summaryrefslogtreecommitdiff
path: root/sources/scala/tools/nsc/transform/Erasure.scala
diff options
context:
space:
mode:
authorMartin Odersky <odersky@gmail.com>2005-07-21 16:17:35 +0000
committerMartin Odersky <odersky@gmail.com>2005-07-21 16:17:35 +0000
commitb23d885feb9c36007913caaf2104895212b33e1e (patch)
tree83964c7ebb5bf44ec00b7b2dc33cbcb0a1a2889d /sources/scala/tools/nsc/transform/Erasure.scala
parent2b073f0a006c77eb847fc5cbe3c2421b5e64498e (diff)
downloadscala-b23d885feb9c36007913caaf2104895212b33e1e.tar.gz
scala-b23d885feb9c36007913caaf2104895212b33e1e.tar.bz2
scala-b23d885feb9c36007913caaf2104895212b33e1e.zip
*** empty log message ***
Diffstat (limited to 'sources/scala/tools/nsc/transform/Erasure.scala')
-rwxr-xr-xsources/scala/tools/nsc/transform/Erasure.scala434
1 files changed, 434 insertions, 0 deletions
diff --git a/sources/scala/tools/nsc/transform/Erasure.scala b/sources/scala/tools/nsc/transform/Erasure.scala
new file mode 100755
index 0000000000..a04b8b31ea
--- /dev/null
+++ b/sources/scala/tools/nsc/transform/Erasure.scala
@@ -0,0 +1,434 @@
+/* NSC -- new scala compiler
+ * Copyright 2005 LAMP/EPFL
+ * @author
+ */
+// $Id$
+package scala.tools.nsc.transform;
+
+import collection.mutable.HashMap;
+import symtab._;
+import Flags._;
+import scala.tools.util.Position;
+import util.ListBuffer;
+
+abstract class Erasure extends InfoTransform with typechecker.Analyzer {
+ import global._; // the global environment
+ import definitions._; // standard classes and methods
+ import typer.{typed}; // methods to type trees
+ import posAssigner.atPos; // for filling in tree positions
+
+ val phaseName: String = "erasure";
+ def newTransformer(unit: CompilationUnit): Transformer = new ErasureTransformer(unit);
+
+// -------- erasure on types --------------------------------------------------------
+
+ /** The erasure |T| of a type T. This is:
+ * - For a constant type, itself.
+ * - For a type-bounds structure, the erasure of its upper bound.
+ * - For every other singleton type, the erasure of its supertype.
+ * - For a typeref scala.Array[T] where T is an abstract type, scala.runtime.BoxedArray.
+ * - For a typeref scala.Array[T] where T is not an abstract type, scala.Array[|T|].
+ * - For a typeref scala.Any or scala.AnyVal, java.lang.Object.
+ * - For a typeref scala.Unit, scala.runtime.BoxedUnit.
+ * - For a typeref P.C[Ts] where C refers to a class, |P|.C.
+ * - For a typeref P.C[Ts] where C refers to an alias type, the erasure of C's alias.
+ * - For a typeref P.C[Ts] where C refers to an abstract type, the erasure of C's upper bound.
+ * - For a non-empty type intersection (possibly with refinement), the erasure of its first parent.
+ * - For an empty type intersection, java.lang.Object
+ * - For a method type (Fs)scala.Unit, (|Fs|)scala#Unit.
+ * - For any other method type (Fs)Y, (|Fs|)|T|.
+ * - For a polymorphic type, the erasure of its result type
+ * - For the class info type of java.lang.Object, the same type without any parents
+ * - For a class info type of a value class, the same type without any parents
+ * - For any other class info type with parents Ps, the same type with parents |Ps}, but
+ * with duplicate references of Object removed.
+ * - for all other types, the type itself (with any sub-components erased)
+ */
+ private val erasure = new TypeMap {
+ def apply(tp: Type): Type = tp match {
+ case ConstantType(value) =>
+ tp
+ case st: SubType =>
+ apply(st.supertype)
+ case TypeRef(pre, sym, args) =>
+ if (sym == ArrayClass)
+ args.head match {
+ case TypeRef(_, tvar, _) if (tvar.isAbstractType) => erasedTypeRef(BoxedArrayClass)
+ case _ => typeRef(apply(pre), sym, args map this)
+ }
+ else if (sym == AnyClass || sym == AnyValClass) erasedTypeRef(ObjectClass)
+ else if (sym == UnitClass) erasedTypeRef(BoxedUnitClass)
+ else if (sym.isClass) typeRef(apply(pre), sym, List())
+ else apply(sym.info)
+ case PolyType(tparams, restpe) =>
+ apply(restpe)
+ case MethodType(formals, restpe) =>
+ MethodType(
+ formals map apply,
+ if (restpe.symbol == UnitClass) erasedTypeRef(UnitClass) else apply(restpe));
+ case RefinedType(parents, decls) =>
+ if (parents.isEmpty) erasedTypeRef(ObjectClass)
+ else apply(parents.head)
+ case ClassInfoType(parents, decls, clazz) =>
+ ClassInfoType(
+ if ((clazz == ObjectClass) || (isValueClass(clazz))) List()
+ else if (clazz == ArrayClass) List(erasedTypeRef(ObjectClass))
+ else removeDoubleObject(parents map this),
+ decls, clazz)
+ case _ =>
+ mapOver(tp)
+ }
+ }
+
+ /** Type reference after erasure */
+ private def erasedTypeRef(sym: Symbol): Type = typeRef(erasure(sym.owner.tpe), sym, List());
+
+ /** Remove duplicate references to class Object in a list of parent classes
+ */
+ private def removeDoubleObject(tps: List[Type]): List[Type] = tps match {
+ case List() => List()
+ case tp :: tps1 =>
+ if (tp.symbol == ObjectClass) tp :: tps1.filter(.symbol.!=(ObjectClass))
+ else tp :: removeDoubleObject(tps1)
+ }
+
+ /** The symbol's erased info. This is the type's erasure, except for the following symbols
+ * - For $asInstanceOf : [T]T
+ * - For $isInstanceOf : [T]scala#Boolean
+ * - For class Array : [T]C where C is the erased classinfo of the Array class
+ * - For the Array[T].<init>: {scala#Int)Array[T]
+ * - For a type parameter : A type bounds type consisting of the erasures of its bounds.
+ */
+ def transformInfo(sym: Symbol, tp: Type): Type =
+ if (sym == Object_asInstanceOf)
+ sym.info
+ else if (sym == Object_isInstanceOf || sym == ArrayClass)
+ PolyType(sym.info.typeParams, erasure(sym.info.resultType))
+ else if (sym.name == nme.CONSTRUCTOR && sym.owner == ArrayClass)
+ tp match {
+ case MethodType(formals, TypeRef(pre, sym, args)) =>
+ MethodType(formals map erasure, typeRef(erasure(pre), sym, args))
+ }
+ else if (sym.isAbstractType)
+ erasure.mapOver(tp)
+ else
+ erasure(tp);
+
+// -------- boxing/unboxing --------------------------------------------------------
+
+ override def newTyper(context: Context) = new Eraser(context);
+
+ /** The modifier typer which retypes with erased types. */
+ class Eraser(context: Context) extends Typer(context) {
+
+ /** Box `tree' of unboxed type */
+ private def box(tree: Tree): Tree =
+ typed {
+ atPos(tree.pos) {
+ val sym = tree.tpe.symbol;
+ if (sym == UnitClass) {
+ gen.mkRef(BoxedUnit_UNIT)
+ } else if (sym == ArrayClass) {
+ val elemClass = tree.tpe.typeArgs.head.symbol;
+ val boxedClass = if (isValueClass(elemClass)) boxedArraySym(elemClass)
+ else BoxedObjectArrayClass;
+ Apply(Select(New(TypeTree(boxedClass.tpe)), nme.CONSTRUCTOR), List(tree))
+ } else {
+ val boxedModule = boxedSym(tree.tpe.symbol).linkedModule;
+ Apply(Select(gen.mkRef(boxedModule), nme.box), List(tree))
+ }
+ }
+ }
+
+ /** Unbox `tree' of boxed type to expected type `pt' */
+ private def unbox(tree: Tree, pt: Type): Tree =
+ typed {
+ atPos(tree.pos) {
+ if (pt.symbol == UnitClass) {
+ Literal(())
+ } else if (pt.symbol == BooleanClass) {
+ val tree1 = adaptToType(tree, boxedSym(BooleanClass).tpe);
+ Apply(Select(tree1, "booleanValue"), List())
+ } else if (pt.symbol == ArrayClass) {
+ val tree1 = adaptToType(tree, BoxedArrayClass.tpe);
+ val elemClass = pt.typeArgs.head.symbol;
+ val elemTag =
+ if (isValueClass(elemClass))
+ Apply(
+ Select(gen.mkRef(ScalaRunTimeModule), newTermName(elemClass.name.toString() + "Tag")),
+ List())
+ else Literal(signature(pt));
+ Apply(Select(tree1, "unbox"), List(elemTag))
+ } else {
+ val tree1 = adaptToType(tree, BoxedNumberClass.tpe);
+ val unboxedName = pt.symbol.name.toString();
+ val unboxOp =
+ String.valueOf((unboxedName.charAt(0) + ('a' - 'A')).asInstanceOf[char]) +
+ unboxedName.substring(1) + "Value";
+ Apply(Select(tree1, unboxOp), List())
+ }
+ }
+ }
+
+ /** Cast `tree' to type `pt' */
+ private def cast(tree: Tree, pt: Type): Tree = {
+ if (settings.debug.value) log("casting " + tree + " to " + pt);
+ typed {
+ atPos(tree.pos) {
+ Apply(TypeApply(Select(tree, Object_asInstanceOf), List(TypeTree(pt))), List())
+ }
+ }
+ }
+
+ /** Is symbol a member of unboxed arrays (which will be expanded directly later)? */
+ private def isUnboxedArrayMember(sym: Symbol) =
+ sym.name == nme.apply || sym.name == nme.length || sym.name == nme.update ||
+ sym.owner == ObjectClass;
+
+ /** Is symbol a member of a boxed value class (which will not be expanded later)? */
+ def isBoxedValueMember(sym: Symbol) =
+ (sym.name == nme.equals_ || sym.name == nme.hashCode_ || sym.name == nme.toString_ ||
+ (sym.name == nme.EQ || sym.name == nme.NE) && sym.info.paramTypes.head.symbol == ObjectClass ||
+ sym == Object_isInstanceOf || sym == Object_asInstanceOf);
+
+ /** Adapt `tree' to expected type `pt' */
+ private def adaptToType(tree: Tree, pt: Type): Tree = {
+ if (settings.debug.value && pt != WildcardType) log("adapting " + tree + ":" + tree.tpe + " to " + pt);
+ if (tree.tpe <:< pt)
+ tree
+ else if (isUnboxedClass(tree.tpe.symbol) && !isUnboxedClass(pt.symbol))
+ adaptToType(box(tree), pt)
+ else if (pt <:< tree.tpe)
+ cast(tree, pt)
+ else if (isUnboxedClass(pt.symbol) && !isUnboxedClass(tree.tpe.symbol))
+ adaptToType(unbox(tree, pt), pt)
+ else
+ cast(tree, pt)
+ }
+
+
+ /** Replace member references as follows:
+ * - `x == y' for `==' in class Any becomes `x equals y' with `equals' in class Object
+ * - `x != y' for `!=' in class Any becomes `!(x equals y)' with `equals' in class Object
+ * - `new BoxedArray.<init>(len)' becomes `new BoxedAnyArray.<init>(len): BoxedArray'
+ * (the widening typing is necessary so that subsequent member symbols stay the same)
+ * - `x.asInstanceOf[T]' and `x.asInstanceOf$erased[T]' become `x.$asInstanceOf[T]'
+ * - `x.isInstanceOf[T]' and `x.isInstanceOf$erased[T]' become `x.$isInstanceOf[T]'
+ * - `x.m' where `m' is some other member of Any becomes `x.m' where m is a member of class Object
+ * - `x.m' where `x' has unboxed value type `T' and `m' is not a directly
+ * translated member of `T' becomes T.box(x).m
+ * - `x.m' where `x' has type `Array[T]' and `m' is not a directly
+ * translated member of `Array' becomes new BoxedTArray.<init>(x).m
+ * - `x.m' where `x' is a reference type and `m' is a directly translated member of value type
+ * T becomes x.TValue().m
+ * - All forms of `x.m' where `x' is a boxed type and `m' is a member of an unboxed class
+ * become `x.m' where `m' is the corresponding member of the boxed class.
+ */
+ private def adaptMember(tree: Tree): Tree = tree match {
+ case Apply(sel @ Select(qual, name), args) =>
+ if (sel.symbol == Any_==)
+ Apply(Select(qual, Object_equals), args)
+ else if (sel.symbol == Any_!=)
+ Apply(Select(Apply(Select(qual, Object_equals), args), Boolean_not), List())
+ else qual match {
+ case New(tpt) =>
+ assert(tpt.isInstanceOf[TypeTree]);
+ if (tpt.tpe.symbol == BoxedArrayClass) {
+ assert(name == nme.CONSTRUCTOR);
+ Typed(Apply(Select(New(TypeTree(BoxedAnyArrayClass.tpe)), name), args), tpt)
+ } else tree
+ case _ =>
+ tree
+ }
+ case Select(qual, name) if (name != nme.CONSTRUCTOR) =>
+ if (tree.symbol == Any_asInstanceOf || tree.symbol == Any_asInstanceOfErased)
+ adaptMember(Select(qual, Object_asInstanceOf))
+ else if (tree.symbol == Any_isInstanceOf || tree.symbol == Any_isInstanceOfErased)
+ adaptMember(Select(qual, Object_isInstanceOf))
+ else if (tree.symbol != NoSymbol && tree.symbol.owner == AnyClass)
+ adaptMember(Select(qual, getMember(ObjectClass, name)))
+ else {
+ var qual1 = typedQualifier(qual);
+ if ((isValueClass(qual1.tpe.symbol) && isBoxedValueMember(tree.symbol)) ||
+ (qual1.tpe.symbol == ArrayClass && !isUnboxedArrayMember(tree.symbol))) {
+ qual1 = box(qual1);
+ } else if (!isValueClass(qual1.tpe.symbol) &&
+ tree.symbol != NoSymbol && isValueClass(tree.symbol.owner)) {
+ qual1 = unbox(qual1, tree.symbol.owner.tpe)
+ }
+ if (tree.symbol != NoSymbol &&
+ isUnboxedClass(tree.symbol.owner) && !isUnboxedClass(qual1.tpe.symbol))
+ tree.symbol = NoSymbol;
+ copy.Select(tree, qual1, name)
+ }
+ case _ =>
+ tree
+ }
+
+ /** A replacement for the standard typer's `adapt' method */
+ override protected def adapt(tree: Tree, mode: int, pt: Type): Tree = adaptToType(tree, pt);
+
+ /** A replacement for the standard typer's `typed1' method */
+ override protected def typed1(tree: Tree, mode: int, pt: Type): Tree =
+ super.typed1(adaptMember(tree), mode, pt);
+ }
+
+ /** The erasure transformer */
+ class ErasureTransformer(unit: CompilationUnit) extends Transformer {
+
+ /** Emit an error if there is a double definition. This can happen in the following
+ * circumstances:
+ * - A template defines two members with the same name and erased type.
+ * - A template defines and inherits two members `m' with different types,
+ * but their erased types are the same.
+ * - A template inherits two members `m' with different types,
+ * but their erased types are the same.
+ */
+ private def checkNoDoubleDefs(root: Symbol): unit = atPhase(phase.next) {
+ def doubleDefError(sym1: Symbol, sym2: Symbol) = {
+ val tpe1 = atPhase(typerPhase.next)(root.tpe.memberType(sym1));
+ val tpe2 = atPhase(typerPhase.next)(root.tpe.memberType(sym2));
+ unit.error(
+ if (sym1.owner == root) sym1.pos else root.pos,
+ (if (sym1.owner == sym2.owner) "double definition:\n"
+ else if (sym1.owner == root) "name clash between defined and inherited member:\n"
+ else "name clash between inherited members:\n") +
+ sym1 + ":" + tpe1 +
+ (if (sym1.owner == root) "" else sym1.locationString) + " and\n" +
+ sym2 + ":" + tpe2 +
+ (if (sym2.owner == root) " at line " + Position.line(sym2.pos) else sym2.locationString) +
+ "\nhave same type" +
+ (if (tpe1 =:= tpe2) "" else " after erasure: " + sym1.tpe))
+ }
+
+ val decls = root.info.decls;
+ var e = decls.elems;
+ while (e != null) {
+ if (e.sym.isTerm && !e.sym.isConstructor) {
+ var e1 = decls.lookupNextEntry(e);
+ while (e1 != null) {
+ if (e1.sym.info =:= e.sym.info) doubleDefError(e.sym, e1.sym);
+ e1 = decls.lookupNextEntry(e1)
+ }
+ }
+ e = e.next
+ }
+
+ for (val bc <- root.info.baseClasses.tail; val other <- bc.info.decls.toList) {
+ if (other.isTerm && !other.isConstructor && !(other hasFlag PRIVATE)) {
+ for (val member <- root.info.nonPrivateMember(other.name).alternatives) {
+ if (member != other && (member.tpe =:= other.tpe) &&
+ !atPhase(typerPhase.next)(
+ root.tpe.memberType(member) =:= root.tpe.memberType(other)))
+ doubleDefError(member, other)
+ }
+ }
+ }
+ }
+
+ /** Add bridge definitions to a template. This means:
+ * If there is a concrete member `m' which overrides a member in a base class of the template,
+ * and the erased types of the two members differ,
+ * and the two members are not inherited or defined by some parent class of the template,
+ * then a bridge from the overridden member `m1' to the member `m0' is added.
+ * The bridge has the erased type of `m1' and forwards to `m0'.
+ * No bridge is added if there is already a bridge to `m0' with the erased type of `m1'
+ * in the template.
+ */
+ private def bridgeDefs(owner: Symbol): List[Tree] = {
+ val site = owner.tpe;
+ val bridgesScope = new Scope();
+ val bridgeTarget = new HashMap[Symbol, Symbol];
+ var bridges: List[Tree] = List();
+ for (val bc <- site.baseClasses.tail; val other <- bc.info.members) {
+ if (other.isMethod && !other.isConstructor) {
+ for (val member <- site.nonPrivateMember(other.name).alternatives) {
+ if (member != other &&
+ !(member hasFlag DEFERRED) &&
+ (site.memberType(member) matches site.memberType(other)) &&
+ !(site.parents exists (p =>
+ (p.symbol isSubClass member.owner) && (p.symbol isSubClass other.owner)))) {
+ val otpe = erasure(other.tpe);
+ if (!(otpe =:= erasure(member.tpe))) {
+ var e = bridgesScope.lookupEntry(member.name);
+ while (e != null && !((e.sym.tpe =:= otpe) && (bridgeTarget(e.sym) == member)))
+ e = bridgesScope.lookupNextEntry(e);
+ if (e == null) {
+ val bridge = other.cloneSymbol(owner).setInfo(otpe).setFlag(BRIDGE);
+ if (settings.debug.value)
+ log("generating bridge from " + other + ":" + otpe + other.locationString + " to " + member + ":" + erasure(member.tpe) + "=" + bridge + ":" + bridge.tpe);
+ bridgeTarget(bridge) = member;
+ bridgesScope enter bridge;
+ bridges =
+ atPos(bridge.pos) {
+ DefDef(bridge, vparamss =>
+ ((Select(This(owner), bridgeTarget(bridge)): Tree) /: vparamss)
+ ((fun, vparams) => Apply(fun, vparams map Ident)))
+ } :: bridges;
+ }
+ }
+ }
+ }
+ }
+ }
+ bridges
+ }
+
+ /** Transform tree at phase `erasure' before retyping it. This entails the following:
+ * - Remove all type parameters in class and method definitions.
+ * - Remove all abstract and alias type definitions.
+ * - Remove all type applications other than those involving a type test or cast.
+ * - Remove all empty trees in statements and definitions in a PackageDef.
+ * - Check that there are no double definitions in a template.
+ * - Add bridge definitions to a template.
+ * - Replace all types in type nodes and the EmptyTree object by their erasure.
+ * Type nodes of type Unit representing result types of methods are left alone.
+ * - Reset all other type attributes to `null, thus enforcing a retyping.
+ */
+ private val preTransformer = new Transformer {
+ def elimEmpty(trees: List[Tree]): List[Tree] = trees filter (EmptyTree !=);
+ override def transform(tree: Tree): Tree = {
+ val tree1 = tree match {
+ case ClassDef(mods, name, tparams, tpt, impl) =>
+ copy.ClassDef(tree, mods, name, List(), tpt, impl)
+ case DefDef(mods, name, tparams, vparamss, tpt, rhs) =>
+ copy.DefDef(tree, mods, name, List(), vparamss, tpt, rhs)
+ case AbsTypeDef(_, _, _, _) =>
+ EmptyTree
+ case AliasTypeDef(_, _, _, _) =>
+ EmptyTree
+ case TypeApply(fun, args) if (fun.symbol.owner != AnyClass) =>
+ // leave type tests/type casts, remove all other type applications
+ fun
+ case PackageDef(name, stats) =>
+ copy.PackageDef(tree, name, elimEmpty(stats))
+ case Template(parents, body) =>
+ checkNoDoubleDefs(tree.symbol.owner);
+ copy.Template(tree, parents, elimEmpty(body) ::: bridgeDefs(currentOwner))
+ case Block(stats, expr) =>
+ copy.Block(tree, elimEmpty(stats), expr)
+ case _ =>
+ tree
+ }
+ tree1 match {
+ case EmptyTree | TypeTree() =>
+ tree1 setType erasure(tree1.tpe)
+ case DefDef(mods, name, tparams, vparamss, tpt, rhs) =>
+ val result = super.transform(tree1) setType null;
+ tpt.tpe = erasure(tree.symbol.tpe).resultType;
+ result
+ case _ =>
+ super.transform(tree1) setType null
+ }
+ }
+ }
+
+ /** The main transform function: Pretransfom the tree, and then
+ * re-type it at phase erasure.next.
+ */
+ override def transform(tree: Tree): Tree = {
+ val tree1 = preTransformer.transform(tree);
+ atPhase(phase.next) { newTyper(startContext).typed(tree1) }
+ }
+ }
+}