body(tree.symbol) = rhs
//          body(tree.symbol) = tree // whole method
          parameters(tree.symbol) = vparamss map (_ map (_.symbol))
          super.traverse(tree)
        case ValDef(mods, name, tpt, rhs) if concreteSpecMethods(tree.symbol) =>
          body(tree.symbol) = rhs
          super.traverse(tree)
        case _ =>
          super.traverse(tree)
      }
    }

    import posAssigner._

    override def transform(tree: Tree): Tree = {
      val symbol = tree.symbol

      /** The specialized symbol of 'tree.symbol' for tree.tpe, if there is one */
      def specSym(qual: Tree): Option[Symbol] = {
        val env = unify(symbol.tpe, tree.tpe, emptyEnv)
        log("checking for rerouting: " + tree + " with sym.tpe: " + symbol.tpe + " tree.tpe: " + tree.tpe + " env: " + env)
        if (!env.isEmpty) {  // a method?
          val specMember = overload(symbol, env)
          if (specMember.isDefined) Some(specMember.get.sym)
          else {  // a field?
	    val specMember = qual.tpe.member(specializedName(symbol, env))
	    if (specMember ne NoSymbol) Some(specMember)
            else None
          }
        } else None
      }

      def maybeTypeApply(fun: Tree, targs: List[Tree]) =
        if (targs.isEmpty)fun else TypeApply(fun, targs)

      curTree = tree
      tree match {
        case Apply(Select(New(tpt), nme.CONSTRUCTOR), args) =>
          if (findSpec(tpt.tpe).typeSymbol ne tpt.tpe.typeSymbol) {
            log("** instantiated specialized type: " + findSpec(tpt.tpe))
            atPos(tree.pos)(
              localTyper.typed(
                Apply(
                  Select(New(TypeTree(findSpec(tpt.tpe))), nme.CONSTRUCTOR),
                  transformTrees(args))))
          } else tree

        case TypeApply(Select(qual, name), targs) if (!specializedTypeVars(symbol.info).isEmpty && name != nme.CONSTRUCTOR) =>
          log("checking typeapp for rerouting: " + tree + " with sym.tpe: " + symbol.tpe + " tree.tpe: " + tree.tpe)
          val qual1 = transform(qual)
          specSym(qual1) match {
            case Some(specMember) =>
              assert(symbol.info.typeParams.length == targs.length)
              val env = typeEnv(specMember)
              val residualTargs =
                for ((tvar, targ) <-symbol.info.typeParams.zip(targs) if !env.isDefinedAt(tvar))
                  yield targ
              assert(residualTargs.length == specMember.info.typeParams.length)
              val tree1 = maybeTypeApply(Select(qual1, specMember.name), residualTargs)
              log("rewrote " + tree + " to " + tree1)
              localTyper.typedOperator(atPos(tree.pos)(tree1)) // being polymorphic, it must be a method

            case None => super.transform(tree)
          }

        case Select(qual, name) if (!specializedTypeVars(symbol.info).isEmpty && name != nme.CONSTRUCTOR) =>
          val qual1 = transform(qual)
          val env = unify(symbol.tpe, tree.tpe, emptyEnv)
          log("checking for rerouting: " + tree + " with sym.tpe: " + symbol.tpe + " tree.tpe: " + tree.tpe + " env: " + env)
          if (!env.isEmpty) {
            val specMember = overload(symbol, env)
            if (specMember.isDefined) {
              log("** routing " + tree + " to " + specMember.get.sym.fullNameString + " tree: " + Select(qual1, specMember.get.sym.name))
              localTyper.typedOperator(atPos(tree.pos)(Select(qual1, specMember.get.sym.name)))
            } else {
	      val specMember = qual1.tpe.member(specializedName(symbol, env))
	      if (specMember ne NoSymbol) {
                log("** using spec member " + specMember)
		localTyper.typed(atPos(tree.pos)(Select(qual1, specMember.name)))
	      } else
		super.transform(tree)
	    }
          } else
            super.transform(tree)

        case PackageDef(name, stats) =>
          tree.symbol.info // make sure specializations have been peformed
          log("PackageDef owner: " + symbol)
          atOwner(tree, symbol) {
            val specMembers = implSpecClasses(stats) map localTyper.typed
            treeCopy.PackageDef(tree, name, transformStats(stats ::: specMembers, symbol.moduleClass))
          }

        case Template(parents, self, body) =>
          val specMembers = makeSpecializedMembers(tree.symbol.enclClass) ::: (implSpecClasses(body) map localTyper.typed)
          if (!symbol.isPackageClass)
            (new CollectMethodBodies)(tree)
          treeCopy.Template(tree, parents, self, atOwner(currentOwner)(transformTrees(body ::: specMembers)))

        case ddef @ DefDef(mods, name, tparams, vparamss, tpt, rhs) if info.isDefinedAt(symbol) =>
          if (symbol.isConstructor) {
            val t = atOwner(symbol) {
              val superRef: Tree = Select(Super(nme.EMPTY.toTypeName, nme.EMPTY.toTypeName), nme.CONSTRUCTOR)
              forwardCall(tree.pos, superRef, vparamss)
            }
            val tree1 = atPos(symbol.pos)(treeCopy.DefDef(tree, mods, name, tparams, vparamss, tpt, Block(List(t), Literal(()))))
            log(tree1)
            localTyper.typed(tree1)
          } else info(symbol) match {

            case Implementation(target) =>
              assert(body.isDefinedAt(target), "sym: " + symbol.fullNameString + " target: " + target.fullNameString)
              // we have an rhs, specialize it
	      val tree1 = duplicateBody(ddef, target)
              log("implementation: " + tree1)
              val DefDef(mods, name, tparams, vparamss, tpt, rhs) = tree1
	      treeCopy.DefDef(tree1, mods, name, tparams, vparamss, tpt, transform(rhs))

            case NormalizedMember(target) =>
              log("normalized member " + symbol + " of " + target)

              if (conflicting(typeEnv(symbol))) {
                val targs = makeTypeArguments(symbol, target)
                log("targs: " + targs)
                val call =
                  forwardCall(tree.pos,
                    TypeApply(
                      Select(This(symbol.owner), target),
                      targs map TypeTree),
                    vparamss)
                log("call: " + call)
                localTyper.typed(
                  treeCopy.DefDef(tree, mods, name, tparams, vparamss, tpt,
                              maybeCastTo(symbol.info.finalResultType,
                                          target.info.subst(target.info.typeParams, targs).finalResultType,
                                          call)))

/*                copy.DefDef(tree, mods, name, tparams, vparamss, tpt,
                            typed(Apply(gen.mkAttributedRef(definitions.Predef_error),
                                  List(Literal("boom! you stepped on a bug. This method should never be called.")))))*/
              } else {
                // we have an rhs, specialize it
	        val tree1 = duplicateBody(ddef, target)
                log("implementation: " + tree1)
                val DefDef(mods, name, tparams, vparamss, tpt, rhs) = tree1
	        treeCopy.DefDef(tree1, mods, name, tparams, vparamss, tpt, transform(rhs))
              }

            case SpecialOverload(original, env) =>
              log("completing specialized " + symbol.fullNameString + " calling " + original)
              val t = DefDef(symbol, { vparamss =>
                val fun = Apply(Select(This(symbol.owner), original),
                                makeArguments(original, vparamss.head))

                maybeCastTo(symbol.owner.info.memberType(symbol).finalResultType,
                            symbol.owner.info.memberType(original).finalResultType,
                            fun)
              })
              log("created " + t)
              localTyper.typed(t)

            case fwd @ Forward(_) =>
              val rhs1 = forwardCall(tree.pos, gen.mkAttributedRef(symbol.owner.thisType, fwd.target), vparamss)
              log("completed forwarder to specialized overload: " + fwd.target + ": " + rhs1)
              localTyper.typed(treeCopy.DefDef(tree, mods, name, tparams, vparamss, tpt, rhs1))

            case SpecializedAccessor(target) =>
              val rhs1 = if (symbol.isGetter)
                gen.mkAttributedRef(target)
              else
                Assign(gen.mkAttributedRef(target), Ident(vparamss.head.head.symbol))
              localTyper.typed(treeCopy.DefDef(tree, mods, name, tparams, vparamss, tpt, rhs1))
          }

        case ValDef(mods, name, tpt, rhs) if symbol.hasFlag(SPECIALIZED) =>
          assert(body.isDefinedAt(symbol.alias))
          val tree1 = treeCopy.ValDef(tree, mods, name, tpt, body(symbol.alias).duplicate)
          log("now typing: " + tree1 + " in " + tree.symbol.owner.fullNameString)
          val d = new Duplicator
          d.retyped(localTyper.context1.asInstanceOf[d.Context],
                    tree1,
                    symbol.alias.enclClass,
                    symbol.enclClass,
                    typeEnv(symbol.alias) ++ typeEnv(tree.symbol))

        case _ =>
          super.transform(tree)
      }
    }

    private def reskolemize(tparams: List[TypeDef]): (List[Symbol], List[Symbol]) = {
      val tparams1 = tparams map (_.symbol)
      localTyper.namer.skolemize(tparams)
      (tparams1, tparams map (_.symbol))
    }

    private def duplicateBody(tree: DefDef, target: Symbol): Tree = {
      val symbol = tree.symbol
      log("specializing body of" + symbol.fullNameString + ": " + symbol.info)
      val DefDef(mods, name, tparams, vparamss, tpt, _) = tree
      val (_, origtparams) = splitParams(target.typeParams)
      log("substituting " + origtparams + " for " + symbol.typeParams)

      // skolemize type parameters
      val (oldtparams, newtparams) = reskolemize(tparams)

      // create fresh symbols for value parameters to hold the skolem types
      val vparamss1 = List(for (vdef <- vparamss.head; param = vdef.symbol) yield {
        ValDef(param.cloneSymbol(symbol).setInfo(param.info.substSym(oldtparams, newtparams)))
      })

      // replace value and type paremeters of the old method with the new ones
      val symSubstituter = new ImplementationAdapter(
        List.flatten(parameters(target))    ::: origtparams,
        List.flatten(vparamss1).map(_.symbol) ::: newtparams)
      val adapter = new AdaptSpecializedValues
      val tmp = symSubstituter(adapter(body(target).duplicate))
      tpt.tpe = tpt.tpe.substSym(oldtparams, newtparams)

      val meth = treeCopy.DefDef(tree, mods, name, tparams, vparamss1, tpt, tmp)

      log("now typing: " + meth + " in " + symbol.owner.fullNameString)
      val d = new Duplicator
      d.retyped(localTyper.context1.asInstanceOf[d.Context],
                meth,
                target.enclClass,
                symbol.enclClass,
                typeEnv(target) ++ typeEnv(symbol))
    }

    /** A tree symbol substituter that substitutes on type skolems.
     *  If a type parameter is a skolem, it looks for the original
     *  symbol in the 'from' and maps it to the corresponding new
     *  symbol. The new symbol should probably be a type skolem as
     *  well (not enforced).
     *
     *  All private members are made protected in order to be accessible from
     *  specialized classes.
     */
    class ImplementationAdapter(from: List[Symbol], to: List[Symbol]) extends TreeSymSubstituter(from, to) {
      override val symSubst = new SubstSymMap(from, to) {
        override def matches(sym1: Symbol, sym2: Symbol) =
          if (sym2.isTypeSkolem) sym2.deSkolemize eq sym1
          else sym1 eq sym2
      }

      /** All private members that are referenced are made protected,
       *  in order to be accessible from specialized subclasses.
       */
      override def traverse(tree: Tree): Unit = tree match {
        case Select(qual, name) =>
          if (tree.symbol.hasFlag(PRIVATE)) {
            log("changing private flag of " + tree.symbol)
            tree.symbol.resetFlag(PRIVATE).setFlag(PROTECTED)
          }
          super.traverse(tree)

        case _ =>
          super.traverse(tree)
      }
    }

    /** Does the given tree need a cast to a type parameter's upper bound?
     *  A cast is needed for values of type A, where A is a specialized type
     *  variable with a non-trivial upper bound. When A is specialized, its
     *  specialization may not satisfy the upper bound. We generate casts to
     *  be able to type check code. Such methods will never be called, as they
     *  are not visible to the user. The compiler will insert such calls only when
     *  the bounds are satisfied.
     */
    private class AdaptSpecializedValues extends Transformer {
      private def needsCast(tree: Tree): Boolean = {
        val sym = tree.tpe.typeSymbol
        (sym.isTypeParameterOrSkolem
         && sym.hasAnnotation(SpecializedClass)
         && sym.info.bounds.hi != definitions.AnyClass.tpe
         /*&& !(tree.tpe <:< sym.info.bounds.hi)*/)
       }

      override def transform(tree: Tree): Tree = {
        val tree1 = super.transform(tree)
        if (needsCast(tree1)) {
          log("inserting cast for " + tree1 + " tpe: " + tree1.tpe)
          val tree2 = gen.mkAsInstanceOf(tree1, tree1.tpe.typeSymbol.info.bounds.hi)
          log(" casted to: " + tree2)
          tree2
        } else
          tree1
      }
      def apply(t: Tree): Tree = transform(t)
    }

    def warn(clazz: Symbol)(pos: Position, err: String) =
      if (!clazz.hasFlag(SPECIALIZED))
        unit.warning(pos, err)

    /** Create trees for specialized members of 'cls', based on the
     *  symbols that are already there.
     */
    private def makeSpecializedMembers(cls: Symbol): List[Tree] = {
      // add special overrides first
      if (!cls.hasFlag(SPECIALIZED))
        for (m <- specialOverrides(cls)) cls.info.decls.enter(m)
      val mbrs = new mutable.ListBuffer[Tree]

      for (m <- cls.info.decls.toList
             if m.hasFlag(SPECIALIZED)
                 && (m.sourceFile ne null)
                 && satisfiable(typeEnv(m), warn(cls))) {
        log("creating tree for " + m.fullNameString)
        if (m.isMethod)  {
          if (m.isClassConstructor) {
            val origParamss = parameters(info(m).target)
            assert(origParamss.length == 1) // we are after uncurry

            val vparams =
              for ((tp, sym) <- m.info.paramTypes zip origParamss(0))
                yield m.newValue(sym.pos, specializedName(sym, typeEnv(cls)))
                       .setInfo(tp)
                       .setFlag(sym.flags)
            // param accessors for private members (the others are inherited from the generic class)
            for (param <- vparams if cls.info.nonPrivateMember(param.name) == NoSymbol;
                 val acc = param.cloneSymbol(cls).setFlag(PARAMACCESSOR | PRIVATE)) {
              log("param accessor for " + acc.fullNameString)
              cls.info.decls.enter(acc)
              mbrs += ValDef(acc, EmptyTree).setType(NoType).setPos(m.pos)
            }
            // ctor
            mbrs += DefDef(m, Modifiers(m.flags), List(vparams) map (_ map ValDef), EmptyTree)
          } else
            mbrs += DefDef(m, { paramss => EmptyTree })
        } else {
          assert(m.isValue)
          mbrs += ValDef(m, EmptyTree).setType(NoType).setPos(m.pos)
        }
      }
      mbrs.toList
    }
  }

  private def forwardCall(pos: util.Position, receiver: Tree, paramss: List[List[ValDef]]): Tree = {
    val argss = paramss map (_ map (x => Ident(x.symbol)))
    atPos(pos) { (receiver /: argss) (Apply) }
  }

  /** Create specialized class definitions */
  def implSpecClasses(trees: List[Tree]): List[Tree] = {
    val buf = new mutable.ListBuffer[Tree]
    for (val tree <- trees)
      tree match {
        case ClassDef(_, _, _, impl) =>
          tree.symbol.info // force specialization
          for (val ((sym1, env), specCls) <- specializedClass if sym1 == tree.symbol)
            buf +=
              ClassDef(specCls, Template(specCls.info.parents map TypeTree, emptyValDef, List())
                         .setSymbol(specCls.newLocalDummy(sym1.pos)))
        case _ =>
      }
    log(buf)
    buf.toList
  }

  /** Concrete methods that use a specialized type, or override such methods. */
  private val concreteSpecMethods: mutable.Set[Symbol] = new mutable.HashSet

  /** Instantiate polymorphic function `target' with type parameters from `from'.
   *  For each type parameter `tp' in `target', its argument is:
   *    - a corresponding type parameter of `from', if tp is not bound in
   *      typeEnv(from)
   *    - the upper bound of tp, if the binding conflicts with tp's bounds
   *    - typeEnv(from)(tp), if the binding is not conflicting in its bounds
   */
  private def makeTypeArguments(from: Symbol, target: Symbol): List[Type] = {
    val owner = from.owner
    val env = typeEnv(from)
    for (tp <- owner.info.memberType(target).typeParams)
      yield
        if (!env.isDefinedAt(tp))
          typeRef(NoPrefix, from.info.typeParams.find(_ == tp.name).get, Nil)
        else if ((env(tp) <:< tp.info.bounds.hi) && (tp.info.bounds.lo <:< env(tp)))
          env(tp)
        else tp.info.bounds.hi
  }

  /** Cast `tree' to 'pt', unless tpe is a subtype of pt, or pt is Unit.  */
  def maybeCastTo(pt: Type, tpe: Type, tree: Tree): Tree =
    if ((pt == definitions.UnitClass.tpe) || (tpe <:< pt)) {
      log("no need to cast from " + tpe + " to " + pt)
      tree
    } else
      gen.mkAsInstanceOf(tree, pt)


  private def makeArguments(fun: Symbol, vparams: List[Symbol]): List[Tree] = {
    def needsCast(tp1: Type, tp2: Type): Boolean =
      !(tp1 <:< tp2)

    //! TODO: make sure the param types are seen from the right prefix
    for ((tp, arg) <- fun.info.paramTypes zip vparams) yield {
      if (needsCast(arg.tpe, tp)) {
        //log("tp: " + tp + " " + tp.typeSymbol.owner)
        gen.mkAsInstanceOf(Ident(arg), tp)
      } else Ident(arg)
    }
  }

  private def findSpec(tp: Type): Type = tp match {
    case TypeRef(pre, sym, args) =>
      if (args.isEmpty) tp
      else {
        specializedType(tp)
        /*log("looking for " + specializedName(sym.name, args) + " in " + pre)
        val sym1 = pre.member(specializedName(sym.name, args))
        assert(sym1 != NoSymbol, "pre: " + pre.typeSymbol + " ph: " + phase + " with: " + pre.members)
        TypeRef(pre, sym1, Nil)*/
      }
    case _ => tp
  }

  class SpecializationTransformer(unit: CompilationUnit) extends Transformer {
    override def transform(tree: Tree) =
      atPhase(phase.next) {
        val res = specializeCalls(unit).transform(tree)
        res
      }
  }

}