summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/compiler/scala/reflect/macros/runtime/Reifiers.scala4
-rw-r--r--src/compiler/scala/reflect/reify/Reifier.scala2
-rw-r--r--src/compiler/scala/reflect/reify/Taggers.scala12
-rw-r--r--src/compiler/scala/reflect/reify/package.scala1
-rw-r--r--src/compiler/scala/reflect/reify/phases/Reshape.scala6
-rw-r--r--src/compiler/scala/reflect/reify/utils/Extractors.scala12
-rw-r--r--src/compiler/scala/reflect/reify/utils/NodePrinters.scala2
-rw-r--r--src/compiler/scala/tools/nsc/doc/Settings.scala18
-rw-r--r--src/compiler/scala/tools/nsc/interpreter/ReplVals.scala4
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/Implicits.scala10
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/Tags.scala6
-rw-r--r--src/compiler/scala/tools/reflect/FastTrack.scala7
-rw-r--r--src/compiler/scala/tools/reflect/StdTags.scala8
-rw-r--r--src/compiler/scala/tools/reflect/ToolBox.scala5
-rw-r--r--src/compiler/scala/tools/reflect/ToolBoxFactory.scala1
-rw-r--r--src/library/scala/reflect/ClassTag.scala4
-rw-r--r--src/library/scala/reflect/base/Annotations.scala106
-rw-r--r--src/library/scala/reflect/base/Base.scala765
-rw-r--r--src/library/scala/reflect/base/Constants.scala36
-rw-r--r--src/library/scala/reflect/base/FlagSets.scala16
-rw-r--r--src/library/scala/reflect/base/Mirrors.scala22
-rw-r--r--src/library/scala/reflect/base/Names.scala68
-rw-r--r--src/library/scala/reflect/base/Positions.scala22
-rw-r--r--src/library/scala/reflect/base/StandardDefinitions.scala110
-rw-r--r--src/library/scala/reflect/base/StandardNames.scala40
-rw-r--r--src/library/scala/reflect/base/Symbols.scala294
-rw-r--r--src/library/scala/reflect/base/TagInterop.scala29
-rw-r--r--src/library/scala/reflect/base/Trees.scala1427
-rw-r--r--src/library/scala/reflect/base/Types.scala441
-rw-r--r--src/library/scala/reflect/base/Universe.scala80
-rw-r--r--src/library/scala/reflect/base/compat.scala16
-rw-r--r--src/library/scala/reflect/macros/internal/package.scala11
-rw-r--r--src/library/scala/reflect/package.scala85
-rw-r--r--src/partest/scala/tools/partest/CompilerTest.scala4
-rw-r--r--src/reflect/scala/reflect/api/Annotations.scala105
-rw-r--r--src/reflect/scala/reflect/api/Attachments.scala (renamed from src/library/scala/reflect/base/Attachments.scala)8
-rw-r--r--src/reflect/scala/reflect/api/BuildUtils.scala (renamed from src/library/scala/reflect/base/BuildUtils.scala)6
-rw-r--r--src/reflect/scala/reflect/api/Constants.scala27
-rw-r--r--src/reflect/scala/reflect/api/Exprs.scala (renamed from src/library/scala/reflect/base/Exprs.scala)38
-rw-r--r--src/reflect/scala/reflect/api/FlagSets.scala11
-rw-r--r--src/reflect/scala/reflect/api/JavaUniverse.scala27
-rw-r--r--src/reflect/scala/reflect/api/MirrorOf.scala (renamed from src/library/scala/reflect/base/MirrorOf.scala)8
-rw-r--r--src/reflect/scala/reflect/api/Mirrors.scala18
-rw-r--r--src/reflect/scala/reflect/api/Names.scala65
-rw-r--r--src/reflect/scala/reflect/api/Positions.scala15
-rw-r--r--src/reflect/scala/reflect/api/Scopes.scala (renamed from src/library/scala/reflect/base/Scopes.scala)18
-rw-r--r--src/reflect/scala/reflect/api/StandardDefinitions.scala99
-rw-r--r--src/reflect/scala/reflect/api/StandardNames.scala26
-rw-r--r--src/reflect/scala/reflect/api/Symbols.scala290
-rw-r--r--src/reflect/scala/reflect/api/TagInterop.scala47
-rw-r--r--src/reflect/scala/reflect/api/TreeCreator.scala (renamed from src/library/scala/reflect/base/TreeCreator.scala)2
-rw-r--r--src/reflect/scala/reflect/api/Trees.scala1418
-rw-r--r--src/reflect/scala/reflect/api/TypeCreator.scala (renamed from src/library/scala/reflect/base/TypeCreator.scala)2
-rw-r--r--src/reflect/scala/reflect/api/TypeTags.scala (renamed from src/library/scala/reflect/base/TypeTags.scala)37
-rw-r--r--src/reflect/scala/reflect/api/Types.scala451
-rw-r--r--src/reflect/scala/reflect/api/Universe.scala75
-rw-r--r--src/reflect/scala/reflect/api/package.scala87
-rw-r--r--src/reflect/scala/reflect/internal/BuildUtils.scala6
-rw-r--r--src/reflect/scala/reflect/internal/Definitions.scala47
-rw-r--r--src/reflect/scala/reflect/internal/Scopes.scala2
-rw-r--r--src/reflect/scala/reflect/internal/StdAttachments.scala2
-rw-r--r--src/reflect/scala/reflect/internal/StdCreators.scala8
-rw-r--r--src/reflect/scala/reflect/internal/StdNames.scala1
-rw-r--r--src/reflect/scala/reflect/internal/Symbols.scala1
-rw-r--r--src/reflect/scala/reflect/internal/TreeGen.scala3
-rw-r--r--src/reflect/scala/reflect/internal/Trees.scala1
-rw-r--r--src/reflect/scala/reflect/internal/package.scala2
-rw-r--r--src/reflect/scala/reflect/internal/util/Position.scala2
-rw-r--r--src/reflect/scala/reflect/macros/Reifiers.scala7
-rw-r--r--src/reflect/scala/reflect/macros/Universe.scala2
-rw-r--r--src/reflect/scala/reflect/macros/package.scala2
-rw-r--r--test/files/neg/macro-invalidret-nonuniversetree.check4
-rw-r--r--test/files/neg/macro-invalidret-nonuniversetree/Impls_1.scala3
-rw-r--r--test/files/pos/typetags.scala26
-rw-r--r--test/files/run/abstypetags_serialize.scala3
-rw-r--r--test/files/run/exprs_serialize.scala3
-rw-r--r--test/files/run/macro-expand-implicit-argument/Macros_1.scala2
-rw-r--r--test/files/run/macro-typecheck-macrosdisabled.check4
-rw-r--r--test/files/run/macro-typecheck-macrosdisabled2.check4
-rw-r--r--test/files/run/newTags.check4
-rw-r--r--test/files/run/newTags.scala9
-rw-r--r--test/files/run/reflection-magicsymbols-invoke.check2
-rw-r--r--test/files/run/reflection-magicsymbols-invoke.scala2
-rw-r--r--test/files/run/toolbox_typecheck_macrosdisabled.check82
-rw-r--r--test/files/run/toolbox_typecheck_macrosdisabled2.check82
-rw-r--r--test/files/run/typetags_serialize.check2
-rw-r--r--test/files/run/typetags_serialize.scala3
-rw-r--r--test/scaladoc/resources/implicits-known-type-classes-res.scala3
88 files changed, 2870 insertions, 4008 deletions
diff --git a/src/compiler/scala/reflect/macros/runtime/Reifiers.scala b/src/compiler/scala/reflect/macros/runtime/Reifiers.scala
index ab1de4288b..f15a7ad502 100644
--- a/src/compiler/scala/reflect/macros/runtime/Reifiers.scala
+++ b/src/compiler/scala/reflect/macros/runtime/Reifiers.scala
@@ -13,17 +13,17 @@ trait Reifiers {
import universe._
import definitions._
- lazy val basisUniverse: Tree = gen.mkBasisUniverseRef
-
lazy val runtimeUniverse: Tree = gen.mkRuntimeUniverseRef
def reifyTree(universe: Tree, mirror: Tree, tree: Tree): Tree = {
+ assert(ExprClass != NoSymbol)
val result = scala.reflect.reify.`package`.reifyTree(self.universe)(callsiteTyper, universe, mirror, tree)
logFreeVars(enclosingPosition, result)
result
}
def reifyType(universe: Tree, mirror: Tree, tpe: Type, concrete: Boolean = false): Tree = {
+ assert(TypeTagsClass != NoSymbol)
val result = scala.reflect.reify.`package`.reifyType(self.universe)(callsiteTyper, universe, mirror, tpe, concrete)
logFreeVars(enclosingPosition, result)
result
diff --git a/src/compiler/scala/reflect/reify/Reifier.scala b/src/compiler/scala/reflect/reify/Reifier.scala
index f602fe9b99..6f779be17d 100644
--- a/src/compiler/scala/reflect/reify/Reifier.scala
+++ b/src/compiler/scala/reflect/reify/Reifier.scala
@@ -109,7 +109,7 @@ abstract class Reifier extends States
// maybe try `resetLocalAttrs` once the dust settles
var importantSymbols = Set[Symbol](
NothingClass, AnyClass, SingletonClass, PredefModule, ScalaRunTimeModule, TypeCreatorClass, TreeCreatorClass, MirrorOfClass,
- BaseUniverseClass, JavaUniverseClass, ReflectRuntimePackage, ReflectRuntimeCurrentMirror)
+ ApiUniverseClass, JavaUniverseClass, ReflectRuntimePackage, ReflectRuntimeCurrentMirror)
importantSymbols ++= importantSymbols map (_.companionSymbol)
importantSymbols ++= importantSymbols map (_.moduleClass)
importantSymbols ++= importantSymbols map (_.linkedClassOfClass)
diff --git a/src/compiler/scala/reflect/reify/Taggers.scala b/src/compiler/scala/reflect/reify/Taggers.scala
index bc12d383a4..7db6394734 100644
--- a/src/compiler/scala/reflect/reify/Taggers.scala
+++ b/src/compiler/scala/reflect/reify/Taggers.scala
@@ -27,9 +27,9 @@ abstract class Taggers {
NothingTpe -> nme.Nothing,
NullTpe -> nme.Null)
- def materializeClassTag(prefix: Tree, tpe: Type): Tree = {
+ def materializeClassTag(tpe: Type): Tree = {
val tagModule = ClassTagModule
- materializeTag(prefix, tpe, tagModule, {
+ materializeTag(EmptyTree, tpe, tagModule, {
val erasure = c.reifyRuntimeClass(tpe, concrete = true)
val factory = TypeApply(Select(Ident(tagModule), nme.apply), List(TypeTree(tpe)))
Apply(factory, List(erasure))
@@ -38,13 +38,13 @@ abstract class Taggers {
def materializeTypeTag(universe: Tree, mirror: Tree, tpe: Type, concrete: Boolean): Tree = {
val tagType = if (concrete) TypeTagClass else WeakTypeTagClass
- // what we need here is to compose a type BaseUniverse # TypeTag[$tpe]
+ // what we need here is to compose a type Universe # TypeTag[$tpe]
// to look for an implicit that conforms to this type
// that's why neither appliedType(tagType, List(tpe)) aka TypeRef(TypeTagsClass.thisType, tagType, List(tpe))
- // nor TypeRef(BaseUniverseClass.thisType, tagType, List(tpe)) won't fit here
- // scala> :type -v def foo: scala.reflect.base.Universe#TypeTag[Int] = ???
+ // nor TypeRef(ApiUniverseClass.thisType, tagType, List(tpe)) won't fit here
+ // scala> :type -v def foo: scala.reflect.api.Universe#TypeTag[Int] = ???
// NullaryMethodType(TypeRef(pre = TypeRef(TypeSymbol(Universe)), TypeSymbol(TypeTag), args = List($tpe))))
- val unaffiliatedTagTpe = TypeRef(BaseUniverseClass.typeConstructor, tagType, List(tpe))
+ val unaffiliatedTagTpe = TypeRef(ApiUniverseClass.typeConstructor, tagType, List(tpe))
val unaffiliatedTag = c.inferImplicitValue(unaffiliatedTagTpe, silent = true, withMacrosDisabled = true)
unaffiliatedTag match {
case success if !success.isEmpty =>
diff --git a/src/compiler/scala/reflect/reify/package.scala b/src/compiler/scala/reflect/reify/package.scala
index a76f147dc4..2600956805 100644
--- a/src/compiler/scala/reflect/reify/package.scala
+++ b/src/compiler/scala/reflect/reify/package.scala
@@ -1,7 +1,6 @@
package scala.reflect
import scala.language.implicitConversions
-import scala.reflect.base.{Universe => BaseUniverse}
import scala.reflect.macros.{Context, ReificationError, UnexpectedReificationError}
import scala.tools.nsc.Global
diff --git a/src/compiler/scala/reflect/reify/phases/Reshape.scala b/src/compiler/scala/reflect/reify/phases/Reshape.scala
index baeea8cd9d..b5894e8eb6 100644
--- a/src/compiler/scala/reflect/reify/phases/Reshape.scala
+++ b/src/compiler/scala/reflect/reify/phases/Reshape.scala
@@ -101,11 +101,11 @@ trait Reshape {
// hence we cannot reify references to them, because noone will be able to see them later
// when implicit macros are fixed, these sneaky macros will move to corresponding companion objects
// of, say, ClassTag or TypeTag
- case Apply(TypeApply(_, List(tt)), _) if original.symbol == MacroInternal_materializeClassTag =>
+ case Apply(TypeApply(_, List(tt)), _) if original.symbol == materializeClassTag =>
gen.mkNullaryCall(Predef_implicitly, List(appliedType(ClassTagClass, tt.tpe)))
- case Apply(TypeApply(_, List(tt)), List(pre)) if original.symbol == MacroInternal_materializeWeakTypeTag =>
+ case Apply(TypeApply(_, List(tt)), List(pre)) if original.symbol == materializeWeakTypeTag =>
gen.mkNullaryCall(Predef_implicitly, List(typeRef(pre.tpe, WeakTypeTagClass, List(tt.tpe))))
- case Apply(TypeApply(_, List(tt)), List(pre)) if original.symbol == MacroInternal_materializeTypeTag =>
+ case Apply(TypeApply(_, List(tt)), List(pre)) if original.symbol == materializeTypeTag =>
gen.mkNullaryCall(Predef_implicitly, List(typeRef(pre.tpe, TypeTagClass, List(tt.tpe))))
case _ =>
original
diff --git a/src/compiler/scala/reflect/reify/utils/Extractors.scala b/src/compiler/scala/reflect/reify/utils/Extractors.scala
index 1df9efbb82..bf211ceec4 100644
--- a/src/compiler/scala/reflect/reify/utils/Extractors.scala
+++ b/src/compiler/scala/reflect/reify/utils/Extractors.scala
@@ -14,12 +14,12 @@ trait Extractors {
// val $u: reflect.runtime.universe.type = scala.reflect.runtime.`package`.universe;
// val $m: $u.Mirror = $u.runtimeMirror(Test.this.getClass().getClassLoader());
// $u.Expr[List[Int]]($m, {
- // final class $treecreator1 extends scala.reflect.base.TreeCreator {
+ // final class $treecreator1 extends scala.reflect.api.TreeCreator {
// def <init>(): $treecreator1 = {
// $treecreator1.super.<init>();
// ()
// };
- // def apply[U >: Nothing <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Tree = {
+ // def apply[U >: Nothing <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Tree = {
// val $u: U = $m$untyped.universe;
// val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
// $u.Apply($u.Select($u.Select($u.build.This($m.staticPackage("scala.collection.immutable").moduleClass), $u.newTermName("List")), $u.newTermName("apply")), List($u.Literal($u.Constant(1)), $u.Literal($u.Constant(2))))
@@ -27,12 +27,12 @@ trait Extractors {
// };
// new $treecreator1()
// })($u.TypeTag[List[Int]]($m, {
- // final class $typecreator1 extends scala.reflect.base.TypeCreator {
+ // final class $typecreator1 extends scala.reflect.api.TypeCreator {
// def <init>(): $typecreator1 = {
// $typecreator1.super.<init>();
// ()
// };
- // def apply[U >: Nothing <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Type = {
+ // def apply[U >: Nothing <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Type = {
// val $u: U = $m$untyped.universe;
// val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
// $u.TypeRef($u.ThisType($m.staticPackage("scala.collection.immutable").moduleClass), $m.staticClass("scala.collection.immutable.List"), List($m.staticClass("scala.Int").toTypeConstructor))
@@ -45,8 +45,8 @@ trait Extractors {
private def mkCreator(flavor: TypeName, symtab: SymbolTable, rtree: Tree): Tree = {
val tparamu = newTypeName("U")
val (reifierBase, reifierName, reifierTpt, reifierUniverse) = flavor match {
- case tpnme.REIFY_TYPECREATOR_PREFIX => (TypeCreatorClass, nme.apply, SelectFromTypeTree(Ident(tparamu), tpnme.Type), BaseUniverseClass)
- case tpnme.REIFY_TREECREATOR_PREFIX => (TreeCreatorClass, nme.apply, SelectFromTypeTree(Ident(tparamu), tpnme.Tree), BaseUniverseClass)
+ case tpnme.REIFY_TYPECREATOR_PREFIX => (TypeCreatorClass, nme.apply, SelectFromTypeTree(Ident(tparamu), tpnme.Type), ApiUniverseClass)
+ case tpnme.REIFY_TREECREATOR_PREFIX => (TreeCreatorClass, nme.apply, SelectFromTypeTree(Ident(tparamu), tpnme.Tree), ApiUniverseClass)
case _ => throw new Error(s"unexpected flavor $flavor")
}
val reifierBody = {
diff --git a/src/compiler/scala/reflect/reify/utils/NodePrinters.scala b/src/compiler/scala/reflect/reify/utils/NodePrinters.scala
index b2999c3c1c..f0480e0699 100644
--- a/src/compiler/scala/reflect/reify/utils/NodePrinters.scala
+++ b/src/compiler/scala/reflect/reify/utils/NodePrinters.scala
@@ -75,7 +75,7 @@ trait NodePrinters {
val printout = scala.collection.mutable.ListBuffer[String]();
printout += universe.trim
- if (mirrorIsUsed) printout += mirror.replace("MirrorOf[", "scala.reflect.base.MirrorOf[").trim
+ if (mirrorIsUsed) printout += mirror.replace("MirrorOf[", "scala.reflect.api.MirrorOf[").trim
val imports = scala.collection.mutable.ListBuffer[String]();
imports += nme.UNIVERSE_SHORT
// if (buildIsUsed) imports += nme.build
diff --git a/src/compiler/scala/tools/nsc/doc/Settings.scala b/src/compiler/scala/tools/nsc/doc/Settings.scala
index f5df772d7d..dbbc573299 100644
--- a/src/compiler/scala/tools/nsc/doc/Settings.scala
+++ b/src/compiler/scala/tools/nsc/doc/Settings.scala
@@ -250,15 +250,15 @@ class Settings(error: String => Unit, val printMsg: String => Unit = println(_))
* the function result should be a humanly-understandable description of the type class
*/
val knownTypeClasses: Map[String, String => String] = Map() +
- ("scala.math.Numeric" -> ((tparam: String) => tparam + " is a numeric class, such as Int, Long, Float or Double")) +
- ("scala.math.Integral" -> ((tparam: String) => tparam + " is an integral numeric class, such as Int or Long")) +
- ("scala.math.Fractional" -> ((tparam: String) => tparam + " is a fractional numeric class, such as Float or Double")) +
- ("scala.reflect.Manifest" -> ((tparam: String) => tparam + " is accompanied by a Manifest, which is a runtime representation of its type that survives erasure")) +
- ("scala.reflect.ClassManifest" -> ((tparam: String) => tparam + " is accompanied by a ClassManifest, which is a runtime representation of its type that survives erasure")) +
- ("scala.reflect.OptManifest" -> ((tparam: String) => tparam + " is accompanied by an OptManifest, which can be either a runtime representation of its type or the NoManifest, which means the runtime type is not available")) +
- ("scala.reflect.ClassTag" -> ((tparam: String) => tparam + " is accompanied by a ClassTag, which is a runtime representation of its type that survives erasure")) +
- ("scala.reflect.WeakTypeTag" -> ((tparam: String) => tparam + " is accompanied by an WeakTypeTag, which is a runtime representation of its type that survives erasure")) +
- ("scala.reflect.base.TypeTags.TypeTag" -> ((tparam: String) => tparam + " is accompanied by a TypeTag, which is a runtime representation of its type that survives erasure"))
+ ("scala.math.Numeric" -> ((tparam: String) => tparam + " is a numeric class, such as Int, Long, Float or Double")) +
+ ("scala.math.Integral" -> ((tparam: String) => tparam + " is an integral numeric class, such as Int or Long")) +
+ ("scala.math.Fractional" -> ((tparam: String) => tparam + " is a fractional numeric class, such as Float or Double")) +
+ ("scala.reflect.Manifest" -> ((tparam: String) => tparam + " is accompanied by a Manifest, which is a runtime representation of its type that survives erasure")) +
+ ("scala.reflect.ClassManifest" -> ((tparam: String) => tparam + " is accompanied by a ClassManifest, which is a runtime representation of its type that survives erasure")) +
+ ("scala.reflect.OptManifest" -> ((tparam: String) => tparam + " is accompanied by an OptManifest, which can be either a runtime representation of its type or the NoManifest, which means the runtime type is not available")) +
+ ("scala.reflect.ClassTag" -> ((tparam: String) => tparam + " is accompanied by a ClassTag, which is a runtime representation of its type that survives erasure")) +
+ ("scala.reflect.api.TypeTags.WeakTypeTag" -> ((tparam: String) => tparam + " is accompanied by an WeakTypeTag, which is a runtime representation of its type that survives erasure")) +
+ ("scala.reflect.api.TypeTags.TypeTag" -> ((tparam: String) => tparam + " is accompanied by a TypeTag, which is a runtime representation of its type that survives erasure"))
/**
* Set of classes to exclude from index and diagrams
diff --git a/src/compiler/scala/tools/nsc/interpreter/ReplVals.scala b/src/compiler/scala/tools/nsc/interpreter/ReplVals.scala
index f27c4a8123..9503c7d970 100644
--- a/src/compiler/scala/tools/nsc/interpreter/ReplVals.scala
+++ b/src/compiler/scala/tools/nsc/interpreter/ReplVals.scala
@@ -7,7 +7,7 @@ package scala.tools.nsc
package interpreter
import scala.language.implicitConversions
-import scala.reflect.base.{Universe => BaseUniverse}
+import scala.reflect.api.{Universe => ApiUniverse}
import scala.reflect.runtime.{universe => ru}
/** A class which the repl utilizes to expose predefined objects.
@@ -65,7 +65,7 @@ object ReplVals {
* I have this forwarder which widens the type and then cast the result back
* to the dependent type.
*/
- def compilerTypeFromTag(t: BaseUniverse # WeakTypeTag[_]): Global#Type =
+ def compilerTypeFromTag(t: ApiUniverse # WeakTypeTag[_]): Global#Type =
definitions.compilerTypeFromTag(t)
class AppliedTypeFromTags(sym: Symbol) {
diff --git a/src/compiler/scala/tools/nsc/typechecker/Implicits.scala b/src/compiler/scala/tools/nsc/typechecker/Implicits.scala
index dd7f26861f..7852ff49e1 100644
--- a/src/compiler/scala/tools/nsc/typechecker/Implicits.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/Implicits.scala
@@ -1150,9 +1150,9 @@ trait Implicits {
private def TagSymbols = TagMaterializers.keySet
private val TagMaterializers = Map[Symbol, Symbol](
- ClassTagClass -> MacroInternal_materializeClassTag,
- WeakTypeTagClass -> MacroInternal_materializeWeakTypeTag,
- TypeTagClass -> MacroInternal_materializeTypeTag
+ ClassTagClass -> materializeClassTag,
+ WeakTypeTagClass -> materializeWeakTypeTag,
+ TypeTagClass -> materializeTypeTag
)
/** Creates a tree will produce a tag of the requested flavor.
@@ -1183,7 +1183,7 @@ trait Implicits {
val prefix = (
// ClassTags are not path-dependent, so their materializer doesn't care about prefixes
- if (tagClass eq ClassTagClass) gen.mkBasisUniverseRef
+ if (tagClass eq ClassTagClass) EmptyTree
else pre match {
case SingleType(prePre, preSym) =>
gen.mkAttributedRef(prePre, preSym) setType pre
@@ -1205,7 +1205,7 @@ trait Implicits {
}
)
// todo. migrate hardcoded materialization in Implicits to corresponding implicit macros
- var materializer = atPos(pos.focus)(gen.mkMethodCall(TagMaterializers(tagClass), List(tp), List(prefix)))
+ var materializer = atPos(pos.focus)(gen.mkMethodCall(TagMaterializers(tagClass), List(tp), if (prefix != EmptyTree) List(prefix) else List()))
if (settings.XlogImplicits.value) println("materializing requested %s.%s[%s] using %s".format(pre, tagClass.name, tp, materializer))
if (context.macrosEnabled) success(materializer)
// don't call `failure` here. if macros are disabled, we just fail silently
diff --git a/src/compiler/scala/tools/nsc/typechecker/Tags.scala b/src/compiler/scala/tools/nsc/typechecker/Tags.scala
index 167bf5c857..0dbeafadbe 100644
--- a/src/compiler/scala/tools/nsc/typechecker/Tags.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/Tags.scala
@@ -48,8 +48,8 @@ trait Tags {
* @param pos Position for error reporting. Please, provide meaningful value.
* @param pre Prefix that represents a universe this type tag will be bound to.
* If `pre` is set to `NoType`, then any type tag in scope will do, regardless of its affiliation.
- * If `pre` is set to `NoType`, and tag resolution involves materialization, then `mkBasisPrefix` will be used.
- * @param tp Type we're looking a TypeTag for, e.g. resolveTypeTag(pos, reflectBasisPrefix, IntClass.tpe, false) will look for scala.reflect.basis.TypeTag[Int].
+ * If `pre` is set to `NoType`, and tag resolution involves materialization, then `mkRuntimeUniverseRef` will be used.
+ * @param tp Type we're looking a TypeTag for, e.g. resolveTypeTag(pos, mkRuntimeUniverseRef, IntClass.tpe, false) will look for scala.reflect.runtime.universe.TypeTag[Int].
* @param concrete If true then the result must not contain unresolved (i.e. not spliced) type parameters and abstract type members.
* If false then the function will always succeed (abstract types will be reified as free types).
* @param allowMaterialization If true (default) then the resolver is allowed to launch materialization macros when there's no type tag in scope.
@@ -61,7 +61,7 @@ trait Tags {
*/
def resolveTypeTag(pos: Position, pre: Type, tp: Type, concrete: Boolean, allowMaterialization: Boolean = true): Tree = {
val tagSym = if (concrete) TypeTagClass else WeakTypeTagClass
- val tagTp = if (pre == NoType) TypeRef(BaseUniverseClass.toTypeConstructor, tagSym, List(tp)) else singleType(pre, pre member tagSym.name)
+ val tagTp = if (pre == NoType) TypeRef(ApiUniverseClass.toTypeConstructor, tagSym, List(tp)) else singleType(pre, pre member tagSym.name)
val taggedTp = appliedType(tagTp, List(tp))
resolveTag(pos, taggedTp, allowMaterialization)
}
diff --git a/src/compiler/scala/tools/reflect/FastTrack.scala b/src/compiler/scala/tools/reflect/FastTrack.scala
index 1af2842d05..d35ac43424 100644
--- a/src/compiler/scala/tools/reflect/FastTrack.scala
+++ b/src/compiler/scala/tools/reflect/FastTrack.scala
@@ -30,13 +30,10 @@ trait FastTrack {
lazy val fastTrack: Map[Symbol, FastTrackEntry] = {
var registry = Map[Symbol, FastTrackEntry]()
implicit class BindTo(sym: Symbol) { def bindTo(expander: FastTrackExpander): Unit = if (sym != NoSymbol) registry += sym -> FastTrackEntry(sym, expander) }
- MacroInternal_materializeClassTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeClassTag(u, tt.tpe) }
- materializeClassTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeClassTag(u, tt.tpe) }
- MacroInternal_materializeWeakTypeTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeTypeTag(u, EmptyTree, tt.tpe, concrete = false) }
+ materializeClassTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List())) => c.materializeClassTag(tt.tpe) }
materializeWeakTypeTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeTypeTag(u, EmptyTree, tt.tpe, concrete = false) }
- MacroInternal_materializeTypeTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeTypeTag(u, EmptyTree, tt.tpe, concrete = true) }
materializeTypeTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeTypeTag(u, EmptyTree, tt.tpe, concrete = true) }
- BaseUniverseReify bindTo { case (c, Apply(TypeApply(_, List(tt)), List(expr))) => c.materializeExpr(c.prefix.tree, EmptyTree, expr) }
+ ApiUniverseReify bindTo { case (c, Apply(TypeApply(_, List(tt)), List(expr))) => c.materializeExpr(c.prefix.tree, EmptyTree, expr) }
ReflectRuntimeCurrentMirror bindTo { case (c, _) => scala.reflect.runtime.Macros.currentMirror(c).tree }
StringContext_f bindTo { case (c, app@Apply(Select(Apply(_, parts), _), args)) => c.macro_StringInterpolation_f(parts, args, app.pos) }
registry
diff --git a/src/compiler/scala/tools/reflect/StdTags.scala b/src/compiler/scala/tools/reflect/StdTags.scala
index 0704189ddc..94fd8e1fe8 100644
--- a/src/compiler/scala/tools/reflect/StdTags.scala
+++ b/src/compiler/scala/tools/reflect/StdTags.scala
@@ -3,21 +3,21 @@ package reflect
import java.lang.{Class => jClass}
import scala.reflect.{ClassTag, classTag}
-import scala.reflect.base.{MirrorOf, TypeCreator, Universe => BaseUniverse}
+import scala.reflect.api.{MirrorOf, TypeCreator, Universe => ApiUniverse}
// [Eugene++] Before 2.10 is released, I suggest we don't rely on automated type tag generation
// sure, it's convenient, but then refactoring reflection / reification becomes a pain
// `ClassTag` tags are fine, because they don't need a reifier to be generated
trait StdTags {
- val u: BaseUniverse with Singleton
+ val u: ApiUniverse with Singleton
val m: MirrorOf[u.type]
lazy val tagOfListOfString: u.TypeTag[List[String]] =
u.TypeTag[List[String]](
m,
new TypeCreator {
- def apply[U <: BaseUniverse with Singleton](m: MirrorOf[U]): U # Type = {
+ def apply[U <: ApiUniverse with Singleton](m: MirrorOf[U]): U # Type = {
val u = m.universe
val pre = u.ThisType(m.staticPackage("scala.collection.immutable").moduleClass.asInstanceOf[u.Symbol])
u.TypeRef(pre, u.definitions.ListClass, List(u.definitions.StringClass.toTypeConstructor))
@@ -28,7 +28,7 @@ trait StdTags {
u.TypeTag[T](
m,
new TypeCreator {
- def apply[U <: BaseUniverse with Singleton](m: MirrorOf[U]): U # Type =
+ def apply[U <: ApiUniverse with Singleton](m: MirrorOf[U]): U # Type =
m.staticClass(classTag[T].runtimeClass.getName).toTypeConstructor.asInstanceOf[U # Type]
})
lazy val tagOfInt = u.TypeTag.Int
diff --git a/src/compiler/scala/tools/reflect/ToolBox.scala b/src/compiler/scala/tools/reflect/ToolBox.scala
index 9e7d230a6a..f627699597 100644
--- a/src/compiler/scala/tools/reflect/ToolBox.scala
+++ b/src/compiler/scala/tools/reflect/ToolBox.scala
@@ -1,10 +1,7 @@
package scala.tools
package reflect
-import scala.reflect.api.Universe
-import scala.reflect.base.MirrorOf
-
-trait ToolBox[U <: Universe] {
+trait ToolBox[U <: scala.reflect.api.Universe] {
/** Underlying universe of a ToolBox
*/
diff --git a/src/compiler/scala/tools/reflect/ToolBoxFactory.scala b/src/compiler/scala/tools/reflect/ToolBoxFactory.scala
index 091224c88a..27d62e2bac 100644
--- a/src/compiler/scala/tools/reflect/ToolBoxFactory.scala
+++ b/src/compiler/scala/tools/reflect/ToolBoxFactory.scala
@@ -14,7 +14,6 @@ import java.lang.{Class => jClass}
import scala.compat.Platform.EOL
import scala.reflect.NameTransformer
import scala.reflect.api.JavaUniverse
-import scala.reflect.base.MirrorOf
abstract class ToolBoxFactory[U <: JavaUniverse](val u: U) { factorySelf =>
diff --git a/src/library/scala/reflect/ClassTag.scala b/src/library/scala/reflect/ClassTag.scala
index 1a574836c0..5c2067a548 100644
--- a/src/library/scala/reflect/ClassTag.scala
+++ b/src/library/scala/reflect/ClassTag.scala
@@ -11,13 +11,13 @@ import scala.runtime.ScalaRunTime.{ arrayClass, arrayElementClass }
* The runtime class (i.e. the erasure, a java.lang.Class on the JVM) of T can be accessed
* via the `runtimeClass` field. References to type parameters or abstract type members are
* replaced by the concrete types if ClassTags are available for them.
- *
+ *
* Besides accessing the erasure, a ClassTag knows how to instantiate single- and multi-
* dimensional `Arrays` where the element type is unknown at compile time.
*
* [[scala.reflect.ClassTag]] corresponds to a previous concept of [[scala.reflect.ClassManifest]].
*
- * @see [[scala.reflect.base.TypeTags]]
+ * @see [[scala.reflect.api.TypeTags]]
*/
@scala.annotation.implicitNotFound(msg = "No ClassTag available for ${T}")
trait ClassTag[T] extends ClassManifestDeprecatedApis[T] with Equals with Serializable {
diff --git a/src/library/scala/reflect/base/Annotations.scala b/src/library/scala/reflect/base/Annotations.scala
deleted file mode 100644
index 107443f09b..0000000000
--- a/src/library/scala/reflect/base/Annotations.scala
+++ /dev/null
@@ -1,106 +0,0 @@
-package scala.reflect
-package base
-
-import scala.collection.immutable.ListMap
-
-/**
- * Defines the type hierarchy for annotations.
- */
-trait Annotations { self: Universe =>
-
- /** Typed information about an annotation. It can be attached to either a symbol or an annotated type.
- *
- * Annotations are either ''Scala annotations'', which conform to [[scala.annotation.StaticAnnotation]]
- * or ''Java annotations'', which conform to [[scala.annotation.ClassfileAnnotation]].
- * Trait `ClassfileAnnotation` is automatically added to every Java annotation by the scalac classfile parser.
- */
- type Annotation >: Null <: AnyRef
-
- /** A tag that preserves the identity of the `Annotation` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AnnotationTag: ClassTag[Annotation]
-
- /** The constructor/deconstructor for `Annotation` instances. */
- val Annotation: AnnotationExtractor
-
- /** An extractor class to create and pattern match with syntax `Annotation(atp, scalaArgs, javaArgs)`.
- * Here, `atp` is the annotation type, `scalaArgs` the arguments, and `javaArgs` the annotation's key-value
- * pairs.
- *
- * Annotations are pickled, i.e. written to scala symtab attribute in the classfile.
- * Annotations are written to the classfile as Java annotations if `atp` conforms to `ClassfileAnnotation`.
- *
- * For Scala annotations, arguments are stored in `scalaArgs` and `javaArgs` is empty. Arguments in
- * `scalaArgs` are represented as typed trees. Note that these trees are not transformed by any phases
- * following the type-checker. For Java annotations, `scalaArgs` is empty and arguments are stored in
- * `javaArgs`.
- */
- abstract class AnnotationExtractor {
- def apply(tpe: Type, scalaArgs: List[Tree], javaArgs: ListMap[Name, JavaArgument]): Annotation
- def unapply(ann: Annotation): Option[(Type, List[Tree], ListMap[Name, JavaArgument])]
- }
-
- /** A Java annotation argument */
- type JavaArgument >: Null <: AnyRef
- implicit val JavaArgumentTag: ClassTag[JavaArgument]
-
- /** A literal argument to a Java annotation as `"Use X instead"` in `@Deprecated("Use X instead")`*/
- type LiteralArgument >: Null <: AnyRef with JavaArgument
-
- /** A tag that preserves the identity of the `LiteralArgument` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val LiteralArgumentTag: ClassTag[LiteralArgument]
-
- /** The constructor/deconstructor for `LiteralArgument` instances. */
- val LiteralArgument: LiteralArgumentExtractor
-
- /** An extractor class to create and pattern match with syntax `LiteralArgument(value)`
- * where `value` is the constant argument.
- */
- abstract class LiteralArgumentExtractor {
- def apply(value: Constant): LiteralArgument
- def unapply(arg: LiteralArgument): Option[Constant]
- }
-
- /** An array argument to a Java annotation as in `@Target(value={TYPE,FIELD,METHOD,PARAMETER})`
- */
- type ArrayArgument >: Null <: AnyRef with JavaArgument
-
- /** A tag that preserves the identity of the `ArrayArgument` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ArrayArgumentTag: ClassTag[ArrayArgument]
-
- /** The constructor/deconstructor for `ArrayArgument` instances. */
- val ArrayArgument: ArrayArgumentExtractor
-
- /** An extractor class to create and pattern match with syntax `ArrayArgument(args)`
- * where `args` is the argument array.
- */
- abstract class ArrayArgumentExtractor {
- def apply(args: Array[JavaArgument]): ArrayArgument
- def unapply(arg: ArrayArgument): Option[Array[JavaArgument]]
- }
-
- /** A nested annotation argument to a Java annotation as `@Nested` in `@Outer(@Nested)`.
- */
- type NestedArgument >: Null <: AnyRef with JavaArgument
-
- /** A tag that preserves the identity of the `NestedArgument` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val NestedArgumentTag: ClassTag[NestedArgument]
-
- /** The constructor/deconstructor for `NestedArgument` instances. */
- val NestedArgument: NestedArgumentExtractor
-
- /** An extractor class to create and pattern match with syntax `NestedArgument(annotation)`
- * where `annotation` is the nested annotation.
- */
- abstract class NestedArgumentExtractor {
- def apply(annotation: Annotation): NestedArgument
- def unapply(arg: NestedArgument): Option[Annotation]
- }
-} \ No newline at end of file
diff --git a/src/library/scala/reflect/base/Base.scala b/src/library/scala/reflect/base/Base.scala
deleted file mode 100644
index 5136f41df4..0000000000
--- a/src/library/scala/reflect/base/Base.scala
+++ /dev/null
@@ -1,765 +0,0 @@
-package scala.reflect
-package base
-
-import java.io.PrintWriter
-import scala.annotation.switch
-import scala.ref.WeakReference
-import scala.collection.mutable
-import scala.collection.immutable.ListMap
-
-/**
- * This is an internal implementation class.
- */
-class Base extends Universe { self =>
-
- private var nextId = 0
-
- abstract class Symbol(val name: Name, val flags: FlagSet) extends SymbolBase {
- val id = { nextId += 1; nextId }
- def owner: Symbol
- def fullName: String =
- if (isEffectiveRoot || owner.isEffectiveRoot) name.toString else owner.fullName + "." + name
- private def isEffectiveRoot =
- this == NoSymbol || this == rootMirror.RootClass || this == rootMirror.EmptyPackageClass
-
- def newTermSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TermSymbol =
- new TermSymbol(this, name, flags)
-
- def newModuleAndClassSymbol(name: Name, pos: Position = NoPosition, flags: FlagSet = NoFlags): (ModuleSymbol, ClassSymbol) = {
- val c = new ModuleClassSymbol(this, name.toTypeName, flags)
- val m = new ModuleSymbol(this, name.toTermName, flags, c)
- (m, c)
- }
-
- def newMethodSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): MethodSymbol
- = new MethodSymbol(this, name, flags)
-
- def newTypeSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TypeSymbol =
- new TypeSymbol(this, name, flags)
-
- def newClassSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): ClassSymbol =
- new ClassSymbol(this, name, flags)
-
- def newFreeTermSymbol(name: TermName, value: => Any, flags: FlagSet = NoFlags, origin: String = null) =
- new FreeTermSymbol(this, name, flags)
-
- def newFreeTypeSymbol(name: TypeName, flags: FlagSet = NoFlags, origin: String = null) =
- new FreeTypeSymbol(this, name, flags)
-
- private def kindString: String =
- if (isModule) "module"
- else if (isClass) "class"
- else if (isFreeType) "free type"
- else if (isType) "type"
- else if (isMethod) "method"
- else if (isFreeTerm) "free term"
- else if (isTerm) "value"
- else "symbol"
- override def toString() = s"$kindString $name"
- }
- implicit val SymbolTag = ClassTag[Symbol](classOf[Symbol])
-
- class TermSymbol(val owner: Symbol, override val name: TermName, flags: FlagSet)
- extends Symbol(name, flags) with TermSymbolBase
- implicit val TermSymbolTag = ClassTag[TermSymbol](classOf[TermSymbol])
-
- class TypeSymbol(val owner: Symbol, override val name: TypeName, flags: FlagSet)
- extends Symbol(name, flags) with TypeSymbolBase {
- override def toTypeConstructor = TypeRef(ThisType(owner), this, Nil)
- override def toType = TypeRef(ThisType(owner), this, Nil)
- override def toTypeIn(site: Type) = TypeRef(ThisType(owner), this, Nil)
- }
- implicit val TypeSymbolTag = ClassTag[TypeSymbol](classOf[TypeSymbol])
-
- class MethodSymbol(owner: Symbol, name: TermName, flags: FlagSet)
- extends TermSymbol(owner, name, flags) with MethodSymbolBase
- implicit val MethodSymbolTag = ClassTag[MethodSymbol](classOf[MethodSymbol])
-
- class ModuleSymbol(owner: Symbol, name: TermName, flags: FlagSet, override val moduleClass: Symbol)
- extends TermSymbol(owner, name, flags) with ModuleSymbolBase
- implicit val ModuleSymbolTag = ClassTag[ModuleSymbol](classOf[ModuleSymbol])
-
- class ClassSymbol(owner: Symbol, name: TypeName, flags: FlagSet)
- extends TypeSymbol(owner, name, flags) with ClassSymbolBase
- class ModuleClassSymbol(owner: Symbol, name: TypeName, flags: FlagSet)
- extends ClassSymbol(owner, name, flags) { override def isModuleClass = true }
- implicit val ClassSymbolTag = ClassTag[ClassSymbol](classOf[ClassSymbol])
-
- class FreeTermSymbol(owner: Symbol, name: TermName, flags: FlagSet)
- extends TermSymbol(owner, name, flags) with FreeTermSymbolBase
- implicit val FreeTermSymbolTag = ClassTag[FreeTermSymbol](classOf[FreeTermSymbol])
-
- class FreeTypeSymbol(owner: Symbol, name: TypeName, flags: FlagSet)
- extends TypeSymbol(owner, name, flags) with FreeTypeSymbolBase
- implicit val FreeTypeSymbolTag = ClassTag[FreeTypeSymbol](classOf[FreeTypeSymbol])
-
-
- object NoSymbol extends Symbol(nme.NO_NAME, NoFlags) {
- override def owner = throw new UnsupportedOperationException("NoSymbol.owner")
- }
-
- // todo. write a decent toString that doesn't crash on recursive types
- class Type extends TypeBase {
- def termSymbol: Symbol = NoSymbol
- def typeSymbol: Symbol = NoSymbol
- }
- implicit val TypeTagg = ClassTag[Type](classOf[Type])
-
- val NoType = new Type { override def toString = "NoType" }
- val NoPrefix = new Type { override def toString = "NoPrefix" }
-
- class SingletonType extends Type
- implicit val SingletonTypeTag = ClassTag[SingletonType](classOf[SingletonType])
-
- case class ThisType(sym: Symbol) extends SingletonType { override val typeSymbol = sym }
- object ThisType extends ThisTypeExtractor
- implicit val ThisTypeTag = ClassTag[ThisType](classOf[ThisType])
-
- case class SingleType(pre: Type, sym: Symbol) extends SingletonType { override val termSymbol = sym }
- object SingleType extends SingleTypeExtractor
- implicit val SingleTypeTag = ClassTag[SingleType](classOf[SingleType])
-
- case class SuperType(thistpe: Type, supertpe: Type) extends SingletonType
- object SuperType extends SuperTypeExtractor
- implicit val SuperTypeTag = ClassTag[SuperType](classOf[SuperType])
-
- case class ConstantType(value: Constant) extends SingletonType
- object ConstantType extends ConstantTypeExtractor
- implicit val ConstantTypeTag = ClassTag[ConstantType](classOf[ConstantType])
-
- case class TypeRef(pre: Type, sym: Symbol, args: List[Type]) extends Type { override val typeSymbol = sym }
- object TypeRef extends TypeRefExtractor
- implicit val TypeRefTag = ClassTag[TypeRef](classOf[TypeRef])
-
- abstract class CompoundType extends Type
- implicit val CompoundTypeTag = ClassTag[CompoundType](classOf[CompoundType])
-
- case class RefinedType(parents: List[Type], decls: Scope) extends CompoundType
- object RefinedType extends RefinedTypeExtractor {
- def apply(parents: List[Type], decls: Scope, clazz: Symbol): RefinedType =
- RefinedType(parents, decls)
- }
- implicit val RefinedTypeTag = ClassTag[RefinedType](classOf[RefinedType])
-
- case class ClassInfoType(parents: List[Type], decls: Scope, override val typeSymbol: Symbol) extends CompoundType
- object ClassInfoType extends ClassInfoTypeExtractor
- implicit val ClassInfoTypeTag = ClassTag[ClassInfoType](classOf[ClassInfoType])
-
- case class MethodType(params: List[Symbol], resultType: Type) extends Type
- object MethodType extends MethodTypeExtractor
- implicit val MethodTypeTag = ClassTag[MethodType](classOf[MethodType])
-
- case class NullaryMethodType(resultType: Type) extends Type
- object NullaryMethodType extends NullaryMethodTypeExtractor
- implicit val NullaryMethodTypeTag = ClassTag[NullaryMethodType](classOf[NullaryMethodType])
-
- case class PolyType(typeParams: List[Symbol], resultType: Type) extends Type
- object PolyType extends PolyTypeExtractor
- implicit val PolyTypeTag = ClassTag[PolyType](classOf[PolyType])
-
- case class ExistentialType(quantified: List[Symbol], underlying: Type) extends Type { override def typeSymbol = underlying.typeSymbol }
- object ExistentialType extends ExistentialTypeExtractor
- implicit val ExistentialTypeTag = ClassTag[ExistentialType](classOf[ExistentialType])
-
- case class AnnotatedType(annotations: List[Annotation], underlying: Type, selfsym: Symbol) extends Type { override def typeSymbol = underlying.typeSymbol }
- object AnnotatedType extends AnnotatedTypeExtractor
- implicit val AnnotatedTypeTag = ClassTag[AnnotatedType](classOf[AnnotatedType])
-
- case class TypeBounds(lo: Type, hi: Type) extends Type
- object TypeBounds extends TypeBoundsExtractor
- implicit val TypeBoundsTag = ClassTag[TypeBounds](classOf[TypeBounds])
-
- val WildcardType = new Type
-
- case class BoundedWildcardType(bounds: TypeBounds) extends Type
- object BoundedWildcardType extends BoundedWildcardTypeExtractor
- implicit val BoundedWildcardTypeTag = ClassTag[BoundedWildcardType](classOf[BoundedWildcardType])
-
- class Scope(elems: Iterable[Symbol]) extends ScopeBase with MemberScopeBase {
- def iterator = elems.iterator
- def sorted = elems.toList
- }
- type MemberScope = Scope
- implicit val ScopeTag = ClassTag[Scope](classOf[Scope])
- implicit val MemberScopeTag = ClassTag[MemberScope](classOf[MemberScope])
-
- def newScope: Scope = newScopeWith()
- def newNestedScope(outer: Scope): Scope = newScope
- def newScopeWith(elems: Symbol*): Scope = new Scope(elems)
-
- abstract class Name(str: String) extends NameBase {
- override def toString = str
- }
- implicit val NameTag = ClassTag[Name](classOf[Name])
-
- class TermName(str: String) extends Name(str) {
- def isTermName = true
- def isTypeName = false
- def toTermName = this
- def toTypeName = new TypeName(str)
- }
- implicit val TermNameTag = ClassTag[TermName](classOf[TermName])
-
- class TypeName(str: String) extends Name(str) {
- def isTermName = false
- def isTypeName = true
- def toTermName = new TermName(str)
- def toTypeName = this
- }
- implicit val TypeNameTag = ClassTag[TypeName](classOf[TypeName])
-
- def newTermName(str: String) = new TermName(str)
- def newTypeName(str: String) = new TypeName(str)
-
- object nme extends TermNamesBase {
- val WILDCARD = newTermName("_")
- val CONSTRUCTOR = newTermName("<init>")
- val ROOTPKG = newTermName("_root_")
- val EMPTY = newTermName("")
- val EMPTY_PACKAGE_NAME = newTermName("<empty>")
- val ROOT = newTermName("<root>")
- val NO_NAME = newTermName("<none>")
- }
-
- object tpnme extends TypeNamesBase {
- val WILDCARD = nme.WILDCARD.toTypeName
- val EMPTY = nme.EMPTY.toTypeName
- val WILDCARD_STAR = newTypeName("_*")
- val EMPTY_PACKAGE_NAME = nme.EMPTY_PACKAGE_NAME.toTypeName
- val ROOT = nme.ROOT.toTypeName
- }
-
- type FlagSet = Long
- val NoFlags = 0L
- implicit val FlagSetTag = ClassTag[FlagSet](classOf[FlagSet])
-
- class Modifiers(override val flags: FlagSet,
- override val privateWithin: Name,
- override val annotations: List[Tree]) extends ModifiersBase {
- def hasFlag(flags: FlagSet) = (this.flags & flags) != 0
- }
-
- implicit val ModifiersTag = ClassTag[Modifiers](classOf[Modifiers])
-
- object Modifiers extends ModifiersCreator {
- def apply(flags: Long,
- privateWithin: Name,
- annotations: List[Tree]) = new Modifiers(flags, privateWithin, annotations)
- }
-
- case class Constant(value: Any)
- object Constant extends ConstantExtractor
- implicit val ConstantTag = ClassTag[Constant](classOf[Constant])
-
- case class Annotation(tpe: Type, scalaArgs: List[Tree], javaArgs: ListMap[Name, JavaArgument])
- object Annotation extends AnnotationExtractor
- implicit val AnnotationTag = ClassTag[Annotation](classOf[Annotation])
-
- abstract class JavaArgument
- implicit val JavaArgumentTag = ClassTag[JavaArgument](classOf[JavaArgument])
-
- case class LiteralArgument(value: Constant) extends JavaArgument
- object LiteralArgument extends LiteralArgumentExtractor
- implicit val LiteralArgumentTag = ClassTag[LiteralArgument](classOf[LiteralArgument])
-
- case class ArrayArgument(args: Array[JavaArgument]) extends JavaArgument
- object ArrayArgument extends ArrayArgumentExtractor
- implicit val ArrayArgumentTag = ClassTag[ArrayArgument](classOf[ArrayArgument])
-
- case class NestedArgument(annotation: Annotation) extends JavaArgument
- object NestedArgument extends NestedArgumentExtractor
- implicit val NestedArgumentTag = ClassTag[NestedArgument](classOf[NestedArgument])
-
- class Position extends Attachments {
- override type Pos = Position
- def pos = this
- def withPos(newPos: Position) = newPos
- def isRange = false
- def focus = this
- }
- implicit val PositionTag = ClassTag[Position](classOf[Position])
-
- val NoPosition = new Position
-
- private val generated = new mutable.HashMap[String, WeakReference[Symbol]]
-
- private def cached(name: String)(symExpr: => Symbol): Symbol =
- generated get name match {
- case Some(WeakReference(sym)) =>
- sym
- case _ =>
- val sym = symExpr
- generated(name) = WeakReference(sym)
- sym
- }
-
- object build extends BuildBase {
- def selectType(owner: Symbol, name: String): TypeSymbol = {
- val clazz = new ClassSymbol(owner, newTypeName(name), NoFlags)
- cached(clazz.fullName)(clazz).asType
- }
-
- def selectTerm(owner: Symbol, name: String): TermSymbol = {
- val valu = new MethodSymbol(owner, newTermName(name), NoFlags)
- cached(valu.fullName)(valu).asTerm
- }
-
- def selectOverloadedMethod(owner: Symbol, name: String, index: Int): MethodSymbol =
- selectTerm(owner, name).asMethod
-
- def newNestedSymbol(owner: Symbol, name: Name, pos: Position, flags: Long, isClass: Boolean): Symbol =
- if (name.isTypeName)
- if (isClass) new ClassSymbol(owner, name.toTypeName, flags)
- else new TypeSymbol(owner, name.toTypeName, flags)
- else new TermSymbol(owner, name.toTermName, flags)
-
- def newFreeTerm(name: String, value: => Any, flags: Long = 0L, origin: String = null): FreeTermSymbol =
- new FreeTermSymbol(rootMirror.RootClass, newTermName(name), flags)
-
- def newFreeType(name: String, flags: Long = 0L, origin: String = null): FreeTypeSymbol =
- new FreeTypeSymbol(rootMirror.RootClass, newTypeName(name), flags)
-
- def setTypeSignature[S <: Symbol](sym: S, tpe: Type): S = sym
-
- def setAnnotations[S <: Symbol](sym: S, annots: List[Annotation]): S = sym
-
- def flagsFromBits(bits: Long): FlagSet = bits
-
- object emptyValDef extends ValDef(NoMods, nme.WILDCARD, TypeTree(NoType), EmptyTree) {
- override def isEmpty = true
- }
-
- def This(sym: Symbol): Tree = self.This(sym.name.toTypeName)
-
- def Select(qualifier: Tree, sym: Symbol): Select = self.Select(qualifier, sym.name)
-
- def Ident(sym: Symbol): Ident = self.Ident(sym.name)
-
- def TypeTree(tp: Type): TypeTree = self.TypeTree()
-
- def thisPrefix(sym: Symbol): Type = SingleType(NoPrefix, sym)
-
- def setType[T <: Tree](tree: T, tpe: Type): T = tree
-
- def setSymbol[T <: Tree](tree: T, sym: Symbol): T = tree
- }
-
- import build._
-
- class Mirror extends MirrorOf[self.type] {
- val universe: self.type = self
-
- lazy val RootClass = new ClassSymbol(NoSymbol, tpnme.ROOT, NoFlags) { override def isModuleClass = true }
- lazy val RootPackage = new ModuleSymbol(NoSymbol, nme.ROOT, NoFlags, RootClass)
- lazy val EmptyPackageClass = new ClassSymbol(RootClass, tpnme.EMPTY_PACKAGE_NAME, NoFlags) { override def isModuleClass = true }
- lazy val EmptyPackage = new ModuleSymbol(RootClass, nme.EMPTY_PACKAGE_NAME, NoFlags, EmptyPackageClass)
-
- def staticClass(fullName: String): ClassSymbol =
- mkStatic[ClassSymbol](fullName)
-
- def staticModule(fullName: String): ModuleSymbol =
- mkStatic[ModuleSymbol](fullName)
-
- def staticPackage(fullName: String): ModuleSymbol =
- staticModule(fullName) // this toy universe doesn't care about the distinction between packages and modules
-
- private def mkStatic[S <: Symbol : ClassTag](fullName: String): S =
- cached(fullName) {
- val point = fullName lastIndexOf '.'
- val owner =
- if (point > 0) staticModule(fullName take point).moduleClass
- else rootMirror.RootClass
- val name = fullName drop point + 1
- val symtag = implicitly[ClassTag[S]]
- if (symtag == ClassSymbolTag) new ClassSymbol(owner, newTypeName(name), NoFlags)
- else owner.newModuleAndClassSymbol(newTermName(name))._1
- }.asInstanceOf[S]
- }
-
- lazy val rootMirror = new Mirror
-
- import rootMirror._
-
- object definitions extends DefinitionsBase {
- lazy val ScalaPackage = staticModule("scala")
- lazy val ScalaPackageClass = ScalaPackage.moduleClass.asClass
-
- lazy val AnyClass = staticClass("scala.Any")
- lazy val AnyValClass = staticClass("scala.Any")
- lazy val ObjectClass = staticClass("java.lang.Object")
- lazy val AnyRefClass = ObjectClass
-
- lazy val NullClass = staticClass("scala.Null")
- lazy val NothingClass = staticClass("scala.Nothing")
-
- lazy val UnitClass = staticClass("scala.Unit")
- lazy val ByteClass = staticClass("scala.Byte")
- lazy val ShortClass = staticClass("scala.Short")
- lazy val CharClass = staticClass("scala.Char")
- lazy val IntClass = staticClass("scala.Int")
- lazy val LongClass = staticClass("scala.Long")
- lazy val FloatClass = staticClass("scala.Float")
- lazy val DoubleClass = staticClass("scala.Double")
- lazy val BooleanClass = staticClass("scala.Boolean")
-
- lazy val StringClass = staticClass("java.lang.String")
- lazy val ClassClass = staticClass("java.lang.Class")
- lazy val ArrayClass = staticClass("scala.Array")
- lazy val ListClass = staticClass("scala.List")
-
- lazy val PredefModule = staticModule("scala.Predef")
-
- lazy val ByteTpe = TypeRef(ScalaPrefix, ByteClass, Nil)
- lazy val ShortTpe = TypeRef(ScalaPrefix, ShortClass, Nil)
- lazy val CharTpe = TypeRef(ScalaPrefix, CharClass, Nil)
- lazy val IntTpe = TypeRef(ScalaPrefix, IntClass, Nil)
- lazy val LongTpe = TypeRef(ScalaPrefix, LongClass, Nil)
- lazy val FloatTpe = TypeRef(ScalaPrefix, FloatClass, Nil)
- lazy val DoubleTpe = TypeRef(ScalaPrefix, DoubleClass, Nil)
- lazy val BooleanTpe = TypeRef(ScalaPrefix, BooleanClass, Nil)
- lazy val UnitTpe = TypeRef(ScalaPrefix, UnitClass, Nil)
- lazy val AnyTpe = TypeRef(ScalaPrefix, AnyClass, Nil)
- lazy val AnyValTpe = TypeRef(ScalaPrefix, AnyValClass, Nil)
- lazy val NothingTpe = TypeRef(ScalaPrefix, NothingClass, Nil)
- lazy val NullTpe = TypeRef(ScalaPrefix, NullClass, Nil)
- lazy val ObjectTpe = TypeRef(JavaLangPrefix, ObjectClass, Nil)
- lazy val AnyRefTpe = ObjectTpe
- }
-
- import definitions._
-
- private def thisModuleType(fullName: String): Type = ThisType(staticModule(fullName).moduleClass)
- private lazy val ScalaPrefix = thisModuleType("scala")
- private lazy val JavaLangPrefix = thisModuleType("java.lang")
-
- private var nodeCount = 0 // not synchronized
-
- abstract class Tree extends TreeBase with Product {
- def isDef: Boolean = false
- def isEmpty: Boolean = false
-
- /** The canonical way to test if a Tree represents a term.
- */
- def isTerm: Boolean = this match {
- case _: TermTree => true
- case Bind(name, _) => name.isTermName
- case Select(_, name) => name.isTermName
- case Ident(name) => name.isTermName
- case Annotated(_, arg) => arg.isTerm
- case _ => false
- }
-
- /** The canonical way to test if a Tree represents a type.
- */
- def isType: Boolean = this match {
- case _: TypTree => true
- case Bind(name, _) => name.isTypeName
- case Select(_, name) => name.isTypeName
- case Ident(name) => name.isTypeName
- case Annotated(_, arg) => arg.isType
- case _ => false
- }
- }
-
- def treeToString(tree: Tree) = s"<tree ${tree.getClass}>"
-
- def treeType(tree: Tree) = NoType
-
- trait TermTree extends Tree
-
- trait TypTree extends Tree
-
- trait SymTree extends Tree
-
- trait NameTree extends Tree {
- def name: Name
- }
-
- trait RefTree extends SymTree with NameTree {
- def qualifier: Tree // empty for Idents
- def name: Name
- }
-
- abstract class DefTree extends SymTree with NameTree {
- def name: Name
- override def isDef = true
- }
-
- case object EmptyTree extends TermTree {
- val asList = List(this)
- override def isEmpty = true
- }
-
- abstract class MemberDef extends DefTree {
- def mods: Modifiers
- }
-
- case class PackageDef(pid: RefTree, stats: List[Tree])
- extends MemberDef {
- def name = pid.name
- def mods = NoMods
- }
- object PackageDef extends PackageDefExtractor
-
- abstract class ImplDef extends MemberDef {
- def impl: Template
- }
-
- case class ClassDef(mods: Modifiers, name: TypeName, tparams: List[TypeDef], impl: Template)
- extends ImplDef
- object ClassDef extends ClassDefExtractor
-
- case class ModuleDef(mods: Modifiers, name: TermName, impl: Template)
- extends ImplDef
- object ModuleDef extends ModuleDefExtractor
-
- abstract class ValOrDefDef extends MemberDef {
- val name: Name
- val tpt: Tree
- val rhs: Tree
- }
-
- case class ValDef(mods: Modifiers, name: TermName, tpt: Tree, rhs: Tree) extends ValOrDefDef
- object ValDef extends ValDefExtractor
-
- case class DefDef(mods: Modifiers, name: Name, tparams: List[TypeDef],
- vparamss: List[List[ValDef]], tpt: Tree, rhs: Tree) extends ValOrDefDef
- object DefDef extends DefDefExtractor
-
- case class TypeDef(mods: Modifiers, name: TypeName, tparams: List[TypeDef], rhs: Tree)
- extends MemberDef
- object TypeDef extends TypeDefExtractor
-
- case class LabelDef(name: TermName, params: List[Ident], rhs: Tree)
- extends DefTree with TermTree
- object LabelDef extends LabelDefExtractor
-
- case class ImportSelector(name: Name, namePos: Int, rename: Name, renamePos: Int)
- object ImportSelector extends ImportSelectorExtractor
-
- case class Import(expr: Tree, selectors: List[ImportSelector])
- extends SymTree
- object Import extends ImportExtractor
-
- case class Template(parents: List[Tree], self: ValDef, body: List[Tree])
- extends SymTree
- object Template extends TemplateExtractor
-
- case class Block(stats: List[Tree], expr: Tree)
- extends TermTree
- object Block extends BlockExtractor
-
- case class CaseDef(pat: Tree, guard: Tree, body: Tree)
- extends Tree
- object CaseDef extends CaseDefExtractor
-
- case class Alternative(trees: List[Tree])
- extends TermTree
- object Alternative extends AlternativeExtractor
-
- case class Star(elem: Tree)
- extends TermTree
- object Star extends StarExtractor
-
- case class Bind(name: Name, body: Tree)
- extends DefTree
- object Bind extends BindExtractor
-
- case class UnApply(fun: Tree, args: List[Tree])
- extends TermTree
- object UnApply extends UnApplyExtractor
-
- case class Function(vparams: List[ValDef], body: Tree)
- extends TermTree with SymTree
- object Function extends FunctionExtractor
-
- case class Assign(lhs: Tree, rhs: Tree)
- extends TermTree
- object Assign extends AssignExtractor
-
- case class AssignOrNamedArg(lhs: Tree, rhs: Tree)
- extends TermTree
- object AssignOrNamedArg extends AssignOrNamedArgExtractor
-
- case class If(cond: Tree, thenp: Tree, elsep: Tree)
- extends TermTree
- object If extends IfExtractor
-
- case class Match(selector: Tree, cases: List[CaseDef])
- extends TermTree
- object Match extends MatchExtractor
-
- case class Return(expr: Tree)
- extends TermTree with SymTree
- object Return extends ReturnExtractor
-
- case class Try(block: Tree, catches: List[CaseDef], finalizer: Tree)
- extends TermTree
- object Try extends TryExtractor
-
- case class Throw(expr: Tree)
- extends TermTree
- object Throw extends ThrowExtractor
-
- case class New(tpt: Tree) extends TermTree
- object New extends NewExtractor
-
- case class Typed(expr: Tree, tpt: Tree)
- extends TermTree
- object Typed extends TypedExtractor
-
- abstract class GenericApply extends TermTree {
- val fun: Tree
- val args: List[Tree]
- }
-
- case class TypeApply(fun: Tree, args: List[Tree])
- extends GenericApply
- object TypeApply extends TypeApplyExtractor
-
- case class Apply(fun: Tree, args: List[Tree])
- extends GenericApply
- object Apply extends ApplyExtractor
-
- case class Super(qual: Tree, mix: TypeName) extends TermTree
- object Super extends SuperExtractor
-
- case class This(qual: TypeName)
- extends TermTree with SymTree
- object This extends ThisExtractor
-
- case class Select(qualifier: Tree, name: Name)
- extends RefTree
- object Select extends SelectExtractor
-
- case class Ident(name: Name) extends RefTree {
- def qualifier: Tree = EmptyTree
- }
- object Ident extends IdentExtractor
-
- case class ReferenceToBoxed(ident: Ident) extends TermTree
- object ReferenceToBoxed extends ReferenceToBoxedExtractor
-
- case class Literal(value: Constant)
- extends TermTree {
- assert(value ne null)
- }
- object Literal extends LiteralExtractor
-
- case class Annotated(annot: Tree, arg: Tree) extends Tree
- object Annotated extends AnnotatedExtractor
-
- case class SingletonTypeTree(ref: Tree)
- extends TypTree
- object SingletonTypeTree extends SingletonTypeTreeExtractor
-
- case class SelectFromTypeTree(qualifier: Tree, name: TypeName)
- extends TypTree with RefTree
- object SelectFromTypeTree extends SelectFromTypeTreeExtractor
-
- case class CompoundTypeTree(templ: Template)
- extends TypTree
- object CompoundTypeTree extends CompoundTypeTreeExtractor
-
- case class AppliedTypeTree(tpt: Tree, args: List[Tree])
- extends TypTree
- object AppliedTypeTree extends AppliedTypeTreeExtractor
-
- case class TypeBoundsTree(lo: Tree, hi: Tree)
- extends TypTree
- object TypeBoundsTree extends TypeBoundsTreeExtractor
-
- case class ExistentialTypeTree(tpt: Tree, whereClauses: List[Tree])
- extends TypTree
- object ExistentialTypeTree extends ExistentialTypeTreeExtractor
-
- case class TypeTree() extends TypTree {
- val original: Tree = null
- override def isEmpty = true
- }
- object TypeTree extends TypeTreeExtractor
-
- implicit val TreeTag = ClassTag[Tree](classOf[Tree])
- implicit val TermTreeTag = ClassTag[TermTree](classOf[TermTree])
- implicit val TypTreeTag = ClassTag[TypTree](classOf[TypTree])
- implicit val SymTreeTag = ClassTag[SymTree](classOf[SymTree])
- implicit val NameTreeTag = ClassTag[NameTree](classOf[NameTree])
- implicit val RefTreeTag = ClassTag[RefTree](classOf[RefTree])
- implicit val DefTreeTag = ClassTag[DefTree](classOf[DefTree])
- implicit val MemberDefTag = ClassTag[MemberDef](classOf[MemberDef])
- implicit val PackageDefTag = ClassTag[PackageDef](classOf[PackageDef])
- implicit val ImplDefTag = ClassTag[ImplDef](classOf[ImplDef])
- implicit val ClassDefTag = ClassTag[ClassDef](classOf[ClassDef])
- implicit val ModuleDefTag = ClassTag[ModuleDef](classOf[ModuleDef])
- implicit val ValOrDefDefTag = ClassTag[ValOrDefDef](classOf[ValOrDefDef])
- implicit val ValDefTag = ClassTag[ValDef](classOf[ValDef])
- implicit val DefDefTag = ClassTag[DefDef](classOf[DefDef])
- implicit val TypeDefTag = ClassTag[TypeDef](classOf[TypeDef])
- implicit val LabelDefTag = ClassTag[LabelDef](classOf[LabelDef])
- implicit val ImportSelectorTag = ClassTag[ImportSelector](classOf[ImportSelector])
- implicit val ImportTag = ClassTag[Import](classOf[Import])
- implicit val TemplateTag = ClassTag[Template](classOf[Template])
- implicit val BlockTag = ClassTag[Block](classOf[Block])
- implicit val CaseDefTag = ClassTag[CaseDef](classOf[CaseDef])
- implicit val AlternativeTag = ClassTag[Alternative](classOf[Alternative])
- implicit val StarTag = ClassTag[Star](classOf[Star])
- implicit val BindTag = ClassTag[Bind](classOf[Bind])
- implicit val UnApplyTag = ClassTag[UnApply](classOf[UnApply])
- implicit val FunctionTag = ClassTag[Function](classOf[Function])
- implicit val AssignTag = ClassTag[Assign](classOf[Assign])
- implicit val AssignOrNamedArgTag = ClassTag[AssignOrNamedArg](classOf[AssignOrNamedArg])
- implicit val IfTag = ClassTag[If](classOf[If])
- implicit val MatchTag = ClassTag[Match](classOf[Match])
- implicit val ReturnTag = ClassTag[Return](classOf[Return])
- implicit val TryTag = ClassTag[Try](classOf[Try])
- implicit val ThrowTag = ClassTag[Throw](classOf[Throw])
- implicit val NewTag = ClassTag[New](classOf[New])
- implicit val TypedTag = ClassTag[Typed](classOf[Typed])
- implicit val GenericApplyTag = ClassTag[GenericApply](classOf[GenericApply])
- implicit val TypeApplyTag = ClassTag[TypeApply](classOf[TypeApply])
- implicit val ApplyTag = ClassTag[Apply](classOf[Apply])
- implicit val SuperTag = ClassTag[Super](classOf[Super])
- implicit val ThisTag = ClassTag[This](classOf[This])
- implicit val SelectTag = ClassTag[Select](classOf[Select])
- implicit val IdentTag = ClassTag[Ident](classOf[Ident])
- implicit val ReferenceToBoxedTag = ClassTag[ReferenceToBoxed](classOf[ReferenceToBoxed])
- implicit val LiteralTag = ClassTag[Literal](classOf[Literal])
- implicit val AnnotatedTag = ClassTag[Annotated](classOf[Annotated])
- implicit val SingletonTypeTreeTag = ClassTag[SingletonTypeTree](classOf[SingletonTypeTree])
- implicit val SelectFromTypeTreeTag = ClassTag[SelectFromTypeTree](classOf[SelectFromTypeTree])
- implicit val CompoundTypeTreeTag = ClassTag[CompoundTypeTree](classOf[CompoundTypeTree])
- implicit val AppliedTypeTreeTag = ClassTag[AppliedTypeTree](classOf[AppliedTypeTree])
- implicit val TypeBoundsTreeTag = ClassTag[TypeBoundsTree](classOf[TypeBoundsTree])
- implicit val ExistentialTypeTreeTag = ClassTag[ExistentialTypeTree](classOf[ExistentialTypeTree])
- implicit val TypeTreeTag = ClassTag[TypeTree](classOf[TypeTree])
-
- def ClassDef(sym: Symbol, impl: Template): ClassDef = ???
- def ModuleDef(sym: Symbol, impl: Template): ModuleDef = ???
- def ValDef(sym: Symbol, rhs: Tree): ValDef = ???
- def ValDef(sym: Symbol): ValDef = ???
- def DefDef(sym: Symbol, mods: Modifiers, vparamss: List[List[ValDef]], rhs: Tree): DefDef = ???
- def DefDef(sym: Symbol, vparamss: List[List[ValDef]], rhs: Tree): DefDef = ???
- def DefDef(sym: Symbol, mods: Modifiers, rhs: Tree): DefDef = ???
- def DefDef(sym: Symbol, rhs: Tree): DefDef = ???
- def DefDef(sym: Symbol, rhs: List[List[Symbol]] => Tree): DefDef = ???
- def TypeDef(sym: Symbol, rhs: Tree): TypeDef = ???
- def TypeDef(sym: Symbol): TypeDef = ???
- def LabelDef(sym: Symbol, params: List[Symbol], rhs: Tree): LabelDef = ???
- def CaseDef(pat: Tree, body: Tree): CaseDef = ???
- def Bind(sym: Symbol, body: Tree): Bind = ???
- def Try(body: Tree, cases: (Tree, Tree)*): Try = ???
- def Throw(tpe: Type, args: Tree*): Throw = ???
- def Apply(sym: Symbol, args: Tree*): Tree = ???
- def New(tpt: Tree, argss: List[List[Tree]]): Tree = ???
- def New(tpe: Type, args: Tree*): Tree = ???
- def New(sym: Symbol, args: Tree*): Tree = ???
- def ApplyConstructor(tpt: Tree, args: List[Tree]): Tree = ???
- def Super(sym: Symbol, mix: TypeName): Tree = ???
- def This(sym: Symbol): Tree = ???
- def Select(qualifier: Tree, name: String): Select = ???
- def Select(qualifier: Tree, sym: Symbol): Select = ???
- def Ident(name: String): Ident = ???
- def Ident(sym: Symbol): Ident = ???
- def Block(stats: Tree*): Block = ???
- def TypeTree(tp: Type): TypeTree = ???
-}
diff --git a/src/library/scala/reflect/base/Constants.scala b/src/library/scala/reflect/base/Constants.scala
deleted file mode 100644
index 240434362d..0000000000
--- a/src/library/scala/reflect/base/Constants.scala
+++ /dev/null
@@ -1,36 +0,0 @@
-/* NSC -- new Scala compiler
- * Copyright 2005-2012 LAMP/EPFL
- * @author Martin Odersky
- */
-
-package scala.reflect
-package base
-
-/**
- * Defines the type hierachy for compile-time constants.
- *
- * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
- */
-trait Constants {
- self: Universe =>
-
- /** The type of compile-time constants.
- */
- type Constant >: Null <: AnyRef
-
- /** A tag that preserves the identity of the `Constant` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ConstantTag: ClassTag[Constant]
-
- /** The constructor/deconstructor for `Constant` instances. */
- val Constant: ConstantExtractor
-
- /** An extractor class to create and pattern match with syntax `Constant(value)`
- * where `value` is the Scala value of the constant.
- */
- abstract class ConstantExtractor {
- def apply(value: Any): Constant
- def unapply(arg: Constant): Option[Any]
- }
-}
diff --git a/src/library/scala/reflect/base/FlagSets.scala b/src/library/scala/reflect/base/FlagSets.scala
deleted file mode 100644
index 0ce7613eb3..0000000000
--- a/src/library/scala/reflect/base/FlagSets.scala
+++ /dev/null
@@ -1,16 +0,0 @@
-package scala.reflect
-package base
-
-trait FlagSets { self: Universe =>
-
- /** An abstract type representing sets of flags (like private, final, etc.) that apply to definition trees and symbols */
- type FlagSet
-
- /** A tag that preserves the identity of the `FlagSet` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val FlagSetTag: ClassTag[FlagSet]
-
- /** The empty set of flags */
- val NoFlags: FlagSet
-}
diff --git a/src/library/scala/reflect/base/Mirrors.scala b/src/library/scala/reflect/base/Mirrors.scala
deleted file mode 100644
index e38a3d1cdd..0000000000
--- a/src/library/scala/reflect/base/Mirrors.scala
+++ /dev/null
@@ -1,22 +0,0 @@
-package scala.reflect
-package base
-
-/**
- * Defines a type hierarchy for mirrors.
- *
- * Every universe has one or more mirrors. A mirror defines a hierarchy of symbols starting with the root package `_root_`
- * and provides methods to locate and define classes and singleton objects in that hierarchy.
- *
- * On the JVM, there is a one to one correspondance between class loaders and mirrors.
- */
-trait Mirrors {
- self: Universe =>
-
- /** The base type of all mirrors of this universe */
- type Mirror >: Null <: MirrorOf[self.type]
-
- /** The root mirror of this universe. This mirror contains standard Scala classes and types such as `Any`, `AnyRef`, `AnyVal`,
- * `Nothing`, `Null`, and all classes loaded from scala-library, which are shared across all mirrors within the enclosing universe.
- */
- val rootMirror: Mirror
-}
diff --git a/src/library/scala/reflect/base/Names.scala b/src/library/scala/reflect/base/Names.scala
deleted file mode 100644
index b02038a920..0000000000
--- a/src/library/scala/reflect/base/Names.scala
+++ /dev/null
@@ -1,68 +0,0 @@
-package scala.reflect
-package base
-
-import scala.language.implicitConversions
-
-/** A trait that manages names.
- *
- * @see TermName
- * @see TypeName
- */
-trait Names {
- // Intentionally no implicit from String => Name.
- implicit def stringToTermName(s: String): TermName = newTermName(s)
- implicit def stringToTypeName(s: String): TypeName = newTypeName(s)
-
- /**
- * The abstract type of names
- *
- * A Name wraps a string as the name for either a type ([[TypeName]]) of a term ([[TermName]]).
- * Two names are equal, if the wrapped string are equal and they are either both `TypeName` or both `TermName`.
- * The same string can co-exist as a `TypeName` and a `TermName`, but they would not be equal.
- * Names are interned. That is, for two names `name11 and `name2`,
- * `name1 == name2` implies `name1 eq name2`.
- *
- * One of the reasons for the existence of names rather than plain strings is being more explicit about what is a name and if it represents a type or a term.
- */
- type Name >: Null <: NameBase
- implicit val NameTag: ClassTag[Name]
-
- /** The abstract type of names representing terms */
- type TypeName >: Null <: Name
- implicit val TypeNameTag: ClassTag[TypeName]
-
- /** The abstract type of names representing types */
- type TermName >: Null <: Name
- implicit val TermNameTag: ClassTag[TermName]
-
- /** The base API that all names support */
- abstract class NameBase {
- /** Checks wether the name is a a term name */
- def isTermName: Boolean
-
- /** Checks wether the name is a a type name */
- def isTypeName: Boolean
-
- /** Returns a term name that wraps the same string as `this` */
- def toTermName: TermName
-
- /** Returns a type name that wraps the same string as `this` */
- def toTypeName: TypeName
- }
-
- /** Create a new term name.
- */
- def newTermName(s: String): TermName
-
- /** Creates a new type name.
- */
- def newTypeName(s: String): TypeName
-
- /** Wraps the empty string. Can be used as the null object for term name.
- */
- def EmptyTermName: TermName = newTermName("")
-
- /** Wraps the empty string. Can be used as the null object for term name.
- */
- def EmptyTypeName: TypeName = EmptyTermName.toTypeName
-}
diff --git a/src/library/scala/reflect/base/Positions.scala b/src/library/scala/reflect/base/Positions.scala
deleted file mode 100644
index 70412a2f4b..0000000000
--- a/src/library/scala/reflect/base/Positions.scala
+++ /dev/null
@@ -1,22 +0,0 @@
-package scala.reflect
-package base
-
-/**
- * Defines the type hierachy for positions.
- *
- * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
- */
-trait Positions {
- self: Universe =>
-
- /** The base type for all positions of tree nodes in source files. */
- type Position >: Null <: Attachments { type Pos = Position }
-
- /** A tag that preserves the identity of the `Position` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val PositionTag: ClassTag[Position]
-
- /** A special "missing" position. */
- val NoPosition: Position
-}
diff --git a/src/library/scala/reflect/base/StandardDefinitions.scala b/src/library/scala/reflect/base/StandardDefinitions.scala
deleted file mode 100644
index 4df8501b3d..0000000000
--- a/src/library/scala/reflect/base/StandardDefinitions.scala
+++ /dev/null
@@ -1,110 +0,0 @@
-/* NSC -- new Scala compiler
- * Copyright 2005-2012 LAMP/EPFL
- * @author Martin Odersky
- */
-
-package scala.reflect
-package base
-
-/**
- * Defines standard symbols and types.
- */
-trait StandardDefinitions {
- self: Universe =>
-
- /** A value containing all standard defnitions. */
- val definitions: DefinitionsBase
-
- /** Defines standard symbols (and types via its base class). */
- trait DefinitionsBase extends StandardTypes {
- /** The class symbol of package `scala`. */
- def ScalaPackageClass: ClassSymbol
-
- /** The module class symbol of package `scala`. */
- def ScalaPackage: ModuleSymbol
-
- // top types
- def AnyClass : ClassSymbol
- def AnyValClass: ClassSymbol
- def ObjectClass: ClassSymbol
- def AnyRefClass: TypeSymbol
-
- // bottom types
- def NullClass : ClassSymbol
- def NothingClass: ClassSymbol
-
- // the scala value classes
- def UnitClass : ClassSymbol
- def ByteClass : ClassSymbol
- def ShortClass : ClassSymbol
- def CharClass : ClassSymbol
- def IntClass : ClassSymbol
- def LongClass : ClassSymbol
- def FloatClass : ClassSymbol
- def DoubleClass : ClassSymbol
- def BooleanClass: ClassSymbol
-
- /** The class symbol of class `String`. */
- def StringClass : ClassSymbol
-
- /** The class symbol of class `Class`. */
- def ClassClass : ClassSymbol
-
- /** The class symbol of class `Array`. */
- def ArrayClass : ClassSymbol
-
- /** The class symbol of class `List`. */
- def ListClass : ClassSymbol
-
- /** The module symbol of `scala.Predef`. */
- def PredefModule: ModuleSymbol
- }
-
- /** Defines standard types. */
- trait StandardTypes {
- /** The `Type` of type `Unit`. */
- val UnitTpe: Type
-
- /** The `Type` of primitive type `Byte`. */
- val ByteTpe: Type
-
- /** The `Type` of primitive type `Short`. */
- val ShortTpe: Type
-
- /** The `Type` of primitive type `Char`. */
- val CharTpe: Type
-
- /** The `Type` of primitive type `Int`. */
- val IntTpe: Type
-
- /** The `Type` of primitive type `Long`. */
- val LongTpe: Type
-
- /** The `Type` of primitive type `Float`. */
- val FloatTpe: Type
-
- /** The `Type` of primitive type `Double`. */
- val DoubleTpe: Type
-
- /** The `Type` of primitive type `Boolean`. */
- val BooleanTpe: Type
-
- /** The `Type` of type `Any`. */
- val AnyTpe: Type
-
- /** The `Type` of type `AnyVal`. */
- val AnyValTpe: Type
-
- /** The `Type` of type `AnyRef`. */
- val AnyRefTpe: Type
-
- /** The `Type` of type `Object`. */
- val ObjectTpe: Type
-
- /** The `Type` of type `Nothing`. */
- val NothingTpe: Type
-
- /** The `Type` of type `Null`. */
- val NullTpe: Type
- }
-}
diff --git a/src/library/scala/reflect/base/StandardNames.scala b/src/library/scala/reflect/base/StandardNames.scala
deleted file mode 100644
index fc1d247512..0000000000
--- a/src/library/scala/reflect/base/StandardNames.scala
+++ /dev/null
@@ -1,40 +0,0 @@
-/* NSC -- new Scala compiler
-* Copyright 2005-2012 LAMP/EPFL
-* @author Martin Odersky
-*/
-
-package scala.reflect
-package base
-
-// Q: I have a pretty name. Where do I put it - into base.StandardNames or into api.StandardNames?
-// A: Is it necessary to construct trees (like EMPTY or WILDCARD_STAR)? If yes, then it goes to base.StandardNames.
-// Is it necessary to perform reflection (like ERROR or LOCAL_SUFFIX_STRING)? If yes, then it goes to api.StandardNames.
-// Otherwise it goes nowhere - reflection API should stay minimalistic.
-
-// TODO: document better
-/**
- * Names necessary to create Scala trees.
- */
-trait StandardNames {
- self: Universe =>
-
- val nme: TermNamesBase
- val tpnme: TypeNamesBase
-
- trait NamesBase {
- type NameType >: Null <: Name
- val WILDCARD: NameType
- }
-
- trait TermNamesBase extends NamesBase {
- type NameType = TermName
- val CONSTRUCTOR: NameType
- val ROOTPKG: NameType
- }
-
- trait TypeNamesBase extends NamesBase {
- type NameType = TypeName
- val EMPTY: NameType
- val WILDCARD_STAR: NameType
- }
-}
diff --git a/src/library/scala/reflect/base/Symbols.scala b/src/library/scala/reflect/base/Symbols.scala
deleted file mode 100644
index 4a1eef014c..0000000000
--- a/src/library/scala/reflect/base/Symbols.scala
+++ /dev/null
@@ -1,294 +0,0 @@
-package scala.reflect
-package base
-
-/**
- * Defines the type hierachy for symbols
- *
- * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
- */
-trait Symbols { self: Universe =>
-
- /** The type of symbols representing declarations */
- type Symbol >: Null <: SymbolBase
-
- /** A tag that preserves the identity of the `Symbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SymbolTag: ClassTag[Symbol]
-
- /** The type of type symbols representing type, class, and trait declarations,
- * as well as type parameters
- */
- type TypeSymbol >: Null <: Symbol with TypeSymbolBase
-
- /** A tag that preserves the identity of the `TypeSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeSymbolTag: ClassTag[TypeSymbol]
-
- /** The type of term symbols representing val, var, def, and object declarations as
- * well as packages and value parameters.
- */
- type TermSymbol >: Null <: Symbol with TermSymbolBase
-
- /** A tag that preserves the identity of the `TermSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TermSymbolTag: ClassTag[TermSymbol]
-
- /** The type of method symbols representing def declarations */
- type MethodSymbol >: Null <: TermSymbol with MethodSymbolBase
-
- /** A tag that preserves the identity of the `MethodSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val MethodSymbolTag: ClassTag[MethodSymbol]
-
- /** The type of module symbols representing object declarations */
- type ModuleSymbol >: Null <: TermSymbol with ModuleSymbolBase
-
- /** A tag that preserves the identity of the `ModuleSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ModuleSymbolTag: ClassTag[ModuleSymbol]
-
- /** The type of class symbols representing class and trait definitions */
- type ClassSymbol >: Null <: TypeSymbol with ClassSymbolBase
-
- /** A tag that preserves the identity of the `ClassSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ClassSymbolTag: ClassTag[ClassSymbol]
-
- /** The type of free terms introduced by reification */
- type FreeTermSymbol >: Null <: TermSymbol with FreeTermSymbolBase
-
- /** A tag that preserves the identity of the `FreeTermSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val FreeTermSymbolTag: ClassTag[FreeTermSymbol]
-
- /** The type of free types introduced by reification */
- type FreeTypeSymbol >: Null <: TypeSymbol with FreeTypeSymbolBase
-
- /** A tag that preserves the identity of the `FreeTypeSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val FreeTypeSymbolTag: ClassTag[FreeTypeSymbol]
-
- /** A special "missing" symbol */
- val NoSymbol: Symbol
-
- /** The base API that all symbols support */
- trait SymbolBase { this: Symbol =>
-
- /** The owner of this symbol. This is the symbol
- * that directly contains the current symbol's definition.
- * The `NoSymbol` symbol does not have an owner, and calling this method
- * on one causes an internal error.
- * The owner of the Scala root class [[scala.reflect.base.MirrorOf.RootClass]]
- * and the Scala root object [[scala.reflect.base.MirrorOf.RootPackage]] is `NoSymbol`.
- * Every other symbol has a chain of owners that ends in
- * [[scala.reflect.base.MirrorOf.RootClass]].
- */
- def owner: Symbol
-
- /** The type of the symbol name.
- * Can be either `TermName` or `TypeName` depending on whether this is a `TermSymbol` or a `TypeSymbol`.
- *
- * Type name namespaces do not intersect with term name namespaces.
- * This fact is reflected in different types for names of `TermSymbol` and `TypeSymbol`.
- */
- type NameType >: Null <: Name
-
- /** The name of the symbol as a member of the `Name` type.
- */
- def name: Name
-
- /** The encoded full path name of this symbol, where outer names and inner names
- * are separated by periods.
- */
- def fullName: String
-
- /** Does this symbol represent the definition of a type?
- * Note that every symbol is either a term or a type.
- * So for every symbol `sym` (except for `NoSymbol`),
- * either `sym.isTerm` is true or `sym.isType` is true.
- */
- def isType: Boolean = false
-
- /** This symbol cast to a TypeSymbol.
- * @throws ScalaReflectionException if `isType` is false.
- */
- def asType: TypeSymbol = throw new ScalaReflectionException(s"$this is not a type")
-
- /** Does this symbol represent the definition of a term?
- * Note that every symbol is either a term or a type.
- * So for every symbol `sym` (except for `NoSymbol`),
- * either `sym.isTerm` is true or `sym.isTerm` is true.
- */
- def isTerm: Boolean = false
-
- /** This symbol cast to a TermSymbol.
- * @throws ScalaReflectionException if `isTerm` is false.
- */
- def asTerm: TermSymbol = throw new ScalaReflectionException(s"$this is not a term")
-
- /** Does this symbol represent the definition of a method?
- * If yes, `isTerm` is also guaranteed to be true.
- */
- def isMethod: Boolean = false
-
- /** This symbol cast to a MethodSymbol.
- * @throws ScalaReflectionException if `isMethod` is false.
- */
- def asMethod: MethodSymbol = {
- def overloadedMsg =
- "encapsulates multiple overloaded alternatives and cannot be treated as a method. "+
- "Consider invoking `<offending symbol>.asTerm.alternatives` and manually picking the required method"
- def vanillaMsg = "is not a method"
- val msg = if (isOverloadedMethod) overloadedMsg else vanillaMsg
- throw new ScalaReflectionException(s"$this $msg")
- }
-
- /** Used to provide a better error message for `asMethod` */
- protected def isOverloadedMethod = false
-
- /** Does this symbol represent the definition of a module (i.e. it
- * results from an object definition?).
- * If yes, `isTerm` is also guaranteed to be true.
- */
- def isModule: Boolean = false
-
- /** This symbol cast to a ModuleSymbol defined by an object definition.
- * @throws ScalaReflectionException if `isModule` is false.
- */
- def asModule: ModuleSymbol = throw new ScalaReflectionException(s"$this is not a module")
-
- /** Does this symbol represent the definition of a class or trait?
- * If yes, `isType` is also guaranteed to be true.
- */
- def isClass: Boolean = false
-
- /** Does this symbol represent the definition of a class implicitly associated
- * with an object definition (module class in scala compiler parlance).
- * If yes, `isType` is also guaranteed to be true.
- */
- def isModuleClass: Boolean = false
-
- /** This symbol cast to a ClassSymbol representing a class or trait.
- * @throws ScalaReflectionException if `isClass` is false.
- */
- def asClass: ClassSymbol = throw new ScalaReflectionException(s"$this is not a class")
-
- /** Does this symbol represent a free term captured by reification?
- * If yes, `isTerm` is also guaranteed to be true.
- */
- def isFreeTerm: Boolean = false
-
- /** This symbol cast to a free term symbol.
- * @throws ScalaReflectionException if `isFreeTerm` is false.
- */
- def asFreeTerm: FreeTermSymbol = throw new ScalaReflectionException(s"$this is not a free term")
-
- /** Does this symbol represent a free type captured by reification?
- * If yes, `isType` is also guaranteed to be true.
- */
- def isFreeType: Boolean = false
-
- /** This symbol cast to a free type symbol.
- * @throws ScalaReflectionException if `isFreeType` is false.
- */
- def asFreeType: FreeTypeSymbol = throw new ScalaReflectionException(s"$this is not a free type")
-
- def newTermSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TermSymbol
- def newModuleAndClassSymbol(name: Name, pos: Position = NoPosition, flags: FlagSet = NoFlags): (ModuleSymbol, ClassSymbol)
- def newMethodSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): MethodSymbol
- def newTypeSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TypeSymbol
- def newClassSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): ClassSymbol
- }
-
- /** The base API that all type symbols support */
- trait TypeSymbolBase extends SymbolBase { this: TypeSymbol =>
- /** Type symbols have their names of type `TypeName`.
- */
- final type NameType = TypeName
-
- /** The type constructor corresponding to this type symbol.
- * This is different from `toType` in that type parameters
- * are part of results of `toType`, but not of `toTypeConstructor`.
- *
- * Example: Given a class declaration `class C[T] { ... } `, that generates a symbol
- * `C`. Then `C.toType` is the type `C[T]`, but `C.toTypeConstructor` is `C`.
- */
- def toTypeConstructor: Type
-
- /** A type reference that refers to this type symbol seen
- * as a member of given type `site`.
- */
- def toTypeIn(site: Type): Type
-
- /** A type reference that refers to this type symbol
- * Note if symbol is a member of a class, one almost always is interested
- * in `asTypeIn` with a site type instead.
- *
- * Example: Given a class declaration `class C[T] { ... } `, that generates a symbol
- * `C`. Then `C.toType` is the type `C[T]`.
- *
- * By contrast, `C.typeSignature` would be a type signature of form
- * `PolyType(ClassInfoType(...))` that describes type parameters, value
- * parameters, parent types, and members of `C`.
- */
- def toType: Type
-
- final override def isType = true
- final override def asType = this
- }
-
- /** The base API that all term symbols support */
- trait TermSymbolBase extends SymbolBase { this: TermSymbol =>
- /** Term symbols have their names of type `TermName`.
- */
- final type NameType = TermName
-
- final override def isTerm = true
- final override def asTerm = this
- }
-
- /** The base API that all method symbols support */
- trait MethodSymbolBase extends TermSymbolBase { this: MethodSymbol =>
- final override def isMethod = true
- final override def asMethod = this
- }
-
- /** The base API that all module symbols support */
- trait ModuleSymbolBase extends TermSymbolBase { this: ModuleSymbol =>
- /** The class implicitly associated with the object definition.
- * One can go back from a module class to the associated module symbol
- * by inspecting its `selfType.termSymbol`.
- */
- def moduleClass: Symbol // needed for tree traversals
- // when this becomes `moduleClass: ClassSymbol`, it will be the happiest day in my life
-
- final override def isModule = true
- final override def asModule = this
- }
-
- /** The base API that all class symbols support */
- trait ClassSymbolBase extends TypeSymbolBase { this: ClassSymbol =>
- final override def isClass = true
- final override def asClass = this
- }
-
- /** The base API that all free type symbols support */
- trait FreeTypeSymbolBase extends TypeSymbolBase { this: FreeTypeSymbol =>
- final override def isFreeType = true
- final override def asFreeType = this
- }
-
- /** The base API that all free term symbols support */
- trait FreeTermSymbolBase extends TermSymbolBase { this: FreeTermSymbol =>
- final override def isFreeTerm = true
- final override def asFreeTerm = this
- }
-}
diff --git a/src/library/scala/reflect/base/TagInterop.scala b/src/library/scala/reflect/base/TagInterop.scala
deleted file mode 100644
index e989631abf..0000000000
--- a/src/library/scala/reflect/base/TagInterop.scala
+++ /dev/null
@@ -1,29 +0,0 @@
-package scala.reflect
-package base
-
-import scala.runtime.ScalaRunTime._
-
-trait TagInterop { self: Universe =>
- // TODO `mirror` parameters are now of type `Any`, because I can't make these path-dependent types work
- // if you're brave enough, replace `Any` with `Mirror`, recompile and run interop_typetags_are_manifests.scala
-
- /**
- * Convert a typetag to a pre `Scala-2.10` manifest.
- * For example
- * {{{
- * typeTagToManifest( scala.reflect.runtime.currentMirror, implicitly[TypeTag[String]] )
- * }}}
- */
- def typeTagToManifest[T: ClassTag](mirror: Any, tag: base.Universe # TypeTag[T]): Manifest[T] =
- throw new UnsupportedOperationException("This universe does not support tag -> manifest conversions. Use scala.reflect.runtime.universe from scala-reflect.jar.")
-
- /**
- * Convert a pre `Scala-2.10` manifest to a typetag.
- * For example
- * {{{
- * manifestToTypeTag( scala.reflect.runtime.currentMirror, implicitly[Manifest[String]] )
- * }}}
- */
- def manifestToTypeTag[T](mirror: Any, manifest: Manifest[T]): base.Universe # TypeTag[T] =
- throw new UnsupportedOperationException("This universe does not support manifest -> tag conversions. Use scala.reflect.runtime.universe from scala-reflect.jar.")
-}
diff --git a/src/library/scala/reflect/base/Trees.scala b/src/library/scala/reflect/base/Trees.scala
deleted file mode 100644
index 6931d23173..0000000000
--- a/src/library/scala/reflect/base/Trees.scala
+++ /dev/null
@@ -1,1427 +0,0 @@
-/* NSC -- new Scala compiler
- * Copyright 2005-2012 LAMP/EPFL
- * @author Martin Odersky
- */
-package scala.reflect
-package base
-
-trait Trees { self: Universe =>
-
- /** The base API that all trees support */
- abstract class TreeBase extends Product { this: Tree =>
- // TODO
- /** ... */
- def isDef: Boolean
-
- // TODO
- /** ... */
- def isEmpty: Boolean
-
- /** The canonical way to test if a Tree represents a term.
- */
- def isTerm: Boolean
-
- /** The canonical way to test if a Tree represents a type.
- */
- def isType: Boolean
-
- /** Obtains string representation of a tree */
- override def toString: String = treeToString(this)
- }
-
- /** Obtains string representation of a tree */
- protected def treeToString(tree: Tree): String
-
- /** Obtains the type of the tree (we intentionally don't expose `tree.tpe` in base) */
- protected def treeType(tree: Tree): Type
-
- /** Tree is the basis for scala's abstract syntax. The nodes are
- * implemented as case classes, and the parameters which initialize
- * a given tree are immutable: however Trees have several mutable
- * fields which are manipulated in the course of typechecking,
- * including pos, symbol, and tpe.
- *
- * Newly instantiated trees have tpe set to null (though it
- * may be set immediately thereafter depending on how it is
- * constructed.) When a tree is passed to the typer, typically via
- * `typer.typed(tree)`, under normal circumstances the tpe must be
- * null or the typer will ignore it. Furthermore, the typer is not
- * required to return the same tree it was passed.
- *
- * Trees can be easily traversed with e.g. foreach on the root node;
- * for a more nuanced traversal, subclass Traverser. Transformations
- * can be considerably trickier: see the numerous subclasses of
- * Transformer found around the compiler.
- *
- * Copying Trees should be done with care depending on whether
- * it needs be done lazily or strictly (see LazyTreeCopier and
- * StrictTreeCopier) and on whether the contents of the mutable
- * fields should be copied. The tree copiers will copy the mutable
- * attributes to the new tree; calling Tree#duplicate will copy
- * symbol and tpe, but all the positions will be focused.
- *
- * Trees can be coarsely divided into four mutually exclusive categories:
- *
- * - TermTrees, representing terms
- * - TypTrees, representing types. Note that is `TypTree`, not `TypeTree`.
- * - SymTrees, which may represent types or terms.
- * - Other Trees, which have none of those as parents.
- *
- * SymTrees include important nodes Ident and Select, which are
- * used as both terms and types; they are distinguishable based on
- * whether the Name is a TermName or TypeName. The correct way
- * to test any Tree for a type or a term are the `isTerm`/`isType`
- * methods on Tree.
- *
- * "Others" are mostly syntactic or short-lived constructs. Examples
- * include CaseDef, which wraps individual match cases: they are
- * neither terms nor types, nor do they carry a symbol. Another
- * example is Parens, which is eliminated during parsing.
- */
- type Tree >: Null <: TreeBase
-
- /** A tag that preserves the identity of the `Tree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TreeTag: ClassTag[Tree]
-
- /** The empty tree */
- val EmptyTree: Tree
-
- /** A tree for a term. Not all trees representing terms are TermTrees; use isTerm
- * to reliably identify terms.
- */
- type TermTree >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `TermTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TermTreeTag: ClassTag[TermTree]
-
- /** A tree for a type. Not all trees representing types are TypTrees; use isType
- * to reliably identify types.
- */
- type TypTree >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `TypTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypTreeTag: ClassTag[TypTree]
-
- /** A tree with a mutable symbol field, initialized to NoSymbol.
- */
- type SymTree >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `SymTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SymTreeTag: ClassTag[SymTree]
-
- /** A tree with a name - effectively, a DefTree or RefTree.
- */
- type NameTree >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `NameTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val NameTreeTag: ClassTag[NameTree]
-
- /** A tree which references a symbol-carrying entity.
- * References one, as opposed to defining one; definitions
- * are in DefTrees.
- */
- type RefTree >: Null <: SymTree with NameTree
-
- /** A tag that preserves the identity of the `RefTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val RefTreeTag: ClassTag[RefTree]
-
- /** A tree which defines a symbol-carrying entity.
- */
- type DefTree >: Null <: SymTree with NameTree
-
- /** A tag that preserves the identity of the `DefTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val DefTreeTag: ClassTag[DefTree]
-
- /** Common base class for all member definitions: types, classes,
- * objects, packages, vals and vars, defs.
- */
- type MemberDef >: Null <: DefTree
-
- /** A tag that preserves the identity of the `MemberDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val MemberDefTag: ClassTag[MemberDef]
-
- /** A packaging, such as `package pid { stats }`
- */
- type PackageDef >: Null <: MemberDef
-
- /** A tag that preserves the identity of the `PackageDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val PackageDefTag: ClassTag[PackageDef]
-
- /** The constructor/deconstructor for `PackageDef` instances. */
- val PackageDef: PackageDefExtractor
-
- /** An extractor class to create and pattern match with syntax `PackageDef(pid, stats)`.
- * This AST node corresponds to the following Scala code:
- *
- * `package` pid { stats }
- */
- abstract class PackageDefExtractor {
- def apply(pid: RefTree, stats: List[Tree]): PackageDef
- def unapply(packageDef: PackageDef): Option[(RefTree, List[Tree])]
- }
-
- /** A common base class for class and object definitions.
- */
- type ImplDef >: Null <: MemberDef
-
- /** A tag that preserves the identity of the `ImplDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ImplDefTag: ClassTag[ImplDef]
-
- /** A class definition.
- */
- type ClassDef >: Null <: ImplDef
-
- /** A tag that preserves the identity of the `ClassDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ClassDefTag: ClassTag[ClassDef]
-
- /** The constructor/deconstructor for `ClassDef` instances. */
- val ClassDef: ClassDefExtractor
-
- /** An extractor class to create and pattern match with syntax `ClassDef(mods, name, tparams, impl)`.
- * This AST node corresponds to the following Scala code:
- *
- * mods `class` name [tparams] impl
- *
- * Where impl stands for:
- *
- * `extends` parents { defs }
- */
- abstract class ClassDefExtractor {
- def apply(mods: Modifiers, name: TypeName, tparams: List[TypeDef], impl: Template): ClassDef
- def unapply(classDef: ClassDef): Option[(Modifiers, TypeName, List[TypeDef], Template)]
- }
-
- /** An object definition, e.g. `object Foo`. Internally, objects are
- * quite frequently called modules to reduce ambiguity.
- * Eliminated by compiler phase refcheck.
- */
- type ModuleDef >: Null <: ImplDef
-
- /** A tag that preserves the identity of the `ModuleDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ModuleDefTag: ClassTag[ModuleDef]
-
- /** The constructor/deconstructor for `ModuleDef` instances. */
- val ModuleDef: ModuleDefExtractor
-
- /** An extractor class to create and pattern match with syntax `ModuleDef(mods, name, impl)`.
- * This AST node corresponds to the following Scala code:
- *
- * mods `object` name impl
- *
- * Where impl stands for:
- *
- * `extends` parents { defs }
- */
- abstract class ModuleDefExtractor {
- def apply(mods: Modifiers, name: TermName, impl: Template): ModuleDef
- def unapply(moduleDef: ModuleDef): Option[(Modifiers, TermName, Template)]
- }
-
- /** A common base class for ValDefs and DefDefs.
- */
- type ValOrDefDef >: Null <: MemberDef
-
- /** A tag that preserves the identity of the `ValOrDefDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ValOrDefDefTag: ClassTag[ValOrDefDef]
-
- /** Broadly speaking, a value definition. All these are encoded as ValDefs:
- *
- * - immutable values, e.g. "val x"
- * - mutable values, e.g. "var x" - the MUTABLE flag set in mods
- * - lazy values, e.g. "lazy val x" - the LAZY flag set in mods
- * - method parameters, see vparamss in [[scala.reflect.base.Trees#DefDef]] - the PARAM flag is set in mods
- * - explicit self-types, e.g. class A { self: Bar => }
- */
- type ValDef >: Null <: ValOrDefDef
-
- /** A tag that preserves the identity of the `ValDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ValDefTag: ClassTag[ValDef]
-
- /** The constructor/deconstructor for `ValDef` instances. */
- val ValDef: ValDefExtractor
-
- /** An extractor class to create and pattern match with syntax `ValDef(mods, name, tpt, rhs)`.
- * This AST node corresponds to any of the following Scala code:
- *
- * mods `val` name: tpt = rhs
- *
- * mods `var` name: tpt = rhs
- *
- * mods name: tpt = rhs // in signatures of function and method definitions
- *
- * self: Bar => // self-types
- *
- * If the type of a value is not specified explicitly (i.e. is meant to be inferred),
- * this is expressed by having `tpt` set to `TypeTree()` (but not to an `EmptyTree`!).
- */
- abstract class ValDefExtractor {
- def apply(mods: Modifiers, name: TermName, tpt: Tree, rhs: Tree): ValDef
- def unapply(valDef: ValDef): Option[(Modifiers, TermName, Tree, Tree)]
- }
-
- /** A method or macro definition.
- * @param name The name of the method or macro. Can be a type name in case this is a type macro
- */
- type DefDef >: Null <: ValOrDefDef
-
- /** A tag that preserves the identity of the `DefDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val DefDefTag: ClassTag[DefDef]
-
- /** The constructor/deconstructor for `DefDef` instances. */
- val DefDef: DefDefExtractor
-
- /** An extractor class to create and pattern match with syntax `DefDef(mods, name, tparams, vparamss, tpt, rhs)`.
- * This AST node corresponds to the following Scala code:
- *
- * mods `def` name[tparams](vparams_1)...(vparams_n): tpt = rhs
- *
- * If the return type is not specified explicitly (i.e. is meant to be inferred),
- * this is expressed by having `tpt` set to `TypeTree()` (but not to an `EmptyTree`!).
- */
- abstract class DefDefExtractor {
- def apply(mods: Modifiers, name: Name, tparams: List[TypeDef], vparamss: List[List[ValDef]], tpt: Tree, rhs: Tree): DefDef
- def unapply(defDef: DefDef): Option[(Modifiers, Name, List[TypeDef], List[List[ValDef]], Tree, Tree)]
- }
-
- /** An abstract type, a type parameter, or a type alias.
- * Eliminated by erasure.
- */
- type TypeDef >: Null <: MemberDef
-
- /** A tag that preserves the identity of the `TypeDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeDefTag: ClassTag[TypeDef]
-
- /** The constructor/deconstructor for `TypeDef` instances. */
- val TypeDef: TypeDefExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeDef(mods, name, tparams, rhs)`.
- * This AST node corresponds to the following Scala code:
- *
- * mods `type` name[tparams] = rhs
- *
- * mods `type` name[tparams] >: lo <: hi
- *
- * First usage illustrates `TypeDefs` representing type aliases and type parameters.
- * Second usage illustrates `TypeDefs` representing abstract types,
- * where lo and hi are both `TypeBoundsTrees` and `Modifier.deferred` is set in mods.
- */
- abstract class TypeDefExtractor {
- def apply(mods: Modifiers, name: TypeName, tparams: List[TypeDef], rhs: Tree): TypeDef
- def unapply(typeDef: TypeDef): Option[(Modifiers, TypeName, List[TypeDef], Tree)]
- }
-
- /** A labelled expression. Not expressible in language syntax, but
- * generated by the compiler to simulate while/do-while loops, and
- * also by the pattern matcher.
- *
- * The label acts much like a nested function, where `params` represents
- * the incoming parameters. The symbol given to the LabelDef should have
- * a MethodType, as if it were a nested function.
- *
- * Jumps are apply nodes attributed with a label's symbol. The
- * arguments from the apply node will be passed to the label and
- * assigned to the Idents.
- *
- * Forward jumps within a block are allowed.
- */
- type LabelDef >: Null <: DefTree with TermTree
-
- /** A tag that preserves the identity of the `LabelDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val LabelDefTag: ClassTag[LabelDef]
-
- /** The constructor/deconstructor for `LabelDef` instances. */
- val LabelDef: LabelDefExtractor
-
- /** An extractor class to create and pattern match with syntax `LabelDef(name, params, rhs)`.
- *
- * This AST node does not have direct correspondence to Scala code.
- * It is used for tailcalls and like.
- * For example, while/do are desugared to label defs as follows:
- * {{{
- * while (cond) body ==> LabelDef($L, List(), if (cond) { body; L$() } else ())
- * }}}
- * {{{
- * do body while (cond) ==> LabelDef($L, List(), body; if (cond) L$() else ())
- * }}}
- */
- abstract class LabelDefExtractor {
- def apply(name: TermName, params: List[Ident], rhs: Tree): LabelDef
- def unapply(labelDef: LabelDef): Option[(TermName, List[Ident], Tree)]
- }
-
- /** Import selector
- *
- * Representation of an imported name its optional rename and their optional positions
- *
- * Eliminated by typecheck.
- *
- * @param name the imported name
- * @param namePos its position or -1 if undefined
- * @param rename the name the import is renamed to (== name if no renaming)
- * @param renamePos the position of the rename or -1 if undefined
- */
- type ImportSelector >: Null <: AnyRef
-
- /** A tag that preserves the identity of the `ImportSelector` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ImportSelectorTag: ClassTag[ImportSelector]
-
- /** The constructor/deconstructor for `ImportSelector` instances. */
- val ImportSelector: ImportSelectorExtractor
-
- /** An extractor class to create and pattern match with syntax `ImportSelector(name:, namePos, rename, renamePos)`.
- * This is not an AST node, it is used as a part of the `Import` node.
- */
- abstract class ImportSelectorExtractor {
- def apply(name: Name, namePos: Int, rename: Name, renamePos: Int): ImportSelector
- def unapply(importSelector: ImportSelector): Option[(Name, Int, Name, Int)]
- }
-
- /** Import clause
- *
- * @param expr
- * @param selectors
- */
- type Import >: Null <: SymTree
-
- /** A tag that preserves the identity of the `Import` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ImportTag: ClassTag[Import]
-
- /** The constructor/deconstructor for `Import` instances. */
- val Import: ImportExtractor
-
- /** An extractor class to create and pattern match with syntax `Import(expr, selectors)`.
- * This AST node corresponds to the following Scala code:
- *
- * import expr.{selectors}
- *
- * Selectors are a list of ImportSelectors, which conceptually are pairs of names (from, to).
- * The last (and maybe only name) may be a nme.WILDCARD. For instance:
- *
- * import qual.{x, y => z, _}
- *
- * Would be represented as:
- *
- * Import(qual, List(("x", "x"), ("y", "z"), (WILDCARD, null)))
- *
- * The symbol of an `Import` is an import symbol @see Symbol.newImport.
- * It's used primarily as a marker to check that the import has been typechecked.
- */
- abstract class ImportExtractor {
- def apply(expr: Tree, selectors: List[ImportSelector]): Import
- def unapply(import_ : Import): Option[(Tree, List[ImportSelector])]
- }
-
- /** Instantiation template of a class or trait
- *
- * @param parents
- * @param body
- */
- type Template >: Null <: SymTree
-
- /** A tag that preserves the identity of the `Template` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TemplateTag: ClassTag[Template]
-
- /** The constructor/deconstructor for `Template` instances. */
- val Template: TemplateExtractor
-
- /** An extractor class to create and pattern match with syntax `Template(parents, self, body)`.
- * This AST node corresponds to the following Scala code:
- *
- * `extends` parents { self => body }
- *
- * In case when the self-type annotation is missing, it is represented as
- * an empty value definition with nme.WILDCARD as name and NoType as type.
- *
- * The symbol of a template is a local dummy. @see Symbol.newLocalDummy
- * The owner of the local dummy is the enclosing trait or class.
- * The local dummy is itself the owner of any local blocks. For example:
- *
- * class C {
- * def foo { // owner is C
- * def bar // owner is local dummy
- * }
- * }
- */
- abstract class TemplateExtractor {
- def apply(parents: List[Tree], self: ValDef, body: List[Tree]): Template
- def unapply(template: Template): Option[(List[Tree], ValDef, List[Tree])]
- }
-
- /** Block of expressions (semicolon separated expressions) */
- type Block >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Block` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val BlockTag: ClassTag[Block]
-
- /** The constructor/deconstructor for `Block` instances. */
- val Block: BlockExtractor
-
- /** An extractor class to create and pattern match with syntax `Block(stats, expr)`.
- * This AST node corresponds to the following Scala code:
- *
- * { stats; expr }
- *
- * If the block is empty, the `expr` is set to `Literal(Constant(()))`.
- */
- abstract class BlockExtractor {
- def apply(stats: List[Tree], expr: Tree): Block
- def unapply(block: Block): Option[(List[Tree], Tree)]
- }
-
- /** Case clause in a pattern match.
- * (except for occurrences in switch statements).
- * Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher)
- */
- type CaseDef >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `CaseDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val CaseDefTag: ClassTag[CaseDef]
-
- /** The constructor/deconstructor for `CaseDef` instances. */
- val CaseDef: CaseDefExtractor
-
- /** An extractor class to create and pattern match with syntax `CaseDef(pat, guard, body)`.
- * This AST node corresponds to the following Scala code:
- *
- * `case` pat `if` guard => body
- *
- * If the guard is not present, the `guard` is set to `EmptyTree`.
- * If the body is not specified, the `body` is set to `Literal(Constant())`
- */
- abstract class CaseDefExtractor {
- def apply(pat: Tree, guard: Tree, body: Tree): CaseDef
- def unapply(caseDef: CaseDef): Option[(Tree, Tree, Tree)]
- }
-
- /** Alternatives of patterns.
- *
- * Eliminated by compiler phases Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher),
- * except for
- * occurrences in encoded Switch stmt (i.e. remaining Match(CaseDef(...)))
- */
- type Alternative >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Alternative` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AlternativeTag: ClassTag[Alternative]
-
- /** The constructor/deconstructor for `Alternative` instances. */
- val Alternative: AlternativeExtractor
-
- /** An extractor class to create and pattern match with syntax `Alternative(trees)`.
- * This AST node corresponds to the following Scala code:
- *
- * pat1 | ... | patn
- */
- abstract class AlternativeExtractor {
- def apply(trees: List[Tree]): Alternative
- def unapply(alternative: Alternative): Option[List[Tree]]
- }
-
- /** Repetition of pattern.
- *
- * Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher).
- */
- type Star >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Star` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val StarTag: ClassTag[Star]
-
- /** The constructor/deconstructor for `Star` instances. */
- val Star: StarExtractor
-
- /** An extractor class to create and pattern match with syntax `Star(elem)`.
- * This AST node corresponds to the following Scala code:
- *
- * pat*
- */
- abstract class StarExtractor {
- def apply(elem: Tree): Star
- def unapply(star: Star): Option[Tree]
- }
-
- /** Bind a variable to a rhs pattern.
- *
- * Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher).
- *
- * @param name
- * @param body
- */
- type Bind >: Null <: DefTree
-
- /** A tag that preserves the identity of the `Bind` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val BindTag: ClassTag[Bind]
-
- /** The constructor/deconstructor for `Bind` instances. */
- val Bind: BindExtractor
-
- /** An extractor class to create and pattern match with syntax `Bind(name, body)`.
- * This AST node corresponds to the following Scala code:
- *
- * pat*
- */
- abstract class BindExtractor {
- def apply(name: Name, body: Tree): Bind
- def unapply(bind: Bind): Option[(Name, Tree)]
- }
-
- /**
- * Used to represent `unapply` methods in pattern matching.
- *
- * For example:
- * {{{
- * 2 match { case Foo(x) => x }
- * }}}
- *
- * Is represented as:
- * {{{
- * Match(
- * Literal(Constant(2)),
- * List(
- * CaseDef(
- * UnApply(
- * // a dummy node that carries the type of unapplication to patmat
- * // the <unapply-selector> here doesn't have an underlying symbol
- * // it only has a type assigned, therefore after `resetAllAttrs` this tree is no longer typeable
- * Apply(Select(Ident(Foo), newTermName("unapply")), List(Ident(newTermName("<unapply-selector>")))),
- * // arguments of the unapply => nothing synthetic here
- * List(Bind(newTermName("x"), Ident(nme.WILDCARD)))),
- * EmptyTree,
- * Ident(newTermName("x")))))
- * }}}
- *
- * Introduced by typer. Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher).
- */
- type UnApply >: Null <: TermTree
-
- /** A tag that preserves the identity of the `UnApply` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val UnApplyTag: ClassTag[UnApply]
-
- /** The constructor/deconstructor for `UnApply` instances. */
- val UnApply: UnApplyExtractor
-
- /** An extractor class to create and pattern match with syntax `UnApply(fun, args)`.
- * This AST node does not have direct correspondence to Scala code,
- * and is introduced when typechecking pattern matches and `try` blocks.
- */
- abstract class UnApplyExtractor {
- def apply(fun: Tree, args: List[Tree]): UnApply
- def unapply(unApply: UnApply): Option[(Tree, List[Tree])]
- }
-
- /** Anonymous function, eliminated by compiler phase lambdalift */
- type Function >: Null <: TermTree with SymTree
-
- /** A tag that preserves the identity of the `Function` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val FunctionTag: ClassTag[Function]
-
- /** The constructor/deconstructor for `Function` instances. */
- val Function: FunctionExtractor
-
- /** An extractor class to create and pattern match with syntax `Function(vparams, body)`.
- * This AST node corresponds to the following Scala code:
- *
- * vparams => body
- *
- * The symbol of a Function is a synthetic TermSymbol.
- * It is the owner of the function's parameters.
- */
- abstract class FunctionExtractor {
- def apply(vparams: List[ValDef], body: Tree): Function
- def unapply(function: Function): Option[(List[ValDef], Tree)]
- }
-
- /** Assignment */
- type Assign >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Assign` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AssignTag: ClassTag[Assign]
-
- /** The constructor/deconstructor for `Assign` instances. */
- val Assign: AssignExtractor
-
- /** An extractor class to create and pattern match with syntax `Assign(lhs, rhs)`.
- * This AST node corresponds to the following Scala code:
- *
- * lhs = rhs
- */
- abstract class AssignExtractor {
- def apply(lhs: Tree, rhs: Tree): Assign
- def unapply(assign: Assign): Option[(Tree, Tree)]
- }
-
- /** Either an assignment or a named argument. Only appears in argument lists,
- * eliminated by compiler phase typecheck (doTypedApply), resurrected by reifier.
- */
- type AssignOrNamedArg >: Null <: TermTree
-
- /** A tag that preserves the identity of the `AssignOrNamedArg` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AssignOrNamedArgTag: ClassTag[AssignOrNamedArg]
-
- /** The constructor/deconstructor for `AssignOrNamedArg` instances. */
- val AssignOrNamedArg: AssignOrNamedArgExtractor
-
- /** An extractor class to create and pattern match with syntax `AssignOrNamedArg(lhs, rhs)`.
- * This AST node corresponds to the following Scala code:
- *
- * {{{
- * m.f(lhs = rhs)
- * }}}
- * {{{
- * @annotation(lhs = rhs)
- * }}}
- *
- */
- abstract class AssignOrNamedArgExtractor {
- def apply(lhs: Tree, rhs: Tree): AssignOrNamedArg
- def unapply(assignOrNamedArg: AssignOrNamedArg): Option[(Tree, Tree)]
- }
-
- /** Conditional expression */
- type If >: Null <: TermTree
-
- /** A tag that preserves the identity of the `If` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val IfTag: ClassTag[If]
-
- /** The constructor/deconstructor for `If` instances. */
- val If: IfExtractor
-
- /** An extractor class to create and pattern match with syntax `If(cond, thenp, elsep)`.
- * This AST node corresponds to the following Scala code:
- *
- * `if` (cond) thenp `else` elsep
- *
- * If the alternative is not present, the `elsep` is set to `Literal(Constant(()))`.
- */
- abstract class IfExtractor {
- def apply(cond: Tree, thenp: Tree, elsep: Tree): If
- def unapply(if_ : If): Option[(Tree, Tree, Tree)]
- }
-
- /** - Pattern matching expression (before compiler phase explicitouter before 2.10 / patmat from 2.10)
- * - Switch statements (after compiler phase explicitouter before 2.10 / patmat from 2.10)
- *
- * After compiler phase explicitouter before 2.10 / patmat from 2.10, cases will satisfy the following constraints:
- *
- * - all guards are `EmptyTree`,
- * - all patterns will be either `Literal(Constant(x:Int))`
- * or `Alternative(lit|...|lit)`
- * - except for an "otherwise" branch, which has pattern
- * `Ident(nme.WILDCARD)`
- */
- type Match >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Match` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val MatchTag: ClassTag[Match]
-
- /** The constructor/deconstructor for `Match` instances. */
- val Match: MatchExtractor
-
- /** An extractor class to create and pattern match with syntax `Match(selector, cases)`.
- * This AST node corresponds to the following Scala code:
- *
- * selector `match` { cases }
- *
- * `Match` is also used in pattern matching assignments like `val (foo, bar) = baz`.
- */
- abstract class MatchExtractor {
- def apply(selector: Tree, cases: List[CaseDef]): Match
- def unapply(match_ : Match): Option[(Tree, List[CaseDef])]
- }
-
- /** Return expression */
- type Return >: Null <: TermTree with SymTree
-
- /** A tag that preserves the identity of the `Return` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ReturnTag: ClassTag[Return]
-
- /** The constructor/deconstructor for `Return` instances. */
- val Return: ReturnExtractor
-
- /** An extractor class to create and pattern match with syntax `Return(expr)`.
- * This AST node corresponds to the following Scala code:
- *
- * `return` expr
- *
- * The symbol of a Return node is the enclosing method.
- */
- abstract class ReturnExtractor {
- def apply(expr: Tree): Return
- def unapply(return_ : Return): Option[Tree]
- }
-
- /** [Eugene++] comment me! */
- type Try >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Try` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TryTag: ClassTag[Try]
-
- /** The constructor/deconstructor for `Try` instances. */
- val Try: TryExtractor
-
- /** An extractor class to create and pattern match with syntax `Try(block, catches, finalizer)`.
- * This AST node corresponds to the following Scala code:
- *
- * `try` block `catch` { catches } `finally` finalizer
- *
- * If the finalizer is not present, the `finalizer` is set to `EmptyTree`.
- */
- abstract class TryExtractor {
- def apply(block: Tree, catches: List[CaseDef], finalizer: Tree): Try
- def unapply(try_ : Try): Option[(Tree, List[CaseDef], Tree)]
- }
-
- /** Throw expression */
- type Throw >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Throw` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ThrowTag: ClassTag[Throw]
-
- /** The constructor/deconstructor for `Throw` instances. */
- val Throw: ThrowExtractor
-
- /** An extractor class to create and pattern match with syntax `Throw(expr)`.
- * This AST node corresponds to the following Scala code:
- *
- * `throw` expr
- */
- abstract class ThrowExtractor {
- def apply(expr: Tree): Throw
- def unapply(throw_ : Throw): Option[Tree]
- }
-
- /** Object instantiation
- */
- type New >: Null <: TermTree
-
- /** A tag that preserves the identity of the `New` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val NewTag: ClassTag[New]
-
- /** The constructor/deconstructor for `New` instances.
- */
- val New: NewExtractor
-
- /** An extractor class to create and pattern match with syntax `New(tpt)`.
- * This AST node corresponds to the following Scala code:
- *
- * `new` T
- *
- * This node always occurs in the following context:
- *
- * (`new` tpt).<init>[targs](args)
- */
- abstract class NewExtractor {
- /** A user level `new`.
- * One should always use this factory method to build a user level `new`.
- *
- * @param tpt a class type
- */
- def apply(tpt: Tree): New
- def unapply(new_ : New): Option[Tree]
- }
-
- /** Type annotation, eliminated by compiler phase cleanup */
- type Typed >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Typed` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypedTag: ClassTag[Typed]
-
- /** The constructor/deconstructor for `Typed` instances. */
- val Typed: TypedExtractor
-
- /** An extractor class to create and pattern match with syntax `Typed(expr, tpt)`.
- * This AST node corresponds to the following Scala code:
- *
- * expr: tpt
- */
- abstract class TypedExtractor {
- def apply(expr: Tree, tpt: Tree): Typed
- def unapply(typed: Typed): Option[(Tree, Tree)]
- }
-
- /** Common base class for Apply and TypeApply.
- */
- type GenericApply >: Null <: TermTree
-
- /** A tag that preserves the identity of the `GenericApply` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val GenericApplyTag: ClassTag[GenericApply]
-
- /* @PP: All signs point toward it being a requirement that args.nonEmpty,
- * but I can't find that explicitly stated anywhere. Unless your last name
- * is odersky, you should probably treat it as true.
- */
- /** Explicit type application. */
- type TypeApply >: Null <: GenericApply
-
- /** A tag that preserves the identity of the `TypeApply` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeApplyTag: ClassTag[TypeApply]
-
- /** The constructor/deconstructor for `TypeApply` instances. */
- val TypeApply: TypeApplyExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeApply(fun, args)`.
- * This AST node corresponds to the following Scala code:
- *
- * fun[args]
- */
- abstract class TypeApplyExtractor {
- def apply(fun: Tree, args: List[Tree]): TypeApply
- def unapply(typeApply: TypeApply): Option[(Tree, List[Tree])]
- }
-
- /** Value application */
- type Apply >: Null <: GenericApply
-
- /** A tag that preserves the identity of the `Apply` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ApplyTag: ClassTag[Apply]
-
- /** The constructor/deconstructor for `Apply` instances. */
- val Apply: ApplyExtractor
-
- /** An extractor class to create and pattern match with syntax `Apply(fun, args)`.
- * This AST node corresponds to the following Scala code:
- *
- * fun(args)
- *
- * For instance:
- *
- * fun[targs](args)
- *
- * Is expressed as:
- *
- * Apply(TypeApply(fun, targs), args)
- */
- abstract class ApplyExtractor {
- def apply(fun: Tree, args: List[Tree]): Apply
- def unapply(apply: Apply): Option[(Tree, List[Tree])]
- }
-
- /** Super reference, where `qual` is the corresponding `this` reference.
- * A super reference `C.super[M]` is represented as `Super(This(C), M)`.
- */
- type Super >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Super` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SuperTag: ClassTag[Super]
-
- /** The constructor/deconstructor for `Super` instances. */
- val Super: SuperExtractor
-
- /** An extractor class to create and pattern match with syntax `Super(qual, mix)`.
- * This AST node corresponds to the following Scala code:
- *
- * C.super[M]
- *
- * Which is represented as:
- *
- * Super(This(C), M)
- *
- * If `mix` is empty, it is tpnme.EMPTY.
- *
- * The symbol of a Super is the class _from_ which the super reference is made.
- * For instance in C.super(...), it would be C.
- */
- abstract class SuperExtractor {
- def apply(qual: Tree, mix: TypeName): Super
- def unapply(super_ : Super): Option[(Tree, TypeName)]
- }
-
- /** Self reference */
- type This >: Null <: TermTree with SymTree
-
- /** A tag that preserves the identity of the `This` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ThisTag: ClassTag[This]
-
- /** The constructor/deconstructor for `This` instances. */
- val This: ThisExtractor
-
- /** An extractor class to create and pattern match with syntax `This(qual)`.
- * This AST node corresponds to the following Scala code:
- *
- * qual.this
- *
- * The symbol of a This is the class to which the this refers.
- * For instance in C.this, it would be C.
- *
- * If `mix` is empty, then ???
- */
- abstract class ThisExtractor {
- def apply(qual: TypeName): This
- def unapply(this_ : This): Option[TypeName]
- }
-
- /** Designator <qualifier> . <name> */
- type Select >: Null <: RefTree
-
- /** A tag that preserves the identity of the `Select` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SelectTag: ClassTag[Select]
-
- /** The constructor/deconstructor for `Select` instances. */
- val Select: SelectExtractor
-
- /** An extractor class to create and pattern match with syntax `Select(qual, name)`.
- * This AST node corresponds to the following Scala code:
- *
- * qualifier.selector
- */
- abstract class SelectExtractor {
- def apply(qualifier: Tree, name: Name): Select
- def unapply(select: Select): Option[(Tree, Name)]
- }
-
- /** Identifier <name> */
- type Ident >: Null <: RefTree
-
- /** A tag that preserves the identity of the `Ident` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val IdentTag: ClassTag[Ident]
-
- /** The constructor/deconstructor for `Ident` instances. */
- val Ident: IdentExtractor
-
- /** An extractor class to create and pattern match with syntax `Ident(qual, name)`.
- * This AST node corresponds to the following Scala code:
- *
- * name
- *
- * Type checker converts idents that refer to enclosing fields or methods to selects.
- * For example, name ==> this.name
- */
- abstract class IdentExtractor {
- def apply(name: Name): Ident
- def unapply(ident: Ident): Option[Name]
- }
-
- /** Marks underlying reference to id as boxed.
- * @pre id must refer to a captured variable
- * A reference such marked will refer to the boxed entity, no dereferencing
- * with `.elem` is done on it.
- * This tree node can be emitted by macros such as reify that call referenceCapturedVariable.
- * It is eliminated in LambdaLift, where the boxing conversion takes place.
- */
- type ReferenceToBoxed >: Null <: TermTree
-
- /** A tag that preserves the identity of the `ReferenceToBoxed` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ReferenceToBoxedTag: ClassTag[ReferenceToBoxed]
-
- /** The constructor/deconstructor for `ReferenceToBoxed` instances. */
- val ReferenceToBoxed: ReferenceToBoxedExtractor
-
- /** An extractor class to create and pattern match with syntax `ReferenceToBoxed(ident)`.
- * This AST node does not have direct correspondence to Scala code,
- * and is emitted by macros to reference capture vars directly without going through `elem`.
- *
- * For example:
- *
- * var x = ...
- * fun { x }
- *
- * Will emit:
- *
- * Ident(x)
- *
- * Which gets transformed to:
- *
- * Select(Ident(x), "elem")
- *
- * If `ReferenceToBoxed` were used instead of Ident, no transformation would be performed.
- */
- abstract class ReferenceToBoxedExtractor {
- def apply(ident: Ident): ReferenceToBoxed
- def unapply(referenceToBoxed: ReferenceToBoxed): Option[Ident]
- }
-
- /** Literal */
- type Literal >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Literal` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val LiteralTag: ClassTag[Literal]
-
- /** The constructor/deconstructor for `Literal` instances. */
- val Literal: LiteralExtractor
-
- /** An extractor class to create and pattern match with syntax `Literal(value)`.
- * This AST node corresponds to the following Scala code:
- *
- * value
- */
- abstract class LiteralExtractor {
- def apply(value: Constant): Literal
- def unapply(literal: Literal): Option[Constant]
- }
-
- /** A tree that has an annotation attached to it. Only used for annotated types and
- * annotation ascriptions, annotations on definitions are stored in the Modifiers.
- * Eliminated by typechecker (typedAnnotated), the annotations are then stored in
- * an AnnotatedType.
- */
- type Annotated >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `Annotated` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AnnotatedTag: ClassTag[Annotated]
-
- /** The constructor/deconstructor for `Annotated` instances. */
- val Annotated: AnnotatedExtractor
-
- /** An extractor class to create and pattern match with syntax `Annotated(annot, arg)`.
- * This AST node corresponds to the following Scala code:
- *
- * arg @annot // for types
- * arg: @annot // for exprs
- */
- abstract class AnnotatedExtractor {
- def apply(annot: Tree, arg: Tree): Annotated
- def unapply(annotated: Annotated): Option[(Tree, Tree)]
- }
-
- /** Singleton type, eliminated by RefCheck */
- type SingletonTypeTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `SingletonTypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SingletonTypeTreeTag: ClassTag[SingletonTypeTree]
-
- /** The constructor/deconstructor for `SingletonTypeTree` instances. */
- val SingletonTypeTree: SingletonTypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `SingletonTypeTree(ref)`.
- * This AST node corresponds to the following Scala code:
- *
- * ref.type
- */
- abstract class SingletonTypeTreeExtractor {
- def apply(ref: Tree): SingletonTypeTree
- def unapply(singletonTypeTree: SingletonTypeTree): Option[Tree]
- }
-
- /** Type selection <qualifier> # <name>, eliminated by RefCheck */
- // [Eugene++] don't see why we need it, when we have Select
- type SelectFromTypeTree >: Null <: TypTree with RefTree
-
- /** A tag that preserves the identity of the `SelectFromTypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SelectFromTypeTreeTag: ClassTag[SelectFromTypeTree]
-
- /** The constructor/deconstructor for `SelectFromTypeTree` instances. */
- val SelectFromTypeTree: SelectFromTypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `SelectFromTypeTree(qualifier, name)`.
- * This AST node corresponds to the following Scala code:
- *
- * qualifier # selector
- *
- * Note: a path-dependent type p.T is expressed as p.type # T
- */
- abstract class SelectFromTypeTreeExtractor {
- def apply(qualifier: Tree, name: TypeName): SelectFromTypeTree
- def unapply(selectFromTypeTree: SelectFromTypeTree): Option[(Tree, TypeName)]
- }
-
- /** Intersection type <parent1> with ... with <parentN> { <decls> }, eliminated by RefCheck */
- type CompoundTypeTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `CompoundTypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val CompoundTypeTreeTag: ClassTag[CompoundTypeTree]
-
- /** The constructor/deconstructor for `CompoundTypeTree` instances. */
- val CompoundTypeTree: CompoundTypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `CompoundTypeTree(templ)`.
- * This AST node corresponds to the following Scala code:
- *
- * parent1 with ... with parentN { refinement }
- */
- abstract class CompoundTypeTreeExtractor {
- def apply(templ: Template): CompoundTypeTree
- def unapply(compoundTypeTree: CompoundTypeTree): Option[Template]
- }
-
- /** Applied type <tpt> [ <args> ], eliminated by RefCheck */
- type AppliedTypeTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `AppliedTypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AppliedTypeTreeTag: ClassTag[AppliedTypeTree]
-
- /** The constructor/deconstructor for `AppliedTypeTree` instances. */
- val AppliedTypeTree: AppliedTypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `AppliedTypeTree(tpt, args)`.
- * This AST node corresponds to the following Scala code:
- *
- * tpt[args]
- */
- abstract class AppliedTypeTreeExtractor {
- def apply(tpt: Tree, args: List[Tree]): AppliedTypeTree
- def unapply(appliedTypeTree: AppliedTypeTree): Option[(Tree, List[Tree])]
- }
-
- /** Document me! */
- type TypeBoundsTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `TypeBoundsTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeBoundsTreeTag: ClassTag[TypeBoundsTree]
-
- /** The constructor/deconstructor for `TypeBoundsTree` instances. */
- val TypeBoundsTree: TypeBoundsTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeBoundsTree(lo, hi)`.
- * This AST node corresponds to the following Scala code:
- *
- * >: lo <: hi
- */
- abstract class TypeBoundsTreeExtractor {
- def apply(lo: Tree, hi: Tree): TypeBoundsTree
- def unapply(typeBoundsTree: TypeBoundsTree): Option[(Tree, Tree)]
- }
-
- /** Document me! */
- type ExistentialTypeTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `ExistentialTypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ExistentialTypeTreeTag: ClassTag[ExistentialTypeTree]
-
- /** The constructor/deconstructor for `ExistentialTypeTree` instances. */
- val ExistentialTypeTree: ExistentialTypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `ExistentialTypeTree(tpt, whereClauses)`.
- * This AST node corresponds to the following Scala code:
- *
- * tpt forSome { whereClauses }
- */
- abstract class ExistentialTypeTreeExtractor {
- def apply(tpt: Tree, whereClauses: List[Tree]): ExistentialTypeTree
- def unapply(existentialTypeTree: ExistentialTypeTree): Option[(Tree, List[Tree])]
- }
-
- /** A synthetic tree holding an arbitrary type. Not to be confused with
- * with TypTree, the trait for trees that are only used for type trees.
- * TypeTree's are inserted in several places, but most notably in
- * `RefCheck`, where the arbitrary type trees are all replaced by
- * TypeTree's. */
- type TypeTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `TypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeTreeTag: ClassTag[TypeTree]
-
- /** The constructor/deconstructor for `TypeTree` instances. */
- val TypeTree: TypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeTree()`.
- * This AST node does not have direct correspondence to Scala code,
- * and is emitted by everywhere when we want to wrap a `Type` in a `Tree`.
- */
- abstract class TypeTreeExtractor {
- def apply(): TypeTree
- def unapply(typeTree: TypeTree): Boolean
- }
-
- /** ... */
- type Modifiers >: Null <: ModifiersBase
-
- /** A tag that preserves the identity of the `Modifiers` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ModifiersTag: ClassTag[Modifiers]
-
- /** ... */
- abstract class ModifiersBase {
- def flags: FlagSet // default: NoFlags
- def hasFlag(flag: FlagSet): Boolean
- def privateWithin: Name // default: EmptyTypeName
- def annotations: List[Tree] // default: List()
- def mapAnnotations(f: List[Tree] => List[Tree]): Modifiers =
- Modifiers(flags, privateWithin, f(annotations))
- }
-
- val Modifiers: ModifiersCreator
-
- abstract class ModifiersCreator {
- def apply(): Modifiers = Modifiers(NoFlags, EmptyTypeName, List())
- def apply(flags: FlagSet, privateWithin: Name, annotations: List[Tree]): Modifiers
- }
-
- def Modifiers(flags: FlagSet, privateWithin: Name): Modifiers = Modifiers(flags, privateWithin, List())
- def Modifiers(flags: FlagSet): Modifiers = Modifiers(flags, EmptyTypeName)
-
- /** ... */
- lazy val NoMods = Modifiers()
-
-// ---------------------- factories ----------------------------------------------
-
- /** @param sym the class symbol
- * @param impl the implementation template
- */
- def ClassDef(sym: Symbol, impl: Template): ClassDef
-
- /**
- * @param sym the class symbol
- * @param impl the implementation template
- */
- def ModuleDef(sym: Symbol, impl: Template): ModuleDef
-
- def ValDef(sym: Symbol, rhs: Tree): ValDef
-
- def ValDef(sym: Symbol): ValDef
-
- def DefDef(sym: Symbol, mods: Modifiers, vparamss: List[List[ValDef]], rhs: Tree): DefDef
-
- def DefDef(sym: Symbol, vparamss: List[List[ValDef]], rhs: Tree): DefDef
-
- def DefDef(sym: Symbol, mods: Modifiers, rhs: Tree): DefDef
-
- def DefDef(sym: Symbol, rhs: Tree): DefDef
-
- def DefDef(sym: Symbol, rhs: List[List[Symbol]] => Tree): DefDef
-
- /** A TypeDef node which defines given `sym` with given tight hand side `rhs`. */
- def TypeDef(sym: Symbol, rhs: Tree): TypeDef
-
- /** A TypeDef node which defines abstract type or type parameter for given `sym` */
- def TypeDef(sym: Symbol): TypeDef
-
- def LabelDef(sym: Symbol, params: List[Symbol], rhs: Tree): LabelDef
-
- /** Block factory that flattens directly nested blocks.
- */
- def Block(stats: Tree*): Block
-
- /** casedef shorthand */
- def CaseDef(pat: Tree, body: Tree): CaseDef
-
- def Bind(sym: Symbol, body: Tree): Bind
-
- def Try(body: Tree, cases: (Tree, Tree)*): Try
-
- def Throw(tpe: Type, args: Tree*): Throw
-
- /** Factory method for object creation `new tpt(args_1)...(args_n)`
- * A `New(t, as)` is expanded to: `(new t).<init>(as)`
- */
- def New(tpt: Tree, argss: List[List[Tree]]): Tree
-
- /** 0-1 argument list new, based on a type.
- */
- def New(tpe: Type, args: Tree*): Tree
-
- def New(sym: Symbol, args: Tree*): Tree
-
- def Apply(sym: Symbol, args: Tree*): Tree
-
- def ApplyConstructor(tpt: Tree, args: List[Tree]): Tree
-
- def Super(sym: Symbol, mix: TypeName): Tree
-
- def This(sym: Symbol): Tree
-
- def Select(qualifier: Tree, name: String): Select
-
- def Select(qualifier: Tree, sym: Symbol): Select
-
- def Ident(name: String): Ident
-
- def Ident(sym: Symbol): Ident
-
- def TypeTree(tp: Type): TypeTree
-} \ No newline at end of file
diff --git a/src/library/scala/reflect/base/Types.scala b/src/library/scala/reflect/base/Types.scala
deleted file mode 100644
index b2ee3bc4d3..0000000000
--- a/src/library/scala/reflect/base/Types.scala
+++ /dev/null
@@ -1,441 +0,0 @@
-package scala.reflect
-package base
-
-/**
- * Defines the type hierachy for types.
- *
- * Note: Because of implementation details, some type factories have return type `Type`
- * instead of a more precise type.
- *
- * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
- */
-trait Types { self: Universe =>
-
- /** The type of Scala types, and also Scala type signatures.
- * (No difference is internally made between the two).
- */
- type Type >: Null <: TypeBase
-
- /** The base API that all types support */
- abstract class TypeBase
-
- /** A tag that preserves the identity of the `Type` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeTagg: ClassTag[Type]
-
- /** This constant is used as a special value that indicates that no meaningful type exists.
- */
- val NoType: Type
-
- /** This constant is used as a special value denoting the empty prefix in a path dependent type.
- * For instance `x.type` is represented as `SingleType(NoPrefix, <x>)`, where `<x>` stands for
- * the symbol for `x`.
- */
- val NoPrefix: Type
-
- /** The type of Scala singleton types, i.e., types that are inhabited
- * by only one nun-null value. These include types of the forms
- * {{{
- * C.this.type
- * C.super.type
- * x.type
- * }}}
- * as well as [[ConstantType constant types]].
- */
- type SingletonType >: Null <: Type
-
- /** A tag that preserves the identity of the `SingletonType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SingletonTypeTag: ClassTag[SingletonType]
-
- /** A singleton type that describes types of the form on the left with the
- * corresponding `ThisType` representation to the right:
- * {{{
- * C.this.type ThisType(C)
- * }}}
- */
- type ThisType >: Null <: AnyRef with SingletonType
-
- /** A tag that preserves the identity of the `ThisType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ThisTypeTag: ClassTag[ThisType]
-
- /** The constructor/deconstructor for `ThisType` instances. */
- val ThisType: ThisTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `ThisType(sym)`
- * where `sym` is the class prefix of the this type.
- */
- abstract class ThisTypeExtractor {
- /**
- * Creates a ThisType from the given class symbol.
- */
- def apply(sym: Symbol): Type
- def unapply(tpe: ThisType): Option[Symbol]
- }
-
- /** The `SingleType` type describes types of any of the forms on the left,
- * with their TypeRef representations to the right.
- * {{{
- * (T # x).type SingleType(T, x)
- * p.x.type SingleType(p.type, x)
- * x.type SingleType(NoPrefix, x)
- * }}}
- */
- type SingleType >: Null <: AnyRef with SingletonType
-
- /** A tag that preserves the identity of the `SingleType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SingleTypeTag: ClassTag[SingleType]
-
- /** The constructor/deconstructor for `SingleType` instances. */
- val SingleType: SingleTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `SingleType(pre, sym)`
- * Here, `pre` is the prefix of the single-type, and `sym` is the stable value symbol
- * referred to by the single-type.
- */
- abstract class SingleTypeExtractor {
- def apply(pre: Type, sym: Symbol): Type // not SingleTypebecause of implementation details
- def unapply(tpe: SingleType): Option[(Type, Symbol)]
- }
-
- /** The `SuperType` type is not directly written, but arises when `C.super` is used
- * as a prefix in a `TypeRef` or `SingleType`. It's internal presentation is
- * {{{
- * SuperType(thistpe, supertpe)
- * }}}
- * Here, `thistpe` is the type of the corresponding this-type. For instance,
- * in the type arising from C.super, the `thistpe` part would be `ThisType(C)`.
- * `supertpe` is the type of the super class referred to by the `super`.
- */
- type SuperType >: Null <: AnyRef with SingletonType
-
- /** A tag that preserves the identity of the `SuperType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SuperTypeTag: ClassTag[SuperType]
-
- /** The constructor/deconstructor for `SuperType` instances. */
- val SuperType: SuperTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `SingleType(thistpe, supertpe)`
- */
- abstract class SuperTypeExtractor {
- def apply(thistpe: Type, supertpe: Type): Type // not SuperTypebecause of implementation details
- def unapply(tpe: SuperType): Option[(Type, Type)]
- }
-
- /** The `ConstantType` type is not directly written in user programs, but arises as the type of a constant.
- * The REPL expresses constant types like `Int(11)`. Here are some constants with their types:
- * {{{
- * 1 ConstantType(Constant(1))
- * "abc" ConstantType(Constant("abc"))
- * }}}
- */
- type ConstantType >: Null <: AnyRef with SingletonType
-
- /** A tag that preserves the identity of the `ConstantType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ConstantTypeTag: ClassTag[ConstantType]
-
- /** The constructor/deconstructor for `ConstantType` instances. */
- val ConstantType: ConstantTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `ConstantType(constant)`
- * Here, `constant` is the constant value represented by the type.
- */
- abstract class ConstantTypeExtractor {
- def apply(value: Constant): ConstantType
- def unapply(tpe: ConstantType): Option[Constant]
- }
-
- /** The `TypeRef` type describes types of any of the forms on the left,
- * with their TypeRef representations to the right.
- * {{{
- * T # C[T_1, ..., T_n] TypeRef(T, C, List(T_1, ..., T_n))
- * p.C[T_1, ..., T_n] TypeRef(p.type, C, List(T_1, ..., T_n))
- * C[T_1, ..., T_n] TypeRef(NoPrefix, C, List(T_1, ..., T_n))
- * T # C TypeRef(T, C, Nil)
- * p.C TypeRef(p.type, C, Nil)
- * C TypeRef(NoPrefix, C, Nil)
- * }}}
- */
- type TypeRef >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `TypeRef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeRefTag: ClassTag[TypeRef]
-
- /** The constructor/deconstructor for `TypeRef` instances. */
- val TypeRef: TypeRefExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeRef(pre, sym, args)`
- * Here, `pre` is the prefix of the type reference, `sym` is the symbol
- * referred to by the type reference, and `args` is a possible empty list of
- * type argumenrts.
- */
- abstract class TypeRefExtractor {
- def apply(pre: Type, sym: Symbol, args: List[Type]): Type // not TypeRefbecause of implementation details
- def unapply(tpe: TypeRef): Option[(Type, Symbol, List[Type])]
- }
-
- /** A subtype of Type representing refined types as well as `ClassInfo` signatures.
- */
- type CompoundType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `CompoundType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val CompoundTypeTag: ClassTag[CompoundType]
-
- /** The `RefinedType` type defines types of any of the forms on the left,
- * with their RefinedType representations to the right.
- * {{{
- * P_1 with ... with P_m { D_1; ...; D_n} RefinedType(List(P_1, ..., P_m), Scope(D_1, ..., D_n))
- * P_1 with ... with P_m RefinedType(List(P_1, ..., P_m), Scope())
- * { D_1; ...; D_n} RefinedType(List(AnyRef), Scope(D_1, ..., D_n))
- * }}}
- */
- type RefinedType >: Null <: AnyRef with CompoundType
-
- /** A tag that preserves the identity of the `RefinedType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val RefinedTypeTag: ClassTag[RefinedType]
-
- /** The constructor/deconstructor for `RefinedType` instances. */
- val RefinedType: RefinedTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `RefinedType(parents, decls)`
- * Here, `parents` is the list of parent types of the class, and `decls` is the scope
- * containing all declarations in the class.
- */
- abstract class RefinedTypeExtractor {
- def apply(parents: List[Type], decls: Scope): RefinedType
-
- /** An alternative constructor that passes in the synthetic classs symbol
- * that backs the refined type. (Normally, a fresh class symbol is created automatically).
- */
- def apply(parents: List[Type], decls: Scope, clazz: Symbol): RefinedType
- def unapply(tpe: RefinedType): Option[(List[Type], Scope)]
- }
-
- /** The `ClassInfo` type signature is used to define parents and declarations
- * of classes, traits, and objects. If a class, trait, or object C is declared like this
- * {{{
- * C extends P_1 with ... with P_m { D_1; ...; D_n}
- * }}}
- * its `ClassInfo` type has the following form:
- * {{{
- * ClassInfo(List(P_1, ..., P_m), Scope(D_1, ..., D_n), C)
- * }}}
- */
- type ClassInfoType >: Null <: AnyRef with CompoundType
-
- /** A tag that preserves the identity of the `ClassInfoType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ClassInfoTypeTag: ClassTag[ClassInfoType]
-
- /** The constructor/deconstructor for `ClassInfoType` instances. */
- val ClassInfoType: ClassInfoTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `ClassInfo(parents, decls, clazz)`
- * Here, `parents` is the list of parent types of the class, `decls` is the scope
- * containing all declarations in the class, and `clazz` is the symbol of the class
- * itself.
- */
- abstract class ClassInfoTypeExtractor {
- def apply(parents: List[Type], decls: Scope, typeSymbol: Symbol): ClassInfoType
- def unapply(tpe: ClassInfoType): Option[(List[Type], Scope, Symbol)]
- }
-
- /** The `MethodType` type signature is used to indicate parameters and result type of a method
- */
- type MethodType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `MethodType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val MethodTypeTag: ClassTag[MethodType]
-
- /** The constructor/deconstructor for `MethodType` instances. */
- val MethodType: MethodTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `MethodType(params, respte)`
- * Here, `params` is a potentially empty list of parameter symbols of the method,
- * and `restpe` is the result type of the method. If the method is curried, `restpe` would
- * be another `MethodType`.
- * Note: `MethodType(Nil, Int)` would be the type of a method defined with an empty parameter list.
- * {{{
- * def f(): Int
- * }}}
- * If the method is completely parameterless, as in
- * {{{
- * def f: Int
- * }}}
- * its type is a `NullaryMethodType`.
- */
- abstract class MethodTypeExtractor {
- def apply(params: List[Symbol], resultType: Type): MethodType
- def unapply(tpe: MethodType): Option[(List[Symbol], Type)]
- }
-
- /** The `NullaryMethodType` type signature is used for parameterless methods
- * with declarations of the form `def foo: T`
- */
- type NullaryMethodType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `NullaryMethodType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val NullaryMethodTypeTag: ClassTag[NullaryMethodType]
-
- /** The constructor/deconstructor for `NullaryMethodType` instances. */
- val NullaryMethodType: NullaryMethodTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `NullaryMethodType(resultType)`.
- * Here, `resultType` is the result type of the parameterless method.
- */
- abstract class NullaryMethodTypeExtractor {
- def apply(resultType: Type): NullaryMethodType
- def unapply(tpe: NullaryMethodType): Option[(Type)]
- }
-
- /** The `PolyType` type signature is used for polymorphic methods
- * that have at least one type parameter.
- */
- type PolyType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `PolyType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val PolyTypeTag: ClassTag[PolyType]
-
- /** The constructor/deconstructor for `PolyType` instances. */
- val PolyType: PolyTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `PolyType(typeParams, resultType)`.
- * Here, `typeParams` are the type parameters of the method and `resultType`
- * is the type signature following the type parameters.
- */
- abstract class PolyTypeExtractor {
- def apply(typeParams: List[Symbol], resultType: Type): PolyType
- def unapply(tpe: PolyType): Option[(List[Symbol], Type)]
- }
-
- /** The `ExistentialType` type signature is used for existential types and
- * wildcard types.
- */
- type ExistentialType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `ExistentialType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ExistentialTypeTag: ClassTag[ExistentialType]
-
- /** The constructor/deconstructor for `ExistentialType` instances. */
- val ExistentialType: ExistentialTypeExtractor
-
- /** An extractor class to create and pattern match with syntax
- * `ExistentialType(quantified, underlying)`.
- * Here, `quantified` are the type variables bound by the existential type and `underlying`
- * is the type that's existentially quantified.
- */
- abstract class ExistentialTypeExtractor {
- def apply(quantified: List[Symbol], underlying: Type): ExistentialType
- def unapply(tpe: ExistentialType): Option[(List[Symbol], Type)]
- }
-
- /** The `AnnotatedType` type signature is used for annotated types of the
- * for `<type> @<annotation>`.
- */
- type AnnotatedType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `AnnotatedType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AnnotatedTypeTag: ClassTag[AnnotatedType]
-
- /** The constructor/deconstructor for `AnnotatedType` instances. */
- val AnnotatedType: AnnotatedTypeExtractor
-
- /** An extractor class to create and pattern match with syntax
- * `AnnotatedType(annotations, underlying, selfsym)`.
- * Here, `annotations` are the annotations decorating the underlying type `underlying`.
- * `selfSym` is a symbol representing the annotated type itself.
- */
- abstract class AnnotatedTypeExtractor {
- def apply(annotations: List[Annotation], underlying: Type, selfsym: Symbol): AnnotatedType
- def unapply(tpe: AnnotatedType): Option[(List[Annotation], Type, Symbol)]
- }
-
- /** The `TypeBounds` type signature is used to indicate lower and upper type bounds
- * of type parameters and abstract types. It is not a first-class type.
- * If an abstract type or type parameter is declared with any of the forms
- * on the left, its type signature is the TypeBounds type on the right.
- * {{{
- * T >: L <: U TypeBounds(L, U)
- * T >: L TypeBounds(L, Any)
- * T <: U TypeBounds(Nothing, U)
- * }}}
- */
- type TypeBounds >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `TypeBounds` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeBoundsTag: ClassTag[TypeBounds]
-
- /** The constructor/deconstructor for `TypeBounds` instances. */
- val TypeBounds: TypeBoundsExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeBound(lower, upper)`
- * Here, `lower` is the lower bound of the `TypeBounds` pair, and `upper` is
- * the upper bound.
- */
- abstract class TypeBoundsExtractor {
- def apply(lo: Type, hi: Type): TypeBounds
- def unapply(tpe: TypeBounds): Option[(Type, Type)]
- }
-
- /** An object representing an unknown type, used during type inference.
- * If you see WildcardType outside of inference it is almost certainly a bug.
- */
- val WildcardType: Type
-
- /** BoundedWildcardTypes, used only during type inference, are created in
- * two places:
- *
- * 1. If the expected type of an expression is an existential type,
- * its hidden symbols are replaced with bounded wildcards.
- * 2. When an implicit conversion is being sought based in part on
- * the name of a method in the converted type, a HasMethodMatching
- * type is created: a MethodType with parameters typed as
- * BoundedWildcardTypes.
- */
- type BoundedWildcardType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `BoundedWildcardType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val BoundedWildcardTypeTag: ClassTag[BoundedWildcardType]
-
- /** The constructor/deconstructor for `BoundedWildcardType` instances. */
- val BoundedWildcardType: BoundedWildcardTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `BoundedWildcardTypeExtractor(bounds)`
- * with `bounds` denoting the type bounds.
- */
- abstract class BoundedWildcardTypeExtractor {
- def apply(bounds: TypeBounds): BoundedWildcardType
- def unapply(tpe: BoundedWildcardType): Option[TypeBounds]
- }
-}
diff --git a/src/library/scala/reflect/base/Universe.scala b/src/library/scala/reflect/base/Universe.scala
deleted file mode 100644
index 0b5d5ed685..0000000000
--- a/src/library/scala/reflect/base/Universe.scala
+++ /dev/null
@@ -1,80 +0,0 @@
-package scala.reflect
-package base
-
-abstract class Universe extends Symbols
- with Types
- with FlagSets
- with Scopes
- with Names
- with Trees
- with Constants
- with Annotations
- with Positions
- with Exprs
- with TypeTags
- with TagInterop
- with StandardDefinitions
- with StandardNames
- with BuildUtils
- with Mirrors
-{
- /** Produce the abstract syntax tree representing the given Scala expression.
- *
- * For example
- *
- * {{{
- * val five = reify{ 5 } // Literal(Constant(5))
- * reify{ 2 + 4 } // Apply( Select( Literal(Constant(2)), newTermName("$plus")), List( Literal(Constant(4)) ) )
- * reify{ five.splice + 4 } // Apply( Select( Literal(Constant(5)), newTermName("$plus")), List( Literal(Constant(4)) ) )
- * }}}
- *
- * The produced tree is path dependent on the Universe `reify` was called from.
- *
- * Use [[scala.reflect.base.Exprs#Expr.splice]] to embed an existing expression into a reify call. Use [[Expr]] to turn a [[Tree]] into an expression that can be spliced.
- *
- * == Further info and implementation details ==
- *
- * `reify` is implemented as a macro, which given an expression, generates a tree that when compiled and executed produces the original tree.
- *
- * For instance in `reify{ x + 1 }` the macro `reify` receives the abstract syntax tree of `x + 1` as its argument, which is
- *
- * {{{
- * Apply(Select(Ident("x"), "+"), List(Literal(Constant(1))))
- * }}}
- *
- * and returns a tree, which produces the tree above, when compiled and executed. So in other terms, the refiy call expands to something like
- *
- * {{{
- * val $u: u.type = u // where u is a reference to the Universe that calls the reify
- * $u.Expr[Int]($u.Apply($u.Select($u.Ident($u.newFreeVar("x", <Int>, x), "+"), List($u.Literal($u.Constant(1))))))
- * }}}
- *
- * ------
- *
- * Reification performs expression splicing (when processing Expr.splice)
- * and type splicing (for every type T that has a TypeTag[T] implicit in scope):
- *
- * {{{
- * val two = mirror.reify(2) // Literal(Constant(2))
- * val four = mirror.reify(two.splice + two.splice) // Apply(Select(two.tree, newTermName("$plus")), List(two.tree))
- *
- * def macroImpl[T](c: Context) = {
- * ...
- * // T here is just a type parameter, so the tree produced by reify won't be of much use in a macro expansion
- * // however, if T were annotated with c.WeakTypeTag (which would declare an implicit parameter for macroImpl)
- * // then reification would substitute T with the TypeTree that was used in a TypeApply of this particular macro invocation
- * val factory = c.reify{ new Queryable[T] }
- * ...
- * }
- * }}}
- *
- * The transformation looks mostly straightforward, but it has its tricky parts:
- * - Reifier retains symbols and types defined outside the reified tree, however
- * locally defined entities get erased and replaced with their original trees
- * - Free variables are detected and wrapped in symbols of the type `FreeTermSymbol` or `FreeTypeSymbol`
- * - Mutable variables that are accessed from a local function are wrapped in refs
- */
- // implementation is hardwired to `scala.reflect.reify.Taggers`
- // using the mechanism implemented in `scala.tools.reflect.FastTrack`
- def reify[T](expr: T): Expr[T] = ??? // macro
-} \ No newline at end of file
diff --git a/src/library/scala/reflect/base/compat.scala b/src/library/scala/reflect/base/compat.scala
new file mode 100644
index 0000000000..0f7bec49f2
--- /dev/null
+++ b/src/library/scala/reflect/base/compat.scala
@@ -0,0 +1,16 @@
+package scala.reflect.base
+
+// should be removed once I re-deploy the starr
+trait Exprs {
+ case class Expr
+}
+trait TypeTags {
+ case class TypeTag
+ case class WeakTypeTag
+}
+trait Universe {
+ def reify: Nothing = ???
+}
+trait MirrorOf
+trait TypeCreator
+trait TreeCreator \ No newline at end of file
diff --git a/src/library/scala/reflect/macros/internal/package.scala b/src/library/scala/reflect/macros/internal/package.scala
index 8457285752..61efc58e04 100644
--- a/src/library/scala/reflect/macros/internal/package.scala
+++ b/src/library/scala/reflect/macros/internal/package.scala
@@ -3,12 +3,9 @@ package scala.reflect.macros
import scala.reflect.base.{Universe => BaseUniverse}
import scala.reflect.ClassTag
-// anchors for materialization macros emitted during tag materialization in Implicits.scala
-// implementation is hardwired into `scala.reflect.reify.Taggers`
-// using the mechanism implemented in `scala.tools.reflect.FastTrack`
-// todo. once we have implicit macros for tag generation, we can remove these anchors
package object internal {
- private[scala] def materializeClassTag[T](u: BaseUniverse): ClassTag[T] = ??? // macro
- private[scala] def materializeWeakTypeTag[T](u: BaseUniverse): u.WeakTypeTag[T] = ??? // macro
- private[scala] def materializeTypeTag[T](u: BaseUniverse): u.TypeTag[T] = ??? // macro
+ // should all be removed once I re-deploy the starr
+ def materializeClassTag[T](u: BaseUniverse): ClassTag[T] = ???
+ def materializeWeakTypeTag: Nothing = ???
+ def materializeTypeTag: Nothing = ???
}
diff --git a/src/library/scala/reflect/package.scala b/src/library/scala/reflect/package.scala
index 8b411d0dca..f9ad743ab3 100644
--- a/src/library/scala/reflect/package.scala
+++ b/src/library/scala/reflect/package.scala
@@ -1,77 +1,9 @@
package scala
-/**
- * The base package of Scala's reflection library.
- *
- * The reflection library is structured according to the 'cake pattern'. The base layer
- * resides in package [[scala.reflect.base]] and defines an interface to the following main types:
- *
- * - [[scala.reflect.base.Types#Type Types]] represent types
- * - [[scala.reflect.base.Symbols#Symbol Symbols]] represent definitions
- * - [[scala.reflect.base.Trees#Tree Trees]] represent abstract syntax trees
- * - [[scala.reflect.base.Names#Name Names]] represent term and type names
- * - [[scala.reflect.base.Annotations#Annotation Annotations]] represent annotations
- * - [[scala.reflect.base.Positions#Position Positions]] represent source positions of tree nodes
- * - [[scala.reflect.base.FlagSets#FlagSet FlagSet]] represent sets of flags that apply to symbols and
- * definition trees
- * - [[scala.reflect.base.Constants#Constant Constants]] represent compile-time constants.
- *
- * Each of these types are defined in their own enclosing traits, which are ultimately all inherited by class
- * [[scala.reflect.base.Universe Universe]]. The base universe defines a minimal interface to the above types.
- * Universes that provide additional functionality such as deeper introspection or runtime code generation,
- * are defined in packages [[scala.reflect.api]] and `scala.tools.reflect`.
- *
- * The cake pattern employed here requires to write certain Scala idioms with more indirections that usual.
- * What follows is a description of these indirections, which will help to navigate the Scaladocs easily.
- *
- * For instance, consider the base type of all abstract syntax trees: [[scala.reflect.base.Trees#Tree]].
- * This type is not a class but is abstract and has an upper bound of [[scala.reflect.base.Trees#TreeBase]],
- * which is a class defining the minimal base interface for all trees.
- *
- * For a more interesting tree type, consider [[scala.reflect.base.Trees#If]] representing if-expressions.
- * It does not come with a class `IfBase`, since it does not add anything to the interface of its upper
- * bound `TermTree`. However, it is defined next to a value `If` of type [[scala.reflect.base.Trees#IfExtractor]].
- * This value serves as the companion object defining a factory method `apply` and a corresponding `unapply`
- * for pattern matching.
- *
- * {{{
- * import scala.reflect.runtime.universe._
- * val cond = reify{ condition }.tree // <- just some tree representing a condition
- * val body = Literal(Constant(1))
- * val other = Literal(Constant(2))
- * val iftree = If(cond,body,other)
- * }}}
- *
- * is equivalent to
- *
- * {{{
- * import scala.reflect.runtime.universe._
- * val iftree = reify{ if( condition ) 1 else 2 }.tree
- * }}}
- *
- * and can be pattern matched as
- *
- * {{{
- * iftree match { case If(cond,body,other) => ... }
- * }}}
- *
- * Moreover, there is an implicit value [[scala.reflect.base.Trees#IfTag]] of type
- * `ClassTag[If]` that is used by the Scala compiler so that we can indeed pattern match on `If`:
- * {{{
- * iftree match { case _:If => ... }
- * }}}
- * Without the given implicit value, this pattern match would raise an "unchecked" warning at compile time
- * since `If` is an abstract type that gets erased at runtime. See [[scala.reflect.ClassTag]] for details.
- *
- * To summarize: each tree type `X` (and similarly for other types such as `Type` or `Symbol`) is represented
- * by an abstract type `X`, optionally together with a class `XBase` that defines `X`'s' interface.
- * `X`'s companion object, if it exists, is represented by a value `X` that is of type `XExtractor`.
- * Moreover, for each type `X`, there is a value `XTag` of type `ClassTag[X]` that allows to pattern match
- * on `X`.
- */
package object reflect {
- lazy val basis: base.Universe = new base.Base
+ // should be removed once I re-deploy the starr
+ val basis: scala.reflect.base.Universe = null
// in the new scheme of things ClassManifests are aliased to ClassTags
// this is done because we want `toArray` in collections work with ClassTags
@@ -111,15 +43,12 @@ package object reflect {
val Manifest = ManifestFactory
def classTag[T](implicit ctag: ClassTag[T]) = ctag
- // typeTag incantation is defined inside scala.reflect.basis and scala.reflect.runtime.universe
- private[scala] def materializeClassTag[T](u: base.Universe): ClassTag[T] = ??? // macro
-
- // ClassTag class is defined in ClassTag.scala
- type TypeTag[T] = scala.reflect.basis.TypeTag[T]
-
- // ClassTag object is defined in ClassTag.scala
- lazy val TypeTag = scala.reflect.basis.TypeTag
+ // anchor for the class tag materialization macro emitted during tag materialization in Implicits.scala
+ // implementation is hardwired into `scala.reflect.reify.Taggers`
+ // using the mechanism implemented in `scala.tools.reflect.FastTrack`
+ // todo. once we have implicit macros for tag generation, we can remove this anchor
+ private[scala] def materializeClassTag[T](): ClassTag[T] = ??? // macro
@deprecated("Use `@scala.beans.BeanDescription` instead", "2.10.0")
type BeanDescription = scala.beans.BeanDescription
diff --git a/src/partest/scala/tools/partest/CompilerTest.scala b/src/partest/scala/tools/partest/CompilerTest.scala
index a1450ee876..6df0cec7fe 100644
--- a/src/partest/scala/tools/partest/CompilerTest.scala
+++ b/src/partest/scala/tools/partest/CompilerTest.scala
@@ -5,7 +5,7 @@
package scala.tools.partest
-import scala.reflect.{basis => rb}
+import scala.reflect.runtime.{universe => ru}
import scala.tools.nsc._
/** For testing compiler internals directly.
@@ -34,7 +34,7 @@ abstract class CompilerTest extends DirectTest {
// Utility functions
class MkType(sym: Symbol) {
- def apply[M](implicit t: rb.TypeTag[M]): Type =
+ def apply[M](implicit t: ru.TypeTag[M]): Type =
if (sym eq NoSymbol) NoType
else appliedType(sym, compilerTypeFromTag(t))
}
diff --git a/src/reflect/scala/reflect/api/Annotations.scala b/src/reflect/scala/reflect/api/Annotations.scala
index 43e95f9902..37882a9f3c 100644
--- a/src/reflect/scala/reflect/api/Annotations.scala
+++ b/src/reflect/scala/reflect/api/Annotations.scala
@@ -3,26 +3,121 @@ package api
import scala.collection.immutable.ListMap
-trait Annotations extends base.Annotations { self: Universe =>
+/**
+ * Defines the type hierarchy for annotations.
+ */
+trait Annotations { self: Universe =>
+
+ /** Typed information about an annotation. It can be attached to either a symbol or an annotated type.
+ *
+ * Annotations are either ''Scala annotations'', which conform to [[scala.annotation.StaticAnnotation]]
+ * or ''Java annotations'', which conform to [[scala.annotation.ClassfileAnnotation]].
+ * Trait `ClassfileAnnotation` is automatically added to every Java annotation by the scalac classfile parser.
+ */
+ type Annotation >: Null <: AnyRef with AnnotationApi
+
+ /** A tag that preserves the identity of the `Annotation` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AnnotationTag: ClassTag[Annotation]
+
+ /** The constructor/deconstructor for `Annotation` instances. */
+ val Annotation: AnnotationExtractor
+
+ /** An extractor class to create and pattern match with syntax `Annotation(atp, scalaArgs, javaArgs)`.
+ * Here, `atp` is the annotation type, `scalaArgs` the arguments, and `javaArgs` the annotation's key-value
+ * pairs.
+ *
+ * Annotations are pickled, i.e. written to scala symtab attribute in the classfile.
+ * Annotations are written to the classfile as Java annotations if `atp` conforms to `ClassfileAnnotation`.
+ *
+ * For Scala annotations, arguments are stored in `scalaArgs` and `javaArgs` is empty. Arguments in
+ * `scalaArgs` are represented as typed trees. Note that these trees are not transformed by any phases
+ * following the type-checker. For Java annotations, `scalaArgs` is empty and arguments are stored in
+ * `javaArgs`.
+ */
+ abstract class AnnotationExtractor {
+ def apply(tpe: Type, scalaArgs: List[Tree], javaArgs: ListMap[Name, JavaArgument]): Annotation
+ def unapply(ann: Annotation): Option[(Type, List[Tree], ListMap[Name, JavaArgument])]
+ }
- override type Annotation >: Null <: AnyRef with AnnotationApi
trait AnnotationApi {
def tpe: Type
def scalaArgs: List[Tree]
def javaArgs: ListMap[Name, JavaArgument]
}
- override type LiteralArgument >: Null <: JavaArgument with LiteralArgumentApi
+ /** A Java annotation argument */
+ type JavaArgument >: Null <: AnyRef
+ implicit val JavaArgumentTag: ClassTag[JavaArgument]
+
+ /** A literal argument to a Java annotation as `"Use X instead"` in `@Deprecated("Use X instead")`*/
+ type LiteralArgument >: Null <: AnyRef with JavaArgument with LiteralArgumentApi
+
+ /** A tag that preserves the identity of the `LiteralArgument` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val LiteralArgumentTag: ClassTag[LiteralArgument]
+
+ /** The constructor/deconstructor for `LiteralArgument` instances. */
+ val LiteralArgument: LiteralArgumentExtractor
+
+ /** An extractor class to create and pattern match with syntax `LiteralArgument(value)`
+ * where `value` is the constant argument.
+ */
+ abstract class LiteralArgumentExtractor {
+ def apply(value: Constant): LiteralArgument
+ def unapply(arg: LiteralArgument): Option[Constant]
+ }
+
trait LiteralArgumentApi {
def value: Constant
}
- override type ArrayArgument >: Null <: JavaArgument with ArrayArgumentApi
+ /** An array argument to a Java annotation as in `@Target(value={TYPE,FIELD,METHOD,PARAMETER})`
+ */
+ type ArrayArgument >: Null <: AnyRef with JavaArgument with ArrayArgumentApi
+
+ /** A tag that preserves the identity of the `ArrayArgument` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ArrayArgumentTag: ClassTag[ArrayArgument]
+
+ /** The constructor/deconstructor for `ArrayArgument` instances. */
+ val ArrayArgument: ArrayArgumentExtractor
+
+ /** An extractor class to create and pattern match with syntax `ArrayArgument(args)`
+ * where `args` is the argument array.
+ */
+ abstract class ArrayArgumentExtractor {
+ def apply(args: Array[JavaArgument]): ArrayArgument
+ def unapply(arg: ArrayArgument): Option[Array[JavaArgument]]
+ }
+
trait ArrayArgumentApi {
def args: Array[JavaArgument]
}
- override type NestedArgument >: Null <: JavaArgument with NestedArgumentApi
+ /** A nested annotation argument to a Java annotation as `@Nested` in `@Outer(@Nested)`.
+ */
+ type NestedArgument >: Null <: AnyRef with JavaArgument with NestedArgumentApi
+
+ /** A tag that preserves the identity of the `NestedArgument` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val NestedArgumentTag: ClassTag[NestedArgument]
+
+ /** The constructor/deconstructor for `NestedArgument` instances. */
+ val NestedArgument: NestedArgumentExtractor
+
+ /** An extractor class to create and pattern match with syntax `NestedArgument(annotation)`
+ * where `annotation` is the nested annotation.
+ */
+ abstract class NestedArgumentExtractor {
+ def apply(annotation: Annotation): NestedArgument
+ def unapply(arg: NestedArgument): Option[Annotation]
+ }
+
trait NestedArgumentApi {
def annotation: Annotation
}
diff --git a/src/library/scala/reflect/base/Attachments.scala b/src/reflect/scala/reflect/api/Attachments.scala
index 479ab9a857..edbb0131ca 100644
--- a/src/library/scala/reflect/base/Attachments.scala
+++ b/src/reflect/scala/reflect/api/Attachments.scala
@@ -1,7 +1,7 @@
package scala.reflect
-package base
+package api
-/** Attachments is a generalization of Position. Typically it stores a Position of a tree, but this can be extended to
+/** Attachments is a generalization of Position. Typically it stores a Position of a tree, but this can be extended to
* encompass arbitrary payloads. Payloads are stored in type-indexed slots, which can be read with `get[T]` and written
* with `update[T]` and `remove[T]`.
*
@@ -30,7 +30,7 @@ abstract class Attachments { self =>
(all filter matchesTag[T]).headOption.asInstanceOf[Option[T]]
/** Creates a copy of this attachment with the payload slot of T added/updated with the provided value.
- *
+ *
* Replaces an existing payload of the same type, if exists.
*/
def update[T: ClassTag](attachment: T): Attachments { type Pos = self.Pos } =
@@ -48,5 +48,3 @@ abstract class Attachments { self =>
def withPos(newPos: Pos) = new NonemptyAttachments(newPos, all)
}
}
-
-
diff --git a/src/library/scala/reflect/base/BuildUtils.scala b/src/reflect/scala/reflect/api/BuildUtils.scala
index 5982329aef..2bb0cc3c76 100644
--- a/src/library/scala/reflect/base/BuildUtils.scala
+++ b/src/reflect/scala/reflect/api/BuildUtils.scala
@@ -1,18 +1,18 @@
package scala.reflect
-package base
+package api
/**
* This is an internal implementation class.
*/
trait BuildUtils { self: Universe =>
- val build: BuildBase
+ val build: BuildApi
// this API abstracts away the functionality necessary for reification
// it's too gimmicky and unstructured to be exposed directly in the universe
// but we need it in a publicly available place for reification to work
- abstract class BuildBase {
+ abstract class BuildApi {
/** Selects type symbol with given simple name `name` from the defined members of `owner`.
*/
def selectType(owner: Symbol, name: String): TypeSymbol
diff --git a/src/reflect/scala/reflect/api/Constants.scala b/src/reflect/scala/reflect/api/Constants.scala
index 6657245003..f2d8ef2eb9 100644
--- a/src/reflect/scala/reflect/api/Constants.scala
+++ b/src/reflect/scala/reflect/api/Constants.scala
@@ -6,10 +6,33 @@
package scala.reflect
package api
-trait Constants extends base.Constants {
+/**
+ * Defines the type hierachy for compile-time constants.
+ *
+ * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
+ */
+trait Constants {
self: Universe =>
- override type Constant >: Null <: AnyRef with ConstantApi
+ /** The type of compile-time constants.
+ */
+ type Constant >: Null <: AnyRef with ConstantApi
+
+ /** A tag that preserves the identity of the `Constant` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ConstantTag: ClassTag[Constant]
+
+ /** The constructor/deconstructor for `Constant` instances. */
+ val Constant: ConstantExtractor
+
+ /** An extractor class to create and pattern match with syntax `Constant(value)`
+ * where `value` is the Scala value of the constant.
+ */
+ abstract class ConstantExtractor {
+ def apply(value: Any): Constant
+ def unapply(arg: Constant): Option[Any]
+ }
abstract class ConstantApi {
val value: Any
diff --git a/src/library/scala/reflect/base/Exprs.scala b/src/reflect/scala/reflect/api/Exprs.scala
index bd15c65711..65b0eb9301 100644
--- a/src/library/scala/reflect/base/Exprs.scala
+++ b/src/reflect/scala/reflect/api/Exprs.scala
@@ -4,7 +4,9 @@
*/
package scala.reflect
-package base
+package api
+
+import scala.reflect.runtime.{universe => ru}
trait Exprs { self: Universe =>
@@ -13,7 +15,7 @@ trait Exprs { self: Universe =>
val mirror: Mirror
/**
* Migrates the expression into another mirror, jumping into a different universe if necessary.
- *
+ *
* This means that all symbolic references to classes/objects/packages in the expression
* will be re-resolved within the new mirror (typically using that mirror's classloader).
*/
@@ -23,7 +25,7 @@ trait Exprs { self: Universe =>
* The Scala syntax tree representing the wrapped expression.
*/
def tree: Tree
-
+
/**
* Representation of the type of the wrapped expression tree as found via type tags.
*/
@@ -35,39 +37,39 @@ trait Exprs { self: Universe =>
/**
* A dummy method to mark expression splicing in reification.
- *
+ *
* It should only be used within a `reify` call, which eliminates the `splice` call and embeds
- * the wrapped tree into the reified surrounding expression.
+ * the wrapped tree into the reified surrounding expression.
* If used alone `splice` throws an exception when called at runtime.
- *
+ *
* If you want to use an Expr in reification of some Scala code, you need to splice it in.
* For an expr of type `Expr[T]`, where `T` has a method `foo`, the following code
* {{{
* reify{ expr.splice.foo }
* }}}
* uses splice to turn an expr of type Expr[T] into a value of type T in the context of `reify`.
- *
- * It is equivalent to
+ *
+ * It is equivalent to
* {{{
* Select( expr.tree, newTermName("foo") )
* }}}
- *
+ *
* The following example code however does not compile
* {{{
* reify{ expr.foo }
* }}}
- * because expr of type Expr[T] itself does not have a method foo.
+ * because expr of type Expr[T] itself does not have a method foo.
*/
def splice: T
/**
* A dummy value to denote cross-stage path-dependent type dependencies.
- *
+ *
* For example for the following macro definition:
* {{{
* class X { type T }
* object Macros { def foo(x: X): x.T = macro Impls.foo_impl }
* }}}
- *
+ *
* The corresponding macro implementation should have the following signature (note how the return type denotes path-dependency on x):
* {{{
* object Impls { def foo_impl(c: Context)(x: c.Expr[X]): c.Expr[x.value.T] = ... }
@@ -84,7 +86,7 @@ trait Exprs { self: Universe =>
/**
* Constructor/Extractor for Expr.
- *
+ *
* Can be useful, when having a tree and wanting to splice it in reify call,
* in which case the tree first needs to be wrapped in an expr.
*/
@@ -102,7 +104,7 @@ trait Exprs { self: Universe =>
lazy val tree: Tree = treec(mirror)
lazy val staticType: Type = implicitly[WeakTypeTag[T]].tpe
- def actualType: Type = treeType(tree)
+ def actualType: Type = tree.tpe
def splice: T = throw new UnsupportedOperationException("""
|the function you're calling has not been spliced by the compiler.
@@ -115,11 +117,11 @@ trait Exprs { self: Universe =>
|if you want to get a value of the underlying expression, add scala-compiler.jar to the classpath,
|import `scala.tools.reflect.Eval` and call `<your expr>.eval` instead.""".trim.stripMargin)
- private def writeReplace(): AnyRef = new SerializedExpr(treec, implicitly[WeakTypeTag[T]].in(scala.reflect.basis.rootMirror))
+ private def writeReplace(): AnyRef = new SerializedExpr(treec, implicitly[WeakTypeTag[T]].in(ru.rootMirror))
}
}
-private[scala] class SerializedExpr(var treec: TreeCreator, var tag: scala.reflect.basis.WeakTypeTag[_]) extends Serializable {
+private[scala] class SerializedExpr(var treec: TreeCreator, var tag: ru.WeakTypeTag[_]) extends Serializable {
private def writeObject(out: java.io.ObjectOutputStream): Unit = {
out.writeObject(treec)
out.writeObject(tag)
@@ -127,11 +129,11 @@ private[scala] class SerializedExpr(var treec: TreeCreator, var tag: scala.refle
private def readObject(in: java.io.ObjectInputStream): Unit = {
treec = in.readObject().asInstanceOf[TreeCreator]
- tag = in.readObject().asInstanceOf[scala.reflect.basis.WeakTypeTag[_]]
+ tag = in.readObject().asInstanceOf[ru.WeakTypeTag[_]]
}
private def readResolve(): AnyRef = {
- import scala.reflect.basis._
+ import ru._
Expr(rootMirror, treec)(tag)
}
} \ No newline at end of file
diff --git a/src/reflect/scala/reflect/api/FlagSets.scala b/src/reflect/scala/reflect/api/FlagSets.scala
index fdd43f1883..599c4ca426 100644
--- a/src/reflect/scala/reflect/api/FlagSets.scala
+++ b/src/reflect/scala/reflect/api/FlagSets.scala
@@ -3,10 +3,16 @@ package api
import scala.language.implicitConversions
-trait FlagSets extends base.FlagSets { self: Universe =>
+trait FlagSets { self: Universe =>
+ /** An abstract type representing sets of flags (like private, final, etc.) that apply to definition trees and symbols */
type FlagSet
+ /** A tag that preserves the identity of the `FlagSet` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val FlagSetTag: ClassTag[FlagSet]
+
trait FlagOps extends Any {
def | (right: FlagSet): FlagSet
}
@@ -99,4 +105,7 @@ trait FlagSets extends base.FlagSets { self: Universe =>
/** Flag indicating that tree represents a variable or a member initialized to the default value */
val DEFAULTINIT: FlagSet
}
+
+ /** The empty set of flags */
+ val NoFlags: FlagSet
}
diff --git a/src/reflect/scala/reflect/api/JavaUniverse.scala b/src/reflect/scala/reflect/api/JavaUniverse.scala
index f2388433c4..ba38381561 100644
--- a/src/reflect/scala/reflect/api/JavaUniverse.scala
+++ b/src/reflect/scala/reflect/api/JavaUniverse.scala
@@ -1,7 +1,7 @@
package scala.reflect
package api
-trait JavaUniverse extends Universe with Mirrors with TagInterop { self =>
+trait JavaUniverse extends Universe with Mirrors { self =>
type RuntimeClass = java.lang.Class[_]
@@ -13,5 +13,28 @@ trait JavaUniverse extends Universe with Mirrors with TagInterop { self =>
}
def runtimeMirror(cl: ClassLoader): Mirror
-}
+ override def typeTagToManifest[T: ClassTag](mirror0: Any, tag: Universe # TypeTag[T]): Manifest[T] = {
+ // SI-6239: make this conversion more precise
+ val mirror = mirror0.asInstanceOf[Mirror]
+ val runtimeClass = mirror.runtimeClass(tag.in(mirror).tpe)
+ Manifest.classType(runtimeClass).asInstanceOf[Manifest[T]]
+ }
+
+ override def manifestToTypeTag[T](mirror0: Any, manifest: Manifest[T]): Universe # TypeTag[T] =
+ TypeTag(mirror0.asInstanceOf[Mirror], new TypeCreator {
+ def apply[U <: Universe with Singleton](mirror: MirrorOf[U]): U # Type = {
+ mirror.universe match {
+ case ju: JavaUniverse =>
+ val jm = mirror.asInstanceOf[ju.Mirror]
+ val sym = jm.classSymbol(manifest.erasure)
+ val tpe =
+ if (manifest.typeArguments.isEmpty) sym.toType
+ else ju.appliedType(sym.toTypeConstructor, manifest.typeArguments map (targ => ju.manifestToTypeTag(jm, targ)) map (_.in(jm).tpe))
+ tpe.asInstanceOf[U # Type]
+ case u =>
+ u.manifestToTypeTag(mirror.asInstanceOf[u.Mirror], manifest).in(mirror).tpe
+ }
+ }
+ })
+}
diff --git a/src/library/scala/reflect/base/MirrorOf.scala b/src/reflect/scala/reflect/api/MirrorOf.scala
index 4e54a2fae7..cd5641e692 100644
--- a/src/library/scala/reflect/base/MirrorOf.scala
+++ b/src/reflect/scala/reflect/api/MirrorOf.scala
@@ -1,11 +1,11 @@
package scala.reflect
-package base
+package api
/**
* The base interface for all mirrors.
*
- * @tparam U the type of the universe this mirror belongs to.
- *
+ * @tparam U the type of the universe this mirror belongs to.
+ *
* This is defined outside the reflection universe cake pattern implementation
* so that it can be referenced from outside. For example TypeCreator and TreeCreator
* reference MirrorOf and also need to be defined outside the cake as they are
@@ -14,7 +14,7 @@ package base
*
* @see [[Mirrors]]
*/
-abstract class MirrorOf[U <: base.Universe with Singleton] {
+abstract class MirrorOf[U <: Universe with Singleton] {
/** The universe this mirror belongs to. */
val universe: U
diff --git a/src/reflect/scala/reflect/api/Mirrors.scala b/src/reflect/scala/reflect/api/Mirrors.scala
index 8c4c423221..c935533027 100644
--- a/src/reflect/scala/reflect/api/Mirrors.scala
+++ b/src/reflect/scala/reflect/api/Mirrors.scala
@@ -1,7 +1,23 @@
package scala.reflect
package api
-trait Mirrors extends base.Mirrors { self: Universe =>
+/**
+ * Defines a type hierarchy for mirrors.
+ *
+ * Every universe has one or more mirrors. A mirror defines a hierarchy of symbols starting with the root package `_root_`
+ * and provides methods to locate and define classes and singleton objects in that hierarchy.
+ *
+ * On the JVM, there is a one to one correspondance between class loaders and mirrors.
+ */
+trait Mirrors { self: Universe =>
+
+ /** The base type of all mirrors of this universe */
+ type Mirror >: Null <: MirrorOf[self.type]
+
+ /** The root mirror of this universe. This mirror contains standard Scala classes and types such as `Any`, `AnyRef`, `AnyVal`,
+ * `Nothing`, `Null`, and all classes loaded from scala-library, which are shared across all mirrors within the enclosing universe.
+ */
+ val rootMirror: Mirror
type RuntimeClass >: Null
diff --git a/src/reflect/scala/reflect/api/Names.scala b/src/reflect/scala/reflect/api/Names.scala
index d6868c26ab..e8665ca736 100644
--- a/src/reflect/scala/reflect/api/Names.scala
+++ b/src/reflect/scala/reflect/api/Names.scala
@@ -2,23 +2,52 @@ package scala.reflect
package api
/** A trait that manages names.
- * A name is a string in one of two name universes: terms and types.
- * The same string can be a name in both universes.
- * Two names are equal if they represent the same string and they are
- * members of the same universe.
*
- * Names are interned. That is, for two names `name11 and `name2`,
- * `name1 == name2` implies `name1 eq name2`.
+ * @see TermName
+ * @see TypeName
*/
-trait Names extends base.Names {
+trait Names {
+ // Intentionally no implicit from String => Name.
+ implicit def stringToTermName(s: String): TermName = newTermName(s)
+ implicit def stringToTypeName(s: String): TypeName = newTypeName(s)
- /** The abstract type of names */
+ /**
+ * The abstract type of names
+ *
+ * A Name wraps a string as the name for either a type ([[TypeName]]) of a term ([[TermName]]).
+ * Two names are equal, if the wrapped string are equal and they are either both `TypeName` or both `TermName`.
+ * The same string can co-exist as a `TypeName` and a `TermName`, but they would not be equal.
+ * Names are interned. That is, for two names `name11 and `name2`,
+ * `name1 == name2` implies `name1 eq name2`.
+ *
+ * One of the reasons for the existence of names rather than plain strings is being more explicit about what is a name and if it represents a type or a term.
+ */
type Name >: Null <: NameApi
+ implicit val NameTag: ClassTag[Name]
+
+ /** The abstract type of names representing terms */
+ type TypeName >: Null <: Name
+ implicit val TypeNameTag: ClassTag[TypeName]
- /** The extended API of names that's supported on reflect mirror via an
+ /** The abstract type of names representing types */
+ type TermName >: Null <: Name
+ implicit val TermNameTag: ClassTag[TermName]
+
+ /** The API of names that's supported on reflect mirror via an
* implicit conversion in reflect.ops
*/
- abstract class NameApi extends NameBase {
+ abstract class NameApi {
+ /** Checks wether the name is a a term name */
+ def isTermName: Boolean
+
+ /** Checks wether the name is a a type name */
+ def isTypeName: Boolean
+
+ /** Returns a term name that wraps the same string as `this` */
+ def toTermName: TermName
+
+ /** Returns a type name that wraps the same string as `this` */
+ def toTypeName: TypeName
/** Replaces all occurrences of \$op_names in this name by corresponding operator symbols.
* Example: `foo_\$plus\$eq` becomes `foo_+=`
@@ -38,4 +67,20 @@ trait Names extends base.Names {
*/
def encodedName: Name
}
+
+ /** Create a new term name.
+ */
+ def newTermName(s: String): TermName
+
+ /** Creates a new type name.
+ */
+ def newTypeName(s: String): TypeName
+
+ /** Wraps the empty string. Can be used as the null object for term name.
+ */
+ def EmptyTermName: TermName = newTermName("")
+
+ /** Wraps the empty string. Can be used as the null object for type name.
+ */
+ def EmptyTypeName: TypeName = EmptyTermName.toTypeName
}
diff --git a/src/reflect/scala/reflect/api/Positions.scala b/src/reflect/scala/reflect/api/Positions.scala
index 5e8d958f02..0eddc88fc4 100644
--- a/src/reflect/scala/reflect/api/Positions.scala
+++ b/src/reflect/scala/reflect/api/Positions.scala
@@ -1,12 +1,25 @@
package scala.reflect
package api
-trait Positions extends base.Positions {
+/**
+ * Defines the type hierachy for positions.
+ *
+ * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
+ */
+trait Positions {
self: Universe =>
/** .. */
type Position >: Null <: PositionApi { type Pos = Position }
+ /** A tag that preserves the identity of the `Position` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val PositionTag: ClassTag[Position]
+
+ /** A special "missing" position. */
+ val NoPosition: Position
+
/** Assigns a given position to all position-less nodes of a given AST.
*/
def atPos[T <: Tree](pos: Position)(tree: T): T
diff --git a/src/library/scala/reflect/base/Scopes.scala b/src/reflect/scala/reflect/api/Scopes.scala
index a8c498b814..d30da07ad5 100644
--- a/src/library/scala/reflect/base/Scopes.scala
+++ b/src/reflect/scala/reflect/api/Scopes.scala
@@ -1,8 +1,8 @@
package scala.reflect
-package base
+package api
/**
- * Defines the type hierachy for scopes.
+ * Defines the type hierachy for scopes.
*
* @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
*/
@@ -11,21 +11,21 @@ trait Scopes { self: Universe =>
/** The base type of all scopes. A scope object generally maps names to symbols available in the current lexical scope.
* Scopes can be nested. This base type, however, only exposes a minimal interface, representing a scope as an iterable of symbols.
*/
- type Scope >: Null <: ScopeBase
+ type Scope >: Null <: ScopeApi
- /** The base API that all scopes support */
- trait ScopeBase extends Iterable[Symbol]
+ /** The API that all scopes support */
+ trait ScopeApi extends Iterable[Symbol]
/** A tag that preserves the identity of the `Scope` abstract type from erasure.
* Can be used for pattern matching, instance tests, serialization and likes.
*/
implicit val ScopeTag: ClassTag[Scope]
- /** The base type of member scopes, as in class definitions, for example. */
- type MemberScope >: Null <: Scope with MemberScopeBase
+ /** The type of member scopes, as in class definitions, for example. */
+ type MemberScope >: Null <: Scope with MemberScopeApi
- /** The base API that all member scopes support */
- trait MemberScopeBase extends ScopeBase {
+ /** The API that all member scopes support */
+ trait MemberScopeApi extends ScopeApi {
/** Sorts the symbols included in this scope so that:
* 1) Symbols appear in the linearization order of their owners.
* 2) Symbols with the same owner appear in reverse order of their declarations.
diff --git a/src/reflect/scala/reflect/api/StandardDefinitions.scala b/src/reflect/scala/reflect/api/StandardDefinitions.scala
index c6f02f1a33..03f2a6b0aa 100644
--- a/src/reflect/scala/reflect/api/StandardDefinitions.scala
+++ b/src/reflect/scala/reflect/api/StandardDefinitions.scala
@@ -5,12 +5,59 @@
package scala.reflect
package api
-trait StandardDefinitions extends base.StandardDefinitions {
+/**
+ * Defines standard symbols and types.
+ */
+trait StandardDefinitions {
self: Universe =>
+ /** A value containing all standard defnitions. */
val definitions: DefinitionsApi
- trait DefinitionsApi extends DefinitionsBase {
+ /** Defines standard symbols (and types via its base trait). */
+ trait DefinitionsApi extends StandardTypes {
+ /** The class symbol of package `scala`. */
+ def ScalaPackageClass: ClassSymbol
+
+ /** The module class symbol of package `scala`. */
+ def ScalaPackage: ModuleSymbol
+
+ // top types
+ def AnyClass : ClassSymbol
+ def AnyValClass: ClassSymbol
+ def ObjectClass: ClassSymbol
+ def AnyRefClass: TypeSymbol
+
+ // bottom types
+ def NullClass : ClassSymbol
+ def NothingClass: ClassSymbol
+
+ // the scala value classes
+ def UnitClass : ClassSymbol
+ def ByteClass : ClassSymbol
+ def ShortClass : ClassSymbol
+ def CharClass : ClassSymbol
+ def IntClass : ClassSymbol
+ def LongClass : ClassSymbol
+ def FloatClass : ClassSymbol
+ def DoubleClass : ClassSymbol
+ def BooleanClass: ClassSymbol
+
+ /** The class symbol of class `String`. */
+ def StringClass : ClassSymbol
+
+ /** The class symbol of class `Class`. */
+ def ClassClass : ClassSymbol
+
+ /** The class symbol of class `Array`. */
+ def ArrayClass : ClassSymbol
+
+ /** The class symbol of class `List`. */
+ def ListClass : ClassSymbol
+
+ /** The module symbol of `scala.Predef`. */
+ def PredefModule: ModuleSymbol
+
def JavaLangPackageClass: ClassSymbol
def JavaLangPackage: ModuleSymbol
def ArrayModule: ModuleSymbol
@@ -45,4 +92,52 @@ trait StandardDefinitions extends base.StandardDefinitions {
def ScalaPrimitiveValueClasses: List[ClassSymbol]
def ScalaNumericValueClasses: List[ClassSymbol]
}
+
+ /** Defines standard types. */
+ trait StandardTypes {
+ /** The `Type` of type `Unit`. */
+ val UnitTpe: Type
+
+ /** The `Type` of primitive type `Byte`. */
+ val ByteTpe: Type
+
+ /** The `Type` of primitive type `Short`. */
+ val ShortTpe: Type
+
+ /** The `Type` of primitive type `Char`. */
+ val CharTpe: Type
+
+ /** The `Type` of primitive type `Int`. */
+ val IntTpe: Type
+
+ /** The `Type` of primitive type `Long`. */
+ val LongTpe: Type
+
+ /** The `Type` of primitive type `Float`. */
+ val FloatTpe: Type
+
+ /** The `Type` of primitive type `Double`. */
+ val DoubleTpe: Type
+
+ /** The `Type` of primitive type `Boolean`. */
+ val BooleanTpe: Type
+
+ /** The `Type` of type `Any`. */
+ val AnyTpe: Type
+
+ /** The `Type` of type `AnyVal`. */
+ val AnyValTpe: Type
+
+ /** The `Type` of type `AnyRef`. */
+ val AnyRefTpe: Type
+
+ /** The `Type` of type `Object`. */
+ val ObjectTpe: Type
+
+ /** The `Type` of type `Nothing`. */
+ val NothingTpe: Type
+
+ /** The `Type` of type `Null`. */
+ val NullTpe: Type
+ }
}
diff --git a/src/reflect/scala/reflect/api/StandardNames.scala b/src/reflect/scala/reflect/api/StandardNames.scala
index 65d87ad7f0..354a9f9328 100644
--- a/src/reflect/scala/reflect/api/StandardNames.scala
+++ b/src/reflect/scala/reflect/api/StandardNames.scala
@@ -5,26 +5,40 @@
package scala.reflect
package api
-// Q: I have a pretty name. Where do I put it - into base.StandardNames or into api.StandardNames?
-// A: <see base.StandardNames>
+// Q: I have a pretty name. Can I put it here?
+// A: Is it necessary to construct trees (like EMPTY or WILDCARD_STAR)? If yes, then sure.
+// Is it necessary to perform reflection (like ERROR or LOCAL_SUFFIX_STRING)? If yes, then sure.
+// Otherwise you'd better not - reflection API should stay minimalistic.
-trait StandardNames extends base.StandardNames {
+// TODO: document better
+/**
+ * Names necessary to create Scala trees.
+ */
+trait StandardNames {
self: Universe =>
val nme: TermNamesApi
val tpnme: TypeNamesApi
- trait NamesApi extends NamesBase {
+ trait NamesApi {
+ type NameType >: Null <: Name
+ val WILDCARD: NameType
val ROOT: NameType
val EMPTY: NameType
val ERROR: NameType
val PACKAGE: NameType
}
- trait TermNamesApi extends NamesApi with TermNamesBase {
+ trait TermNamesApi extends NamesApi {
+ type NameType = TermName
+ val CONSTRUCTOR: NameType
+ val ROOTPKG: NameType
val LOCAL_SUFFIX_STRING: String
}
- trait TypeNamesApi extends NamesApi with TypeNamesBase {
+ trait TypeNamesApi extends NamesApi {
+ type NameType = TypeName
+ val EMPTY: NameType
+ val WILDCARD_STAR: NameType
}
}
diff --git a/src/reflect/scala/reflect/api/Symbols.scala b/src/reflect/scala/reflect/api/Symbols.scala
index 0c4be4f7e1..542673ff00 100644
--- a/src/reflect/scala/reflect/api/Symbols.scala
+++ b/src/reflect/scala/reflect/api/Symbols.scala
@@ -1,19 +1,211 @@
package scala.reflect
package api
-trait Symbols extends base.Symbols { self: Universe =>
-
- override type Symbol >: Null <: SymbolApi
- override type TypeSymbol >: Null <: Symbol with TypeSymbolApi
- override type TermSymbol >: Null <: Symbol with TermSymbolApi
- override type MethodSymbol >: Null <: TermSymbol with MethodSymbolApi
- override type ModuleSymbol >: Null <: TermSymbol with ModuleSymbolApi
- override type ClassSymbol >: Null <: TypeSymbol with ClassSymbolApi
- override type FreeTermSymbol >: Null <: TermSymbol with FreeTermSymbolApi
- override type FreeTypeSymbol >: Null <: TypeSymbol with FreeTypeSymbolApi
+/**
+ * Defines the type hierachy for symbols
+ *
+ * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
+ */
+trait Symbols { self: Universe =>
+
+ /** The type of symbols representing declarations */
+ type Symbol >: Null <: SymbolApi
+
+ /** A tag that preserves the identity of the `Symbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SymbolTag: ClassTag[Symbol]
+
+ /** The type of type symbols representing type, class, and trait declarations,
+ * as well as type parameters
+ */
+ type TypeSymbol >: Null <: Symbol with TypeSymbolApi
+
+ /** A tag that preserves the identity of the `TypeSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeSymbolTag: ClassTag[TypeSymbol]
+
+ /** The type of term symbols representing val, var, def, and object declarations as
+ * well as packages and value parameters.
+ */
+ type TermSymbol >: Null <: Symbol with TermSymbolApi
+
+ /** A tag that preserves the identity of the `TermSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TermSymbolTag: ClassTag[TermSymbol]
+
+ /** The type of method symbols representing def declarations */
+ type MethodSymbol >: Null <: TermSymbol with MethodSymbolApi
+
+ /** A tag that preserves the identity of the `MethodSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val MethodSymbolTag: ClassTag[MethodSymbol]
+
+ /** The type of module symbols representing object declarations */
+ type ModuleSymbol >: Null <: TermSymbol with ModuleSymbolApi
+
+ /** A tag that preserves the identity of the `ModuleSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ModuleSymbolTag: ClassTag[ModuleSymbol]
+
+ /** The type of class symbols representing class and trait definitions */
+ type ClassSymbol >: Null <: TypeSymbol with ClassSymbolApi
+
+ /** A tag that preserves the identity of the `ClassSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ClassSymbolTag: ClassTag[ClassSymbol]
+
+ /** The type of free terms introduced by reification */
+ type FreeTermSymbol >: Null <: TermSymbol with FreeTermSymbolApi
+
+ /** A tag that preserves the identity of the `FreeTermSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val FreeTermSymbolTag: ClassTag[FreeTermSymbol]
+
+ /** The type of free types introduced by reification */
+ type FreeTypeSymbol >: Null <: TypeSymbol with FreeTypeSymbolApi
+
+ /** A tag that preserves the identity of the `FreeTypeSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val FreeTypeSymbolTag: ClassTag[FreeTypeSymbol]
+
+ /** A special "missing" symbol */
+ val NoSymbol: Symbol
/** The API of symbols */
- trait SymbolApi extends SymbolBase { this: Symbol =>
+ trait SymbolApi { this: Symbol =>
+
+ /** The owner of this symbol. This is the symbol
+ * that directly contains the current symbol's definition.
+ * The `NoSymbol` symbol does not have an owner, and calling this method
+ * on one causes an internal error.
+ * The owner of the Scala root class [[scala.reflect.api.MirrorOf.RootClass]]
+ * and the Scala root object [[scala.reflect.api.MirrorOf.RootPackage]] is `NoSymbol`.
+ * Every other symbol has a chain of owners that ends in
+ * [[scala.reflect.api.MirrorOf.RootClass]].
+ */
+ def owner: Symbol
+
+ /** The type of the symbol name.
+ * Can be either `TermName` or `TypeName` depending on whether this is a `TermSymbol` or a `TypeSymbol`.
+ *
+ * Type name namespaces do not intersect with term name namespaces.
+ * This fact is reflected in different types for names of `TermSymbol` and `TypeSymbol`.
+ */
+ type NameType >: Null <: Name
+
+ /** The name of the symbol as a member of the `Name` type.
+ */
+ def name: Name
+
+ /** The encoded full path name of this symbol, where outer names and inner names
+ * are separated by periods.
+ */
+ def fullName: String
+
+ /** Does this symbol represent the definition of a type?
+ * Note that every symbol is either a term or a type.
+ * So for every symbol `sym` (except for `NoSymbol`),
+ * either `sym.isTerm` is true or `sym.isType` is true.
+ */
+ def isType: Boolean = false
+
+ /** This symbol cast to a TypeSymbol.
+ * @throws ScalaReflectionException if `isType` is false.
+ */
+ def asType: TypeSymbol = throw new ScalaReflectionException(s"$this is not a type")
+
+ /** Does this symbol represent the definition of a term?
+ * Note that every symbol is either a term or a type.
+ * So for every symbol `sym` (except for `NoSymbol`),
+ * either `sym.isTerm` is true or `sym.isTerm` is true.
+ */
+ def isTerm: Boolean = false
+
+ /** This symbol cast to a TermSymbol.
+ * @throws ScalaReflectionException if `isTerm` is false.
+ */
+ def asTerm: TermSymbol = throw new ScalaReflectionException(s"$this is not a term")
+
+ /** Does this symbol represent the definition of a method?
+ * If yes, `isTerm` is also guaranteed to be true.
+ */
+ def isMethod: Boolean = false
+
+ /** This symbol cast to a MethodSymbol.
+ * @throws ScalaReflectionException if `isMethod` is false.
+ */
+ def asMethod: MethodSymbol = {
+ def overloadedMsg =
+ "encapsulates multiple overloaded alternatives and cannot be treated as a method. "+
+ "Consider invoking `<offending symbol>.asTerm.alternatives` and manually picking the required method"
+ def vanillaMsg = "is not a method"
+ val msg = if (isOverloadedMethod) overloadedMsg else vanillaMsg
+ throw new ScalaReflectionException(s"$this $msg")
+ }
+
+ /** Used to provide a better error message for `asMethod` */
+ protected def isOverloadedMethod = false
+
+ /** Does this symbol represent the definition of a module (i.e. it
+ * results from an object definition?).
+ * If yes, `isTerm` is also guaranteed to be true.
+ */
+ def isModule: Boolean = false
+
+ /** This symbol cast to a ModuleSymbol defined by an object definition.
+ * @throws ScalaReflectionException if `isModule` is false.
+ */
+ def asModule: ModuleSymbol = throw new ScalaReflectionException(s"$this is not a module")
+
+ /** Does this symbol represent the definition of a class or trait?
+ * If yes, `isType` is also guaranteed to be true.
+ */
+ def isClass: Boolean = false
+
+ /** Does this symbol represent the definition of a class implicitly associated
+ * with an object definition (module class in scala compiler parlance).
+ * If yes, `isType` is also guaranteed to be true.
+ */
+ def isModuleClass: Boolean = false
+
+ /** This symbol cast to a ClassSymbol representing a class or trait.
+ * @throws ScalaReflectionException if `isClass` is false.
+ */
+ def asClass: ClassSymbol = throw new ScalaReflectionException(s"$this is not a class")
+
+ /** Does this symbol represent a free term captured by reification?
+ * If yes, `isTerm` is also guaranteed to be true.
+ */
+ def isFreeTerm: Boolean = false
+
+ /** This symbol cast to a free term symbol.
+ * @throws ScalaReflectionException if `isFreeTerm` is false.
+ */
+ def asFreeTerm: FreeTermSymbol = throw new ScalaReflectionException(s"$this is not a free term")
+
+ /** Does this symbol represent a free type captured by reification?
+ * If yes, `isType` is also guaranteed to be true.
+ */
+ def isFreeType: Boolean = false
+
+ /** This symbol cast to a free type symbol.
+ * @throws ScalaReflectionException if `isFreeType` is false.
+ */
+ def asFreeType: FreeTypeSymbol = throw new ScalaReflectionException(s"$this is not a free type")
+
+ def newTermSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TermSymbol
+ def newModuleAndClassSymbol(name: Name, pos: Position = NoPosition, flags: FlagSet = NoFlags): (ModuleSymbol, ClassSymbol)
+ def newMethodSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): MethodSymbol
+ def newTypeSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TypeSymbol
+ def newClassSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): ClassSymbol
/** Source file if this symbol is created during this compilation run,
* or a class file if this symbol is loaded from a *.class or *.jar.
@@ -195,7 +387,14 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of term symbols */
- trait TermSymbolApi extends SymbolApi with TermSymbolBase { this: TermSymbol =>
+ trait TermSymbolApi extends SymbolApi { this: TermSymbol =>
+ /** Term symbols have their names of type `TermName`.
+ */
+ final type NameType = TermName
+
+ final override def isTerm = true
+ final override def asTerm = this
+
/** Is this symbol introduced as `val`?
*/
def isVal: Boolean
@@ -269,7 +468,41 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of type symbols */
- trait TypeSymbolApi extends SymbolApi with TypeSymbolBase { this: TypeSymbol =>
+ trait TypeSymbolApi extends SymbolApi { this: TypeSymbol =>
+ /** Type symbols have their names of type `TypeName`.
+ */
+ final type NameType = TypeName
+
+ /** The type constructor corresponding to this type symbol.
+ * This is different from `toType` in that type parameters
+ * are part of results of `toType`, but not of `toTypeConstructor`.
+ *
+ * Example: Given a class declaration `class C[T] { ... } `, that generates a symbol
+ * `C`. Then `C.toType` is the type `C[T]`, but `C.toTypeConstructor` is `C`.
+ */
+ def toTypeConstructor: Type
+
+ /** A type reference that refers to this type symbol seen
+ * as a member of given type `site`.
+ */
+ def toTypeIn(site: Type): Type
+
+ /** A type reference that refers to this type symbol
+ * Note if symbol is a member of a class, one almost always is interested
+ * in `asTypeIn` with a site type instead.
+ *
+ * Example: Given a class declaration `class C[T] { ... } `, that generates a symbol
+ * `C`. Then `C.toType` is the type `C[T]`.
+ *
+ * By contrast, `C.typeSignature` would be a type signature of form
+ * `PolyType(ClassInfoType(...))` that describes type parameters, value
+ * parameters, parent types, and members of `C`.
+ */
+ def toType: Type
+
+ final override def isType = true
+ final override def asType = this
+
/** Is the type parameter represented by this symbol contravariant?
*/
def isContravariant : Boolean
@@ -300,7 +533,10 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of method symbols */
- trait MethodSymbolApi extends TermSymbolApi with MethodSymbolBase { this: MethodSymbol =>
+ trait MethodSymbolApi extends TermSymbolApi { this: MethodSymbol =>
+ final override def isMethod = true
+ final override def asMethod = this
+
/** Does this method represent a constructor?
*
* If `owner` is a class, then this is a vanilla JVM constructor.
@@ -331,11 +567,23 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of module symbols */
- trait ModuleSymbolApi extends TermSymbolApi with ModuleSymbolBase { this: ModuleSymbol =>
+ trait ModuleSymbolApi extends TermSymbolApi { this: ModuleSymbol =>
+ /** The class implicitly associated with the object definition.
+ * One can go back from a module class to the associated module symbol
+ * by inspecting its `selfType.termSymbol`.
+ */
+ def moduleClass: Symbol // needed for tree traversals
+ // when this becomes `moduleClass: ClassSymbol`, it will be the happiest day in my life
+
+ final override def isModule = true
+ final override def asModule = this
}
/** The API of class symbols */
- trait ClassSymbolApi extends TypeSymbolApi with ClassSymbolBase { this: ClassSymbol =>
+ trait ClassSymbolApi extends TypeSymbolApi { this: ClassSymbol =>
+ final override def isClass = true
+ final override def asClass = this
+
/** Does this symbol represent the definition of a primitive class?
* Namely, is it one of [[scala.Double]], [[scala.Float]], [[scala.Long]], [[scala.Int]], [[scala.Char]],
* [[scala.Short]], [[scala.Byte]], [[scala.Unit]] or [[scala.Boolean]]?
@@ -398,7 +646,10 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of free term symbols */
- trait FreeTermSymbolApi extends TermSymbolApi with FreeTermSymbolBase { this: FreeTermSymbol =>
+ trait FreeTermSymbolApi extends TermSymbolApi { this: FreeTermSymbol =>
+ final override def isFreeTerm = true
+ final override def asFreeTerm = this
+
/** The place where this symbol has been spawned */
def origin: String
@@ -407,7 +658,10 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of free term symbols */
- trait FreeTypeSymbolApi extends TypeSymbolApi with FreeTypeSymbolBase { this: FreeTypeSymbol =>
+ trait FreeTypeSymbolApi extends TypeSymbolApi { this: FreeTypeSymbol =>
+ final override def isFreeType = true
+ final override def asFreeType = this
+
/** The place where this symbol has been spawned */
def origin: String
}
diff --git a/src/reflect/scala/reflect/api/TagInterop.scala b/src/reflect/scala/reflect/api/TagInterop.scala
index 5ab085741e..fc0558d717 100644
--- a/src/reflect/scala/reflect/api/TagInterop.scala
+++ b/src/reflect/scala/reflect/api/TagInterop.scala
@@ -1,32 +1,27 @@
package scala.reflect
package api
-import scala.reflect.base.TypeCreator
-import scala.reflect.base.{Universe => BaseUniverse}
+trait TagInterop { self: Universe =>
+ // TODO `mirror` parameters are now of type `Any`, because I can't make these path-dependent types work
+ // if you're brave enough, replace `Any` with `Mirror`, recompile and run interop_typetags_are_manifests.scala
-trait TagInterop { self: JavaUniverse =>
+ /**
+ * Convert a typetag to a pre `Scala-2.10` manifest.
+ * For example
+ * {{{
+ * typeTagToManifest( scala.reflect.runtime.currentMirror, implicitly[TypeTag[String]] )
+ * }}}
+ */
+ def typeTagToManifest[T: ClassTag](mirror: Any, tag: Universe#TypeTag[T]): Manifest[T] =
+ throw new UnsupportedOperationException("This universe does not support tag -> manifest conversions. Use a JavaUniverse, e.g. the scala.reflect.runtime.universe.")
- override def typeTagToManifest[T: ClassTag](mirror0: Any, tag: base.Universe # TypeTag[T]): Manifest[T] = {
- // SI-6239: make this conversion more precise
- val mirror = mirror0.asInstanceOf[Mirror]
- val runtimeClass = mirror.runtimeClass(tag.in(mirror).tpe)
- Manifest.classType(runtimeClass).asInstanceOf[Manifest[T]]
- }
-
- override def manifestToTypeTag[T](mirror0: Any, manifest: Manifest[T]): base.Universe # TypeTag[T] =
- TypeTag(mirror0.asInstanceOf[Mirror], new TypeCreator {
- def apply[U <: BaseUniverse with Singleton](mirror: MirrorOf[U]): U # Type = {
- mirror.universe match {
- case ju: JavaUniverse =>
- val jm = mirror.asInstanceOf[ju.Mirror]
- val sym = jm.classSymbol(manifest.erasure)
- val tpe =
- if (manifest.typeArguments.isEmpty) sym.toType
- else ju.appliedType(sym.toTypeConstructor, manifest.typeArguments map (targ => ju.manifestToTypeTag(jm, targ)) map (_.in(jm).tpe))
- tpe.asInstanceOf[U # Type]
- case u =>
- u.manifestToTypeTag(mirror.asInstanceOf[u.Mirror], manifest).in(mirror).tpe
- }
- }
- })
+ /**
+ * Convert a pre `Scala-2.10` manifest to a typetag.
+ * For example
+ * {{{
+ * manifestToTypeTag( scala.reflect.runtime.currentMirror, implicitly[Manifest[String]] )
+ * }}}
+ */
+ def manifestToTypeTag[T](mirror: Any, manifest: Manifest[T]): Universe#TypeTag[T] =
+ throw new UnsupportedOperationException("This universe does not support manifest -> tag conversions. Use a JavaUniverse, e.g. the scala.reflect.runtime.universe.")
}
diff --git a/src/library/scala/reflect/base/TreeCreator.scala b/src/reflect/scala/reflect/api/TreeCreator.scala
index 5de0094f1f..0c8701775c 100644
--- a/src/library/scala/reflect/base/TreeCreator.scala
+++ b/src/reflect/scala/reflect/api/TreeCreator.scala
@@ -1,5 +1,5 @@
package scala.reflect
-package base
+package api
/** A mirror-aware factory for trees.
*
diff --git a/src/reflect/scala/reflect/api/Trees.scala b/src/reflect/scala/reflect/api/Trees.scala
index 18d960ae04..1f15ee6070 100644
--- a/src/reflect/scala/reflect/api/Trees.scala
+++ b/src/reflect/scala/reflect/api/Trees.scala
@@ -6,12 +6,75 @@ package scala.reflect
package api
// Syncnote: Trees are currently not thread-safe.
-trait Trees extends base.Trees { self: Universe =>
+trait Trees { self: Universe =>
+
+ /** Tree is the basis for scala's abstract syntax. The nodes are
+ * implemented as case classes, and the parameters which initialize
+ * a given tree are immutable: however Trees have several mutable
+ * fields which are manipulated in the course of typechecking,
+ * including pos, symbol, and tpe.
+ *
+ * Newly instantiated trees have tpe set to null (though it
+ * may be set immediately thereafter depending on how it is
+ * constructed.) When a tree is passed to the typer, typically via
+ * `typer.typed(tree)`, under normal circumstances the tpe must be
+ * null or the typer will ignore it. Furthermore, the typer is not
+ * required to return the same tree it was passed.
+ *
+ * Trees can be easily traversed with e.g. foreach on the root node;
+ * for a more nuanced traversal, subclass Traverser. Transformations
+ * can be considerably trickier: see the numerous subclasses of
+ * Transformer found around the compiler.
+ *
+ * Copying Trees should be done with care depending on whether
+ * it needs be done lazily or strictly (see LazyTreeCopier and
+ * StrictTreeCopier) and on whether the contents of the mutable
+ * fields should be copied. The tree copiers will copy the mutable
+ * attributes to the new tree; calling Tree#duplicate will copy
+ * symbol and tpe, but all the positions will be focused.
+ *
+ * Trees can be coarsely divided into four mutually exclusive categories:
+ *
+ * - TermTrees, representing terms
+ * - TypTrees, representing types. Note that is `TypTree`, not `TypeTree`.
+ * - SymTrees, which may represent types or terms.
+ * - Other Trees, which have none of those as parents.
+ *
+ * SymTrees include important nodes Ident and Select, which are
+ * used as both terms and types; they are distinguishable based on
+ * whether the Name is a TermName or TypeName. The correct way
+ * to test any Tree for a type or a term are the `isTerm`/`isType`
+ * methods on Tree.
+ *
+ * "Others" are mostly syntactic or short-lived constructs. Examples
+ * include CaseDef, which wraps individual match cases: they are
+ * neither terms nor types, nor do they carry a symbol. Another
+ * example is Parens, which is eliminated during parsing.
+ */
+ type Tree >: Null <: TreeApi
- override type Tree >: Null <: TreeApi
+ /** A tag that preserves the identity of the `Tree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TreeTag: ClassTag[Tree]
- /** ... */
- trait TreeApi extends TreeBase { this: Tree =>
+ /** The API that all trees support */
+ trait TreeApi extends Product { this: Tree =>
+ // TODO
+ /** ... */
+ def isDef: Boolean
+
+ // TODO
+ /** ... */
+ def isEmpty: Boolean
+
+ /** The canonical way to test if a Tree represents a term.
+ */
+ def isTerm: Boolean
+
+ /** The canonical way to test if a Tree represents a type.
+ */
+ def isType: Boolean
/** ... */
def pos: Position
@@ -107,37 +170,83 @@ trait Trees extends base.Trees { self: Universe =>
* in this tree will be found when searching by position).
*/
def duplicate: this.type
+
+ /** Obtains string representation of a tree */
+ override def toString: String = treeToString(this)
}
- override protected def treeType(tree: Tree) = tree.tpe
+ /** Obtains string representation of a tree */
+ protected def treeToString(tree: Tree): String
- override type TermTree >: Null <: Tree with TermTreeApi
+ /** The empty tree */
+ val EmptyTree: Tree
+
+ /** A tree for a term. Not all trees representing terms are TermTrees; use isTerm
+ * to reliably identify terms.
+ */
+ type TermTree >: Null <: AnyRef with Tree with TermTreeApi
+
+ /** A tag that preserves the identity of the `TermTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TermTreeTag: ClassTag[TermTree]
/** The API that all term trees support */
trait TermTreeApi extends TreeApi { this: TermTree =>
}
- override type TypTree >: Null <: Tree with TypTreeApi
+ /** A tree for a type. Not all trees representing types are TypTrees; use isType
+ * to reliably identify types.
+ */
+ type TypTree >: Null <: AnyRef with Tree with TypTreeApi
+
+ /** A tag that preserves the identity of the `TypTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypTreeTag: ClassTag[TypTree]
/** The API that all typ trees support */
trait TypTreeApi extends TreeApi { this: TypTree =>
}
- override type SymTree >: Null <: Tree with SymTreeApi
+ /** A tree with a mutable symbol field, initialized to NoSymbol.
+ */
+ type SymTree >: Null <: AnyRef with Tree with SymTreeApi
+
+ /** A tag that preserves the identity of the `SymTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SymTreeTag: ClassTag[SymTree]
/** The API that all sym trees support */
trait SymTreeApi extends TreeApi { this: SymTree =>
def symbol: Symbol
}
- override type NameTree >: Null <: Tree with NameTreeApi
+ /** A tree with a name - effectively, a DefTree or RefTree.
+ */
+ type NameTree >: Null <: AnyRef with Tree with NameTreeApi
+
+ /** A tag that preserves the identity of the `NameTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val NameTreeTag: ClassTag[NameTree]
/** The API that all name trees support */
trait NameTreeApi extends TreeApi { this: NameTree =>
def name: Name
}
- override type RefTree >: Null <: SymTree with NameTree with RefTreeApi
+ /** A tree which references a symbol-carrying entity.
+ * References one, as opposed to defining one; definitions
+ * are in DefTrees.
+ */
+ type RefTree >: Null <: SymTree with NameTree with RefTreeApi
+
+ /** A tag that preserves the identity of the `RefTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val RefTreeTag: ClassTag[RefTree]
/** The API that all ref trees support */
trait RefTreeApi extends SymTreeApi with NameTreeApi { this: RefTree =>
@@ -145,21 +254,56 @@ trait Trees extends base.Trees { self: Universe =>
def name: Name
}
- override type DefTree >: Null <: SymTree with NameTree with DefTreeApi
+ /** A tree which defines a symbol-carrying entity.
+ */
+ type DefTree >: Null <: SymTree with NameTree with DefTreeApi
+
+ /** A tag that preserves the identity of the `DefTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val DefTreeTag: ClassTag[DefTree]
/** The API that all def trees support */
trait DefTreeApi extends SymTreeApi with NameTreeApi { this: DefTree =>
def name: Name
}
- override type MemberDef >: Null <: DefTree with MemberDefApi
+ /** Common base class for all member definitions: types, classes,
+ * objects, packages, vals and vars, defs.
+ */
+ type MemberDef >: Null <: DefTree with MemberDefApi
+
+ /** A tag that preserves the identity of the `MemberDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val MemberDefTag: ClassTag[MemberDef]
/** The API that all member defs support */
trait MemberDefApi extends DefTreeApi { this: MemberDef =>
def mods: Modifiers
}
- override type PackageDef >: Null <: MemberDef with PackageDefApi
+ /** A packaging, such as `package pid { stats }`
+ */
+ type PackageDef >: Null <: MemberDef with PackageDefApi
+
+ /** A tag that preserves the identity of the `PackageDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val PackageDefTag: ClassTag[PackageDef]
+
+ /** The constructor/deconstructor for `PackageDef` instances. */
+ val PackageDef: PackageDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `PackageDef(pid, stats)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `package` pid { stats }
+ */
+ abstract class PackageDefExtractor {
+ def apply(pid: RefTree, stats: List[Tree]): PackageDef
+ def unapply(packageDef: PackageDef): Option[(RefTree, List[Tree])]
+ }
/** The API that all package defs support */
trait PackageDefApi extends MemberDefApi { this: PackageDef =>
@@ -167,14 +311,45 @@ trait Trees extends base.Trees { self: Universe =>
val stats: List[Tree]
}
- override type ImplDef >: Null <: MemberDef with ImplDefApi
+ /** A common base class for class and object definitions.
+ */
+ type ImplDef >: Null <: MemberDef with ImplDefApi
+
+ /** A tag that preserves the identity of the `ImplDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ImplDefTag: ClassTag[ImplDef]
/** The API that all impl defs support */
trait ImplDefApi extends MemberDefApi { this: ImplDef =>
val impl: Template
}
- override type ClassDef >: Null <: ImplDef with ClassDefApi
+ /** A class definition.
+ */
+ type ClassDef >: Null <: ImplDef with ClassDefApi
+
+ /** A tag that preserves the identity of the `ClassDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ClassDefTag: ClassTag[ClassDef]
+
+ /** The constructor/deconstructor for `ClassDef` instances. */
+ val ClassDef: ClassDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `ClassDef(mods, name, tparams, impl)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * mods `class` name [tparams] impl
+ *
+ * Where impl stands for:
+ *
+ * `extends` parents { defs }
+ */
+ abstract class ClassDefExtractor {
+ def apply(mods: Modifiers, name: TypeName, tparams: List[TypeDef], impl: Template): ClassDef
+ def unapply(classDef: ClassDef): Option[(Modifiers, TypeName, List[TypeDef], Template)]
+ }
/** The API that all class defs support */
trait ClassDefApi extends ImplDefApi { this: ClassDef =>
@@ -184,7 +359,33 @@ trait Trees extends base.Trees { self: Universe =>
val impl: Template
}
- override type ModuleDef >: Null <: ImplDef with ModuleDefApi
+ /** An object definition, e.g. `object Foo`. Internally, objects are
+ * quite frequently called modules to reduce ambiguity.
+ * Eliminated by compiler phase refcheck.
+ */
+ type ModuleDef >: Null <: ImplDef with ModuleDefApi
+
+ /** A tag that preserves the identity of the `ModuleDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ModuleDefTag: ClassTag[ModuleDef]
+
+ /** The constructor/deconstructor for `ModuleDef` instances. */
+ val ModuleDef: ModuleDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `ModuleDef(mods, name, impl)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * mods `object` name impl
+ *
+ * Where impl stands for:
+ *
+ * `extends` parents { defs }
+ */
+ abstract class ModuleDefExtractor {
+ def apply(mods: Modifiers, name: TermName, impl: Template): ModuleDef
+ def unapply(moduleDef: ModuleDef): Option[(Modifiers, TermName, Template)]
+ }
/** The API that all module defs support */
trait ModuleDefApi extends ImplDefApi { this: ModuleDef =>
@@ -193,7 +394,14 @@ trait Trees extends base.Trees { self: Universe =>
val impl: Template
}
- override type ValOrDefDef >: Null <: MemberDef with ValOrDefDefApi
+ /** A common base class for ValDefs and DefDefs.
+ */
+ type ValOrDefDef >: Null <: MemberDef with ValOrDefDefApi
+
+ /** A tag that preserves the identity of the `ValOrDefDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ValOrDefDefTag: ClassTag[ValOrDefDef]
/** The API that all val defs and def defs support */
trait ValOrDefDefApi extends MemberDefApi { this: ValOrDefDef =>
@@ -202,7 +410,42 @@ trait Trees extends base.Trees { self: Universe =>
def rhs: Tree
}
- override type ValDef >: Null <: ValOrDefDef with ValDefApi
+ /** Broadly speaking, a value definition. All these are encoded as ValDefs:
+ *
+ * - immutable values, e.g. "val x"
+ * - mutable values, e.g. "var x" - the MUTABLE flag set in mods
+ * - lazy values, e.g. "lazy val x" - the LAZY flag set in mods
+ * - method parameters, see vparamss in [[scala.reflect.api.Trees#DefDef]] - the PARAM flag is set in mods
+ * - explicit self-types, e.g. class A { self: Bar => }
+ */
+ type ValDef >: Null <: ValOrDefDef with ValDefApi
+
+ /** A tag that preserves the identity of the `ValDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ValDefTag: ClassTag[ValDef]
+
+ /** The constructor/deconstructor for `ValDef` instances. */
+ val ValDef: ValDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `ValDef(mods, name, tpt, rhs)`.
+ * This AST node corresponds to any of the following Scala code:
+ *
+ * mods `val` name: tpt = rhs
+ *
+ * mods `var` name: tpt = rhs
+ *
+ * mods name: tpt = rhs // in signatures of function and method definitions
+ *
+ * self: Bar => // self-types
+ *
+ * If the type of a value is not specified explicitly (i.e. is meant to be inferred),
+ * this is expressed by having `tpt` set to `TypeTree()` (but not to an `EmptyTree`!).
+ */
+ abstract class ValDefExtractor {
+ def apply(mods: Modifiers, name: TermName, tpt: Tree, rhs: Tree): ValDef
+ def unapply(valDef: ValDef): Option[(Modifiers, TermName, Tree, Tree)]
+ }
/** The API that all val defs support */
trait ValDefApi extends ValOrDefDefApi { this: ValDef =>
@@ -212,7 +455,31 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type DefDef >: Null <: ValOrDefDef with DefDefApi
+ /** A method or macro definition.
+ * @param name The name of the method or macro. Can be a type name in case this is a type macro
+ */
+ type DefDef >: Null <: ValOrDefDef with DefDefApi
+
+ /** A tag that preserves the identity of the `DefDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val DefDefTag: ClassTag[DefDef]
+
+ /** The constructor/deconstructor for `DefDef` instances. */
+ val DefDef: DefDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `DefDef(mods, name, tparams, vparamss, tpt, rhs)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * mods `def` name[tparams](vparams_1)...(vparams_n): tpt = rhs
+ *
+ * If the return type is not specified explicitly (i.e. is meant to be inferred),
+ * this is expressed by having `tpt` set to `TypeTree()` (but not to an `EmptyTree`!).
+ */
+ abstract class DefDefExtractor {
+ def apply(mods: Modifiers, name: Name, tparams: List[TypeDef], vparamss: List[List[ValDef]], tpt: Tree, rhs: Tree): DefDef
+ def unapply(defDef: DefDef): Option[(Modifiers, Name, List[TypeDef], List[List[ValDef]], Tree, Tree)]
+ }
/** The API that all def defs support */
trait DefDefApi extends ValOrDefDefApi { this: DefDef =>
@@ -224,7 +491,34 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type TypeDef >: Null <: MemberDef with TypeDefApi
+ /** An abstract type, a type parameter, or a type alias.
+ * Eliminated by erasure.
+ */
+ type TypeDef >: Null <: MemberDef with TypeDefApi
+
+ /** A tag that preserves the identity of the `TypeDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeDefTag: ClassTag[TypeDef]
+
+ /** The constructor/deconstructor for `TypeDef` instances. */
+ val TypeDef: TypeDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeDef(mods, name, tparams, rhs)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * mods `type` name[tparams] = rhs
+ *
+ * mods `type` name[tparams] >: lo <: hi
+ *
+ * First usage illustrates `TypeDefs` representing type aliases and type parameters.
+ * Second usage illustrates `TypeDefs` representing abstract types,
+ * where lo and hi are both `TypeBoundsTrees` and `Modifier.deferred` is set in mods.
+ */
+ abstract class TypeDefExtractor {
+ def apply(mods: Modifiers, name: TypeName, tparams: List[TypeDef], rhs: Tree): TypeDef
+ def unapply(typeDef: TypeDef): Option[(Modifiers, TypeName, List[TypeDef], Tree)]
+ }
/** The API that all type defs support */
trait TypeDefApi extends MemberDefApi { this: TypeDef =>
@@ -234,7 +528,46 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type LabelDef >: Null <: DefTree with TermTree with LabelDefApi
+ /** A labelled expression. Not expressible in language syntax, but
+ * generated by the compiler to simulate while/do-while loops, and
+ * also by the pattern matcher.
+ *
+ * The label acts much like a nested function, where `params` represents
+ * the incoming parameters. The symbol given to the LabelDef should have
+ * a MethodType, as if it were a nested function.
+ *
+ * Jumps are apply nodes attributed with a label's symbol. The
+ * arguments from the apply node will be passed to the label and
+ * assigned to the Idents.
+ *
+ * Forward jumps within a block are allowed.
+ */
+ type LabelDef >: Null <: DefTree with TermTree with LabelDefApi
+
+ /** A tag that preserves the identity of the `LabelDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val LabelDefTag: ClassTag[LabelDef]
+
+ /** The constructor/deconstructor for `LabelDef` instances. */
+ val LabelDef: LabelDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `LabelDef(name, params, rhs)`.
+ *
+ * This AST node does not have direct correspondence to Scala code.
+ * It is used for tailcalls and like.
+ * For example, while/do are desugared to label defs as follows:
+ * {{{
+ * while (cond) body ==> LabelDef($L, List(), if (cond) { body; L$() } else ())
+ * }}}
+ * {{{
+ * do body while (cond) ==> LabelDef($L, List(), body; if (cond) L$() else ())
+ * }}}
+ */
+ abstract class LabelDefExtractor {
+ def apply(name: TermName, params: List[Ident], rhs: Tree): LabelDef
+ def unapply(labelDef: LabelDef): Option[(TermName, List[Ident], Tree)]
+ }
/** The API that all label defs support */
trait LabelDefApi extends DefTreeApi with TermTreeApi { this: LabelDef =>
@@ -243,7 +576,34 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type ImportSelector >: Null <: ImportSelectorApi
+ /** Import selector
+ *
+ * Representation of an imported name its optional rename and their optional positions
+ *
+ * Eliminated by typecheck.
+ *
+ * @param name the imported name
+ * @param namePos its position or -1 if undefined
+ * @param rename the name the import is renamed to (== name if no renaming)
+ * @param renamePos the position of the rename or -1 if undefined
+ */
+ type ImportSelector >: Null <: AnyRef with ImportSelectorApi
+
+ /** A tag that preserves the identity of the `ImportSelector` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ImportSelectorTag: ClassTag[ImportSelector]
+
+ /** The constructor/deconstructor for `ImportSelector` instances. */
+ val ImportSelector: ImportSelectorExtractor
+
+ /** An extractor class to create and pattern match with syntax `ImportSelector(name:, namePos, rename, renamePos)`.
+ * This is not an AST node, it is used as a part of the `Import` node.
+ */
+ abstract class ImportSelectorExtractor {
+ def apply(name: Name, namePos: Int, rename: Name, renamePos: Int): ImportSelector
+ def unapply(importSelector: ImportSelector): Option[(Name, Int, Name, Int)]
+ }
/** The API that all import selectors support */
trait ImportSelectorApi { this: ImportSelector =>
@@ -253,7 +613,42 @@ trait Trees extends base.Trees { self: Universe =>
val renamePos: Int
}
- override type Import >: Null <: SymTree with ImportApi
+ /** Import clause
+ *
+ * @param expr
+ * @param selectors
+ */
+ type Import >: Null <: SymTree with ImportApi
+
+ /** A tag that preserves the identity of the `Import` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ImportTag: ClassTag[Import]
+
+ /** The constructor/deconstructor for `Import` instances. */
+ val Import: ImportExtractor
+
+ /** An extractor class to create and pattern match with syntax `Import(expr, selectors)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * import expr.{selectors}
+ *
+ * Selectors are a list of ImportSelectors, which conceptually are pairs of names (from, to).
+ * The last (and maybe only name) may be a nme.WILDCARD. For instance:
+ *
+ * import qual.{x, y => z, _}
+ *
+ * Would be represented as:
+ *
+ * Import(qual, List(("x", "x"), ("y", "z"), (WILDCARD, null)))
+ *
+ * The symbol of an `Import` is an import symbol @see Symbol.newImport.
+ * It's used primarily as a marker to check that the import has been typechecked.
+ */
+ abstract class ImportExtractor {
+ def apply(expr: Tree, selectors: List[ImportSelector]): Import
+ def unapply(import_ : Import): Option[(Tree, List[ImportSelector])]
+ }
/** The API that all imports support */
trait ImportApi extends SymTreeApi { this: Import =>
@@ -261,7 +656,43 @@ trait Trees extends base.Trees { self: Universe =>
val selectors: List[ImportSelector]
}
- override type Template >: Null <: SymTree with TemplateApi
+ /** Instantiation template of a class or trait
+ *
+ * @param parents
+ * @param body
+ */
+ type Template >: Null <: SymTree with TemplateApi
+
+ /** A tag that preserves the identity of the `Template` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TemplateTag: ClassTag[Template]
+
+ /** The constructor/deconstructor for `Template` instances. */
+ val Template: TemplateExtractor
+
+ /** An extractor class to create and pattern match with syntax `Template(parents, self, body)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `extends` parents { self => body }
+ *
+ * In case when the self-type annotation is missing, it is represented as
+ * an empty value definition with nme.WILDCARD as name and NoType as type.
+ *
+ * The symbol of a template is a local dummy. @see Symbol.newLocalDummy
+ * The owner of the local dummy is the enclosing trait or class.
+ * The local dummy is itself the owner of any local blocks. For example:
+ *
+ * class C {
+ * def foo { // owner is C
+ * def bar // owner is local dummy
+ * }
+ * }
+ */
+ abstract class TemplateExtractor {
+ def apply(parents: List[Tree], self: ValDef, body: List[Tree]): Template
+ def unapply(template: Template): Option[(List[Tree], ValDef, List[Tree])]
+ }
/** The API that all templates support */
trait TemplateApi extends SymTreeApi { this: Template =>
@@ -270,7 +701,28 @@ trait Trees extends base.Trees { self: Universe =>
val body: List[Tree]
}
- override type Block >: Null <: TermTree with BlockApi
+ /** Block of expressions (semicolon separated expressions) */
+ type Block >: Null <: TermTree with BlockApi
+
+ /** A tag that preserves the identity of the `Block` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val BlockTag: ClassTag[Block]
+
+ /** The constructor/deconstructor for `Block` instances. */
+ val Block: BlockExtractor
+
+ /** An extractor class to create and pattern match with syntax `Block(stats, expr)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * { stats; expr }
+ *
+ * If the block is empty, the `expr` is set to `Literal(Constant(()))`.
+ */
+ abstract class BlockExtractor {
+ def apply(stats: List[Tree], expr: Tree): Block
+ def unapply(block: Block): Option[(List[Tree], Tree)]
+ }
/** The API that all blocks support */
trait BlockApi extends TermTreeApi { this: Block =>
@@ -278,7 +730,32 @@ trait Trees extends base.Trees { self: Universe =>
val expr: Tree
}
- override type CaseDef >: Null <: Tree with CaseDefApi
+ /** Case clause in a pattern match.
+ * (except for occurrences in switch statements).
+ * Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher)
+ */
+ type CaseDef >: Null <: AnyRef with Tree with CaseDefApi
+
+ /** A tag that preserves the identity of the `CaseDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val CaseDefTag: ClassTag[CaseDef]
+
+ /** The constructor/deconstructor for `CaseDef` instances. */
+ val CaseDef: CaseDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `CaseDef(pat, guard, body)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `case` pat `if` guard => body
+ *
+ * If the guard is not present, the `guard` is set to `EmptyTree`.
+ * If the body is not specified, the `body` is set to `Literal(Constant())`
+ */
+ abstract class CaseDefExtractor {
+ def apply(pat: Tree, guard: Tree, body: Tree): CaseDef
+ def unapply(caseDef: CaseDef): Option[(Tree, Tree, Tree)]
+ }
/** The API that all case defs support */
trait CaseDefApi extends TreeApi { this: CaseDef =>
@@ -287,21 +764,92 @@ trait Trees extends base.Trees { self: Universe =>
val body: Tree
}
- override type Alternative >: Null <: TermTree with AlternativeApi
+ /** Alternatives of patterns.
+ *
+ * Eliminated by compiler phases Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher),
+ * except for
+ * occurrences in encoded Switch stmt (i.e. remaining Match(CaseDef(...)))
+ */
+ type Alternative >: Null <: TermTree with AlternativeApi
+
+ /** A tag that preserves the identity of the `Alternative` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AlternativeTag: ClassTag[Alternative]
+
+ /** The constructor/deconstructor for `Alternative` instances. */
+ val Alternative: AlternativeExtractor
+
+ /** An extractor class to create and pattern match with syntax `Alternative(trees)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * pat1 | ... | patn
+ */
+ abstract class AlternativeExtractor {
+ def apply(trees: List[Tree]): Alternative
+ def unapply(alternative: Alternative): Option[List[Tree]]
+ }
/** The API that all alternatives support */
trait AlternativeApi extends TermTreeApi { this: Alternative =>
val trees: List[Tree]
}
- override type Star >: Null <: TermTree with StarApi
+ /** Repetition of pattern.
+ *
+ * Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher).
+ */
+ type Star >: Null <: TermTree with StarApi
+
+ /** A tag that preserves the identity of the `Star` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val StarTag: ClassTag[Star]
+
+ /** The constructor/deconstructor for `Star` instances. */
+ val Star: StarExtractor
+
+ /** An extractor class to create and pattern match with syntax `Star(elem)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * pat*
+ */
+ abstract class StarExtractor {
+ def apply(elem: Tree): Star
+ def unapply(star: Star): Option[Tree]
+ }
/** The API that all stars support */
trait StarApi extends TermTreeApi { this: Star =>
val elem: Tree
}
- override type Bind >: Null <: DefTree with BindApi
+ /** Bind a variable to a rhs pattern.
+ *
+ * Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher).
+ *
+ * @param name
+ * @param body
+ */
+ type Bind >: Null <: DefTree with BindApi
+
+ /** A tag that preserves the identity of the `Bind` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val BindTag: ClassTag[Bind]
+
+ /** The constructor/deconstructor for `Bind` instances. */
+ val Bind: BindExtractor
+
+ /** An extractor class to create and pattern match with syntax `Bind(name, body)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * pat*
+ */
+ abstract class BindExtractor {
+ def apply(name: Name, body: Tree): Bind
+ def unapply(bind: Bind): Option[(Name, Tree)]
+ }
/** The API that all binds support */
trait BindApi extends DefTreeApi { this: Bind =>
@@ -309,7 +857,51 @@ trait Trees extends base.Trees { self: Universe =>
val body: Tree
}
- override type UnApply >: Null <: TermTree with UnApplyApi
+ /**
+ * Used to represent `unapply` methods in pattern matching.
+ *
+ * For example:
+ * {{{
+ * 2 match { case Foo(x) => x }
+ * }}}
+ *
+ * Is represented as:
+ * {{{
+ * Match(
+ * Literal(Constant(2)),
+ * List(
+ * CaseDef(
+ * UnApply(
+ * // a dummy node that carries the type of unapplication to patmat
+ * // the <unapply-selector> here doesn't have an underlying symbol
+ * // it only has a type assigned, therefore after `resetAllAttrs` this tree is no longer typeable
+ * Apply(Select(Ident(Foo), newTermName("unapply")), List(Ident(newTermName("<unapply-selector>")))),
+ * // arguments of the unapply => nothing synthetic here
+ * List(Bind(newTermName("x"), Ident(nme.WILDCARD)))),
+ * EmptyTree,
+ * Ident(newTermName("x")))))
+ * }}}
+ *
+ * Introduced by typer. Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher).
+ */
+ type UnApply >: Null <: TermTree with UnApplyApi
+
+ /** A tag that preserves the identity of the `UnApply` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val UnApplyTag: ClassTag[UnApply]
+
+ /** The constructor/deconstructor for `UnApply` instances. */
+ val UnApply: UnApplyExtractor
+
+ /** An extractor class to create and pattern match with syntax `UnApply(fun, args)`.
+ * This AST node does not have direct correspondence to Scala code,
+ * and is introduced when typechecking pattern matches and `try` blocks.
+ */
+ abstract class UnApplyExtractor {
+ def apply(fun: Tree, args: List[Tree]): UnApply
+ def unapply(unApply: UnApply): Option[(Tree, List[Tree])]
+ }
/** The API that all unapplies support */
trait UnApplyApi extends TermTreeApi { this: UnApply =>
@@ -317,7 +909,29 @@ trait Trees extends base.Trees { self: Universe =>
val args: List[Tree]
}
- override type Function >: Null <: TermTree with SymTree with FunctionApi
+ /** Anonymous function, eliminated by compiler phase lambdalift */
+ type Function >: Null <: TermTree with SymTree with FunctionApi
+
+ /** A tag that preserves the identity of the `Function` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val FunctionTag: ClassTag[Function]
+
+ /** The constructor/deconstructor for `Function` instances. */
+ val Function: FunctionExtractor
+
+ /** An extractor class to create and pattern match with syntax `Function(vparams, body)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * vparams => body
+ *
+ * The symbol of a Function is a synthetic TermSymbol.
+ * It is the owner of the function's parameters.
+ */
+ abstract class FunctionExtractor {
+ def apply(vparams: List[ValDef], body: Tree): Function
+ def unapply(function: Function): Option[(List[ValDef], Tree)]
+ }
/** The API that all functions support */
trait FunctionApi extends TermTreeApi with SymTreeApi { this: Function =>
@@ -325,7 +939,26 @@ trait Trees extends base.Trees { self: Universe =>
val body: Tree
}
- override type Assign >: Null <: TermTree with AssignApi
+ /** Assignment */
+ type Assign >: Null <: TermTree with AssignApi
+
+ /** A tag that preserves the identity of the `Assign` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AssignTag: ClassTag[Assign]
+
+ /** The constructor/deconstructor for `Assign` instances. */
+ val Assign: AssignExtractor
+
+ /** An extractor class to create and pattern match with syntax `Assign(lhs, rhs)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * lhs = rhs
+ */
+ abstract class AssignExtractor {
+ def apply(lhs: Tree, rhs: Tree): Assign
+ def unapply(assign: Assign): Option[(Tree, Tree)]
+ }
/** The API that all assigns support */
trait AssignApi extends TermTreeApi { this: Assign =>
@@ -333,7 +966,34 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type AssignOrNamedArg >: Null <: TermTree with AssignOrNamedArgApi
+ /** Either an assignment or a named argument. Only appears in argument lists,
+ * eliminated by compiler phase typecheck (doTypedApply), resurrected by reifier.
+ */
+ type AssignOrNamedArg >: Null <: TermTree with AssignOrNamedArgApi
+
+ /** A tag that preserves the identity of the `AssignOrNamedArg` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AssignOrNamedArgTag: ClassTag[AssignOrNamedArg]
+
+ /** The constructor/deconstructor for `AssignOrNamedArg` instances. */
+ val AssignOrNamedArg: AssignOrNamedArgExtractor
+
+ /** An extractor class to create and pattern match with syntax `AssignOrNamedArg(lhs, rhs)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * {{{
+ * m.f(lhs = rhs)
+ * }}}
+ * {{{
+ * @annotation(lhs = rhs)
+ * }}}
+ *
+ */
+ abstract class AssignOrNamedArgExtractor {
+ def apply(lhs: Tree, rhs: Tree): AssignOrNamedArg
+ def unapply(assignOrNamedArg: AssignOrNamedArg): Option[(Tree, Tree)]
+ }
/** The API that all assigns support */
trait AssignOrNamedArgApi extends TermTreeApi { this: AssignOrNamedArg =>
@@ -341,7 +1001,28 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type If >: Null <: TermTree with IfApi
+ /** Conditional expression */
+ type If >: Null <: TermTree with IfApi
+
+ /** A tag that preserves the identity of the `If` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val IfTag: ClassTag[If]
+
+ /** The constructor/deconstructor for `If` instances. */
+ val If: IfExtractor
+
+ /** An extractor class to create and pattern match with syntax `If(cond, thenp, elsep)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `if` (cond) thenp `else` elsep
+ *
+ * If the alternative is not present, the `elsep` is set to `Literal(Constant(()))`.
+ */
+ abstract class IfExtractor {
+ def apply(cond: Tree, thenp: Tree, elsep: Tree): If
+ def unapply(if_ : If): Option[(Tree, Tree, Tree)]
+ }
/** The API that all ifs support */
trait IfApi extends TermTreeApi { this: If =>
@@ -350,7 +1031,38 @@ trait Trees extends base.Trees { self: Universe =>
val elsep: Tree
}
- override type Match >: Null <: TermTree with MatchApi
+ /** - Pattern matching expression (before compiler phase explicitouter before 2.10 / patmat from 2.10)
+ * - Switch statements (after compiler phase explicitouter before 2.10 / patmat from 2.10)
+ *
+ * After compiler phase explicitouter before 2.10 / patmat from 2.10, cases will satisfy the following constraints:
+ *
+ * - all guards are `EmptyTree`,
+ * - all patterns will be either `Literal(Constant(x:Int))`
+ * or `Alternative(lit|...|lit)`
+ * - except for an "otherwise" branch, which has pattern
+ * `Ident(nme.WILDCARD)`
+ */
+ type Match >: Null <: TermTree with MatchApi
+
+ /** A tag that preserves the identity of the `Match` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val MatchTag: ClassTag[Match]
+
+ /** The constructor/deconstructor for `Match` instances. */
+ val Match: MatchExtractor
+
+ /** An extractor class to create and pattern match with syntax `Match(selector, cases)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * selector `match` { cases }
+ *
+ * `Match` is also used in pattern matching assignments like `val (foo, bar) = baz`.
+ */
+ abstract class MatchExtractor {
+ def apply(selector: Tree, cases: List[CaseDef]): Match
+ def unapply(match_ : Match): Option[(Tree, List[CaseDef])]
+ }
/** The API that all matches support */
trait MatchApi extends TermTreeApi { this: Match =>
@@ -358,14 +1070,56 @@ trait Trees extends base.Trees { self: Universe =>
val cases: List[CaseDef]
}
- override type Return >: Null <: TermTree with SymTree with ReturnApi
+ /** Return expression */
+ type Return >: Null <: TermTree with SymTree with ReturnApi
+
+ /** A tag that preserves the identity of the `Return` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ReturnTag: ClassTag[Return]
+
+ /** The constructor/deconstructor for `Return` instances. */
+ val Return: ReturnExtractor
+
+ /** An extractor class to create and pattern match with syntax `Return(expr)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `return` expr
+ *
+ * The symbol of a Return node is the enclosing method.
+ */
+ abstract class ReturnExtractor {
+ def apply(expr: Tree): Return
+ def unapply(return_ : Return): Option[Tree]
+ }
/** The API that all returns support */
trait ReturnApi extends TermTreeApi { this: Return =>
val expr: Tree
}
- override type Try >: Null <: TermTree with TryApi
+ /** [Eugene++] comment me! */
+ type Try >: Null <: TermTree with TryApi
+
+ /** A tag that preserves the identity of the `Try` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TryTag: ClassTag[Try]
+
+ /** The constructor/deconstructor for `Try` instances. */
+ val Try: TryExtractor
+
+ /** An extractor class to create and pattern match with syntax `Try(block, catches, finalizer)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `try` block `catch` { catches } `finally` finalizer
+ *
+ * If the finalizer is not present, the `finalizer` is set to `EmptyTree`.
+ */
+ abstract class TryExtractor {
+ def apply(block: Tree, catches: List[CaseDef], finalizer: Tree): Try
+ def unapply(try_ : Try): Option[(Tree, List[CaseDef], Tree)]
+ }
/** The API that all tries support */
trait TryApi extends TermTreeApi { this: Try =>
@@ -374,21 +1128,89 @@ trait Trees extends base.Trees { self: Universe =>
val finalizer: Tree
}
- override type Throw >: Null <: TermTree with ThrowApi
+ /** Throw expression */
+ type Throw >: Null <: TermTree with ThrowApi
+
+ /** A tag that preserves the identity of the `Throw` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ThrowTag: ClassTag[Throw]
+
+ /** The constructor/deconstructor for `Throw` instances. */
+ val Throw: ThrowExtractor
+
+ /** An extractor class to create and pattern match with syntax `Throw(expr)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `throw` expr
+ */
+ abstract class ThrowExtractor {
+ def apply(expr: Tree): Throw
+ def unapply(throw_ : Throw): Option[Tree]
+ }
/** The API that all tries support */
trait ThrowApi extends TermTreeApi { this: Throw =>
val expr: Tree
}
- override type New >: Null <: TermTree with NewApi
+ /** Object instantiation
+ */
+ type New >: Null <: TermTree with NewApi
+
+ /** A tag that preserves the identity of the `New` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val NewTag: ClassTag[New]
+
+ /** The constructor/deconstructor for `New` instances.
+ */
+ val New: NewExtractor
+
+ /** An extractor class to create and pattern match with syntax `New(tpt)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `new` T
+ *
+ * This node always occurs in the following context:
+ *
+ * (`new` tpt).<init>[targs](args)
+ */
+ abstract class NewExtractor {
+ /** A user level `new`.
+ * One should always use this factory method to build a user level `new`.
+ *
+ * @param tpt a class type
+ */
+ def apply(tpt: Tree): New
+ def unapply(new_ : New): Option[Tree]
+ }
/** The API that all news support */
trait NewApi extends TermTreeApi { this: New =>
val tpt: Tree
}
- override type Typed >: Null <: TermTree with TypedApi
+ /** Type annotation, eliminated by compiler phase cleanup */
+ type Typed >: Null <: TermTree with TypedApi
+
+ /** A tag that preserves the identity of the `Typed` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypedTag: ClassTag[Typed]
+
+ /** The constructor/deconstructor for `Typed` instances. */
+ val Typed: TypedExtractor
+
+ /** An extractor class to create and pattern match with syntax `Typed(expr, tpt)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * expr: tpt
+ */
+ abstract class TypedExtractor {
+ def apply(expr: Tree, tpt: Tree): Typed
+ def unapply(typed: Typed): Option[(Tree, Tree)]
+ }
/** The API that all typeds support */
trait TypedApi extends TermTreeApi { this: Typed =>
@@ -396,7 +1218,14 @@ trait Trees extends base.Trees { self: Universe =>
val tpt: Tree
}
- override type GenericApply >: Null <: TermTree with GenericApplyApi
+ /** Common base class for Apply and TypeApply.
+ */
+ type GenericApply >: Null <: TermTree with GenericApplyApi
+
+ /** A tag that preserves the identity of the `GenericApply` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val GenericApplyTag: ClassTag[GenericApply]
/** The API that all applies support */
trait GenericApplyApi extends TermTreeApi { this: GenericApply =>
@@ -404,19 +1233,99 @@ trait Trees extends base.Trees { self: Universe =>
val args: List[Tree]
}
- override type TypeApply >: Null <: GenericApply with TypeApplyApi
+ /* @PP: All signs point toward it being a requirement that args.nonEmpty,
+ * but I can't find that explicitly stated anywhere. Unless your last name
+ * is odersky, you should probably treat it as true.
+ */
+ /** Explicit type application. */
+ type TypeApply >: Null <: GenericApply with TypeApplyApi
+
+ /** A tag that preserves the identity of the `TypeApply` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeApplyTag: ClassTag[TypeApply]
+
+ /** The constructor/deconstructor for `TypeApply` instances. */
+ val TypeApply: TypeApplyExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeApply(fun, args)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * fun[args]
+ */
+ abstract class TypeApplyExtractor {
+ def apply(fun: Tree, args: List[Tree]): TypeApply
+ def unapply(typeApply: TypeApply): Option[(Tree, List[Tree])]
+ }
/** The API that all type applies support */
trait TypeApplyApi extends GenericApplyApi { this: TypeApply =>
}
- override type Apply >: Null <: GenericApply with ApplyApi
+ /** Value application */
+ type Apply >: Null <: GenericApply with ApplyApi
+
+ /** A tag that preserves the identity of the `Apply` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ApplyTag: ClassTag[Apply]
+
+ /** The constructor/deconstructor for `Apply` instances. */
+ val Apply: ApplyExtractor
+
+ /** An extractor class to create and pattern match with syntax `Apply(fun, args)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * fun(args)
+ *
+ * For instance:
+ *
+ * fun[targs](args)
+ *
+ * Is expressed as:
+ *
+ * Apply(TypeApply(fun, targs), args)
+ */
+ abstract class ApplyExtractor {
+ def apply(fun: Tree, args: List[Tree]): Apply
+ def unapply(apply: Apply): Option[(Tree, List[Tree])]
+ }
/** The API that all applies support */
trait ApplyApi extends GenericApplyApi { this: Apply =>
}
- override type Super >: Null <: TermTree with SuperApi
+ /** Super reference, where `qual` is the corresponding `this` reference.
+ * A super reference `C.super[M]` is represented as `Super(This(C), M)`.
+ */
+ type Super >: Null <: TermTree with SuperApi
+
+ /** A tag that preserves the identity of the `Super` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SuperTag: ClassTag[Super]
+
+ /** The constructor/deconstructor for `Super` instances. */
+ val Super: SuperExtractor
+
+ /** An extractor class to create and pattern match with syntax `Super(qual, mix)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * C.super[M]
+ *
+ * Which is represented as:
+ *
+ * Super(This(C), M)
+ *
+ * If `mix` is empty, it is tpnme.EMPTY.
+ *
+ * The symbol of a Super is the class _from_ which the super reference is made.
+ * For instance in C.super(...), it would be C.
+ */
+ abstract class SuperExtractor {
+ def apply(qual: Tree, mix: TypeName): Super
+ def unapply(super_ : Super): Option[(Tree, TypeName)]
+ }
/** The API that all supers support */
trait SuperApi extends TermTreeApi { this: Super =>
@@ -424,14 +1333,57 @@ trait Trees extends base.Trees { self: Universe =>
val mix: TypeName
}
- override type This >: Null <: TermTree with SymTree with ThisApi
+ /** Self reference */
+ type This >: Null <: TermTree with SymTree with ThisApi
+
+ /** A tag that preserves the identity of the `This` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ThisTag: ClassTag[This]
+
+ /** The constructor/deconstructor for `This` instances. */
+ val This: ThisExtractor
+
+ /** An extractor class to create and pattern match with syntax `This(qual)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * qual.this
+ *
+ * The symbol of a This is the class to which the this refers.
+ * For instance in C.this, it would be C.
+ *
+ * If `mix` is empty, then ???
+ */
+ abstract class ThisExtractor {
+ def apply(qual: TypeName): This
+ def unapply(this_ : This): Option[TypeName]
+ }
/** The API that all thises support */
trait ThisApi extends TermTreeApi with SymTreeApi { this: This =>
val qual: TypeName
}
- override type Select >: Null <: RefTree with SelectApi
+ /** Designator <qualifier> . <name> */
+ type Select >: Null <: RefTree with SelectApi
+
+ /** A tag that preserves the identity of the `Select` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SelectTag: ClassTag[Select]
+
+ /** The constructor/deconstructor for `Select` instances. */
+ val Select: SelectExtractor
+
+ /** An extractor class to create and pattern match with syntax `Select(qual, name)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * qualifier.selector
+ */
+ abstract class SelectExtractor {
+ def apply(qualifier: Tree, name: Name): Select
+ def unapply(select: Select): Option[(Tree, Name)]
+ }
/** The API that all selects support */
trait SelectApi extends RefTreeApi { this: Select =>
@@ -439,28 +1391,132 @@ trait Trees extends base.Trees { self: Universe =>
val name: Name
}
- override type Ident >: Null <: RefTree with IdentApi
+ /** Identifier <name> */
+ type Ident >: Null <: RefTree with IdentApi
+
+ /** A tag that preserves the identity of the `Ident` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val IdentTag: ClassTag[Ident]
+
+ /** The constructor/deconstructor for `Ident` instances. */
+ val Ident: IdentExtractor
+
+ /** An extractor class to create and pattern match with syntax `Ident(qual, name)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * name
+ *
+ * Type checker converts idents that refer to enclosing fields or methods to selects.
+ * For example, name ==> this.name
+ */
+ abstract class IdentExtractor {
+ def apply(name: Name): Ident
+ def unapply(ident: Ident): Option[Name]
+ }
/** The API that all idents support */
trait IdentApi extends RefTreeApi { this: Ident =>
val name: Name
}
- override type ReferenceToBoxed >: Null <: TermTree with ReferenceToBoxedApi
+ /** Marks underlying reference to id as boxed.
+ * @pre id must refer to a captured variable
+ * A reference such marked will refer to the boxed entity, no dereferencing
+ * with `.elem` is done on it.
+ * This tree node can be emitted by macros such as reify that call referenceCapturedVariable.
+ * It is eliminated in LambdaLift, where the boxing conversion takes place.
+ */
+ type ReferenceToBoxed >: Null <: TermTree with ReferenceToBoxedApi
+
+ /** A tag that preserves the identity of the `ReferenceToBoxed` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ReferenceToBoxedTag: ClassTag[ReferenceToBoxed]
+
+ /** The constructor/deconstructor for `ReferenceToBoxed` instances. */
+ val ReferenceToBoxed: ReferenceToBoxedExtractor
+
+ /** An extractor class to create and pattern match with syntax `ReferenceToBoxed(ident)`.
+ * This AST node does not have direct correspondence to Scala code,
+ * and is emitted by macros to reference capture vars directly without going through `elem`.
+ *
+ * For example:
+ *
+ * var x = ...
+ * fun { x }
+ *
+ * Will emit:
+ *
+ * Ident(x)
+ *
+ * Which gets transformed to:
+ *
+ * Select(Ident(x), "elem")
+ *
+ * If `ReferenceToBoxed` were used instead of Ident, no transformation would be performed.
+ */
+ abstract class ReferenceToBoxedExtractor {
+ def apply(ident: Ident): ReferenceToBoxed
+ def unapply(referenceToBoxed: ReferenceToBoxed): Option[Ident]
+ }
/** The API that all references support */
trait ReferenceToBoxedApi extends TermTreeApi { this: ReferenceToBoxed =>
val ident: Tree
}
- override type Literal >: Null <: TermTree with LiteralApi
+ /** Literal */
+ type Literal >: Null <: TermTree with LiteralApi
+
+ /** A tag that preserves the identity of the `Literal` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val LiteralTag: ClassTag[Literal]
+
+ /** The constructor/deconstructor for `Literal` instances. */
+ val Literal: LiteralExtractor
+
+ /** An extractor class to create and pattern match with syntax `Literal(value)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * value
+ */
+ abstract class LiteralExtractor {
+ def apply(value: Constant): Literal
+ def unapply(literal: Literal): Option[Constant]
+ }
/** The API that all literals support */
trait LiteralApi extends TermTreeApi { this: Literal =>
val value: Constant
}
- override type Annotated >: Null <: Tree with AnnotatedApi
+ /** A tree that has an annotation attached to it. Only used for annotated types and
+ * annotation ascriptions, annotations on definitions are stored in the Modifiers.
+ * Eliminated by typechecker (typedAnnotated), the annotations are then stored in
+ * an AnnotatedType.
+ */
+ type Annotated >: Null <: AnyRef with Tree with AnnotatedApi
+
+ /** A tag that preserves the identity of the `Annotated` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AnnotatedTag: ClassTag[Annotated]
+
+ /** The constructor/deconstructor for `Annotated` instances. */
+ val Annotated: AnnotatedExtractor
+
+ /** An extractor class to create and pattern match with syntax `Annotated(annot, arg)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * arg @annot // for types
+ * arg: @annot // for exprs
+ */
+ abstract class AnnotatedExtractor {
+ def apply(annot: Tree, arg: Tree): Annotated
+ def unapply(annotated: Annotated): Option[(Tree, Tree)]
+ }
/** The API that all annotateds support */
trait AnnotatedApi extends TreeApi { this: Annotated =>
@@ -468,14 +1524,55 @@ trait Trees extends base.Trees { self: Universe =>
val arg: Tree
}
- override type SingletonTypeTree >: Null <: TypTree with SingletonTypeTreeApi
+ /** Singleton type, eliminated by RefCheck */
+ type SingletonTypeTree >: Null <: TypTree with SingletonTypeTreeApi
+
+ /** A tag that preserves the identity of the `SingletonTypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SingletonTypeTreeTag: ClassTag[SingletonTypeTree]
+
+ /** The constructor/deconstructor for `SingletonTypeTree` instances. */
+ val SingletonTypeTree: SingletonTypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `SingletonTypeTree(ref)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * ref.type
+ */
+ abstract class SingletonTypeTreeExtractor {
+ def apply(ref: Tree): SingletonTypeTree
+ def unapply(singletonTypeTree: SingletonTypeTree): Option[Tree]
+ }
/** The API that all singleton type trees support */
trait SingletonTypeTreeApi extends TypTreeApi { this: SingletonTypeTree =>
val ref: Tree
}
- override type SelectFromTypeTree >: Null <: TypTree with RefTree with SelectFromTypeTreeApi
+ /** Type selection <qualifier> # <name>, eliminated by RefCheck */
+ // [Eugene++] don't see why we need it, when we have Select
+ type SelectFromTypeTree >: Null <: TypTree with RefTree with SelectFromTypeTreeApi
+
+ /** A tag that preserves the identity of the `SelectFromTypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SelectFromTypeTreeTag: ClassTag[SelectFromTypeTree]
+
+ /** The constructor/deconstructor for `SelectFromTypeTree` instances. */
+ val SelectFromTypeTree: SelectFromTypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `SelectFromTypeTree(qualifier, name)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * qualifier # selector
+ *
+ * Note: a path-dependent type p.T is expressed as p.type # T
+ */
+ abstract class SelectFromTypeTreeExtractor {
+ def apply(qualifier: Tree, name: TypeName): SelectFromTypeTree
+ def unapply(selectFromTypeTree: SelectFromTypeTree): Option[(Tree, TypeName)]
+ }
/** The API that all selects from type trees support */
trait SelectFromTypeTreeApi extends TypTreeApi with RefTreeApi { this: SelectFromTypeTree =>
@@ -483,14 +1580,52 @@ trait Trees extends base.Trees { self: Universe =>
val name: TypeName
}
- override type CompoundTypeTree >: Null <: TypTree with CompoundTypeTreeApi
+ /** Intersection type <parent1> with ... with <parentN> { <decls> }, eliminated by RefCheck */
+ type CompoundTypeTree >: Null <: TypTree with CompoundTypeTreeApi
+
+ /** A tag that preserves the identity of the `CompoundTypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val CompoundTypeTreeTag: ClassTag[CompoundTypeTree]
+
+ /** The constructor/deconstructor for `CompoundTypeTree` instances. */
+ val CompoundTypeTree: CompoundTypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `CompoundTypeTree(templ)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * parent1 with ... with parentN { refinement }
+ */
+ abstract class CompoundTypeTreeExtractor {
+ def apply(templ: Template): CompoundTypeTree
+ def unapply(compoundTypeTree: CompoundTypeTree): Option[Template]
+ }
/** The API that all compound type trees support */
trait CompoundTypeTreeApi extends TypTreeApi { this: CompoundTypeTree =>
val templ: Template
}
- override type AppliedTypeTree >: Null <: TypTree with AppliedTypeTreeApi
+ /** Applied type <tpt> [ <args> ], eliminated by RefCheck */
+ type AppliedTypeTree >: Null <: TypTree with AppliedTypeTreeApi
+
+ /** A tag that preserves the identity of the `AppliedTypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AppliedTypeTreeTag: ClassTag[AppliedTypeTree]
+
+ /** The constructor/deconstructor for `AppliedTypeTree` instances. */
+ val AppliedTypeTree: AppliedTypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `AppliedTypeTree(tpt, args)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * tpt[args]
+ */
+ abstract class AppliedTypeTreeExtractor {
+ def apply(tpt: Tree, args: List[Tree]): AppliedTypeTree
+ def unapply(appliedTypeTree: AppliedTypeTree): Option[(Tree, List[Tree])]
+ }
/** The API that all applied type trees support */
trait AppliedTypeTreeApi extends TypTreeApi { this: AppliedTypeTree =>
@@ -498,7 +1633,26 @@ trait Trees extends base.Trees { self: Universe =>
val args: List[Tree]
}
- override type TypeBoundsTree >: Null <: TypTree with TypeBoundsTreeApi
+ /** Document me! */
+ type TypeBoundsTree >: Null <: TypTree with TypeBoundsTreeApi
+
+ /** A tag that preserves the identity of the `TypeBoundsTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeBoundsTreeTag: ClassTag[TypeBoundsTree]
+
+ /** The constructor/deconstructor for `TypeBoundsTree` instances. */
+ val TypeBoundsTree: TypeBoundsTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeBoundsTree(lo, hi)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * >: lo <: hi
+ */
+ abstract class TypeBoundsTreeExtractor {
+ def apply(lo: Tree, hi: Tree): TypeBoundsTree
+ def unapply(typeBoundsTree: TypeBoundsTree): Option[(Tree, Tree)]
+ }
/** The API that all type bound trees support */
trait TypeBoundsTreeApi extends TypTreeApi { this: TypeBoundsTree =>
@@ -506,7 +1660,26 @@ trait Trees extends base.Trees { self: Universe =>
val hi: Tree
}
- override type ExistentialTypeTree >: Null <: TypTree with ExistentialTypeTreeApi
+ /** Document me! */
+ type ExistentialTypeTree >: Null <: TypTree with ExistentialTypeTreeApi
+
+ /** A tag that preserves the identity of the `ExistentialTypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ExistentialTypeTreeTag: ClassTag[ExistentialTypeTree]
+
+ /** The constructor/deconstructor for `ExistentialTypeTree` instances. */
+ val ExistentialTypeTree: ExistentialTypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `ExistentialTypeTree(tpt, whereClauses)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * tpt forSome { whereClauses }
+ */
+ abstract class ExistentialTypeTreeExtractor {
+ def apply(tpt: Tree, whereClauses: List[Tree]): ExistentialTypeTree
+ def unapply(existentialTypeTree: ExistentialTypeTree): Option[(Tree, List[Tree])]
+ }
/** The API that all existential type trees support */
trait ExistentialTypeTreeApi extends TypTreeApi { this: ExistentialTypeTree =>
@@ -514,7 +1687,29 @@ trait Trees extends base.Trees { self: Universe =>
val whereClauses: List[Tree]
}
- override type TypeTree >: Null <: TypTree with TypeTreeApi
+ /** A synthetic tree holding an arbitrary type. Not to be confused with
+ * with TypTree, the trait for trees that are only used for type trees.
+ * TypeTree's are inserted in several places, but most notably in
+ * `RefCheck`, where the arbitrary type trees are all replaced by
+ * TypeTree's. */
+ type TypeTree >: Null <: TypTree with TypeTreeApi
+
+ /** A tag that preserves the identity of the `TypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeTreeTag: ClassTag[TypeTree]
+
+ /** The constructor/deconstructor for `TypeTree` instances. */
+ val TypeTree: TypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeTree()`.
+ * This AST node does not have direct correspondence to Scala code,
+ * and is emitted by everywhere when we want to wrap a `Type` in a `Tree`.
+ */
+ abstract class TypeTreeExtractor {
+ def apply(): TypeTree
+ def unapply(typeTree: TypeTree): Boolean
+ }
/** The API that all type trees support */
trait TypeTreeApi extends TypTreeApi { this: TypeTree =>
@@ -528,6 +1723,83 @@ trait Trees extends base.Trees { self: Universe =>
*/
val emptyValDef: ValDef
+// ---------------------- factories ----------------------------------------------
+
+ /** @param sym the class symbol
+ * @param impl the implementation template
+ */
+ def ClassDef(sym: Symbol, impl: Template): ClassDef
+
+ /**
+ * @param sym the class symbol
+ * @param impl the implementation template
+ */
+ def ModuleDef(sym: Symbol, impl: Template): ModuleDef
+
+ def ValDef(sym: Symbol, rhs: Tree): ValDef
+
+ def ValDef(sym: Symbol): ValDef
+
+ def DefDef(sym: Symbol, mods: Modifiers, vparamss: List[List[ValDef]], rhs: Tree): DefDef
+
+ def DefDef(sym: Symbol, vparamss: List[List[ValDef]], rhs: Tree): DefDef
+
+ def DefDef(sym: Symbol, mods: Modifiers, rhs: Tree): DefDef
+
+ def DefDef(sym: Symbol, rhs: Tree): DefDef
+
+ def DefDef(sym: Symbol, rhs: List[List[Symbol]] => Tree): DefDef
+
+ /** A TypeDef node which defines given `sym` with given tight hand side `rhs`. */
+ def TypeDef(sym: Symbol, rhs: Tree): TypeDef
+
+ /** A TypeDef node which defines abstract type or type parameter for given `sym` */
+ def TypeDef(sym: Symbol): TypeDef
+
+ def LabelDef(sym: Symbol, params: List[Symbol], rhs: Tree): LabelDef
+
+ /** Block factory that flattens directly nested blocks.
+ */
+ def Block(stats: Tree*): Block
+
+ /** casedef shorthand */
+ def CaseDef(pat: Tree, body: Tree): CaseDef
+
+ def Bind(sym: Symbol, body: Tree): Bind
+
+ def Try(body: Tree, cases: (Tree, Tree)*): Try
+
+ def Throw(tpe: Type, args: Tree*): Throw
+
+ /** Factory method for object creation `new tpt(args_1)...(args_n)`
+ * A `New(t, as)` is expanded to: `(new t).<init>(as)`
+ */
+ def New(tpt: Tree, argss: List[List[Tree]]): Tree
+
+ /** 0-1 argument list new, based on a type.
+ */
+ def New(tpe: Type, args: Tree*): Tree
+
+ def New(sym: Symbol, args: Tree*): Tree
+
+ def Apply(sym: Symbol, args: Tree*): Tree
+
+ def ApplyConstructor(tpt: Tree, args: List[Tree]): Tree
+
+ def Super(sym: Symbol, mix: TypeName): Tree
+
+ def This(sym: Symbol): Tree
+
+ def Select(qualifier: Tree, name: String): Select
+
+ def Select(qualifier: Tree, sym: Symbol): Select
+
+ def Ident(name: String): Ident
+
+ def Ident(sym: Symbol): Ident
+
+ def TypeTree(tp: Type): TypeTree
+
// ---------------------- copying ------------------------------------------------
/** The standard (lazy) tree copier
@@ -673,9 +1945,35 @@ trait Trees extends base.Trees { self: Universe =>
protected def xtransform(transformer: Transformer, tree: Tree): Tree = throw new MatchError(tree)
- type Modifiers >: Null <: ModifiersApi
- abstract class ModifiersApi extends ModifiersBase
+ /** ... */
+ type Modifiers >: Null <: AnyRef with ModifiersApi
-}
+ /** A tag that preserves the identity of the `Modifiers` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ModifiersTag: ClassTag[Modifiers]
+
+ /** ... */
+ abstract class ModifiersApi {
+ def flags: FlagSet // default: NoFlags
+ def hasFlag(flag: FlagSet): Boolean
+ def privateWithin: Name // default: EmptyTypeName
+ def annotations: List[Tree] // default: List()
+ def mapAnnotations(f: List[Tree] => List[Tree]): Modifiers =
+ Modifiers(flags, privateWithin, f(annotations))
+ }
+
+ val Modifiers: ModifiersCreator
+ abstract class ModifiersCreator {
+ def apply(): Modifiers = Modifiers(NoFlags, EmptyTypeName, List())
+ def apply(flags: FlagSet, privateWithin: Name, annotations: List[Tree]): Modifiers
+ }
+
+ def Modifiers(flags: FlagSet, privateWithin: Name): Modifiers = Modifiers(flags, privateWithin, List())
+ def Modifiers(flags: FlagSet): Modifiers = Modifiers(flags, EmptyTypeName)
+
+ /** ... */
+ lazy val NoMods = Modifiers()
+}
diff --git a/src/library/scala/reflect/base/TypeCreator.scala b/src/reflect/scala/reflect/api/TypeCreator.scala
index 0260fe1410..cc6d38c548 100644
--- a/src/library/scala/reflect/base/TypeCreator.scala
+++ b/src/reflect/scala/reflect/api/TypeCreator.scala
@@ -1,5 +1,5 @@
package scala.reflect
-package base
+package api
/** A mirror-aware factory for types.
*
diff --git a/src/library/scala/reflect/base/TypeTags.scala b/src/reflect/scala/reflect/api/TypeTags.scala
index db9fa95553..a7e58d2bcb 100644
--- a/src/library/scala/reflect/base/TypeTags.scala
+++ b/src/reflect/scala/reflect/api/TypeTags.scala
@@ -5,7 +5,7 @@
package scala
package reflect
-package base
+package api
import java.lang.{ Class => jClass }
import scala.language.implicitConversions
@@ -19,15 +19,15 @@ import scala.language.implicitConversions
*/
/**
* A type tag encapsulates a representation of type T.
- *
+ *
* Type tags replace the pre-2.10 concept of a [[scala.reflect.Manifest]] and are integrated with reflection.
*
* === Overview and examples ===
*
* Type tags are organized in a hierarchy of three classes:
- * [[scala.reflect.ClassTag]], [[scala.reflect.base.Universe#TypeTag]] and [[scala.reflect.base.Universe#WeakTypeTag]].
- *
- * @see [[scala.reflect.ClassTag]], [[scala.reflect.base.Universe#TypeTag]], [[scala.reflect.base.Universe#WeakTypeTag]]
+ * [[scala.reflect.ClassTag]], [[scala.reflect.api.Universe#TypeTag]] and [[scala.reflect.api.Universe#WeakTypeTag]].
+ *
+ * @see [[scala.reflect.ClassTag]], [[scala.reflect.api.Universe#TypeTag]], [[scala.reflect.api.Universe#WeakTypeTag]]
*
* Examples:
* {{{
@@ -72,17 +72,17 @@ import scala.language.implicitConversions
* }}}
*
*
- * [[scala.reflect.base.Universe#TypeTag]] and [[scala.reflect.base.Universe#WeakTypeTag]] are path dependent on their universe.
+ * [[scala.reflect.api.Universe#TypeTag]] and [[scala.reflect.api.Universe#WeakTypeTag]] are path dependent on their universe.
*
* The default universe is [[scala.reflect.runtime.universe]]
- *
+ *
* Type tags can be migrated to another universe given the corresponding mirror using
*
* {{{
* tag.in( other_mirror )
* }}}
- *
- * See [[scala.reflect.base.TypeTags#WeakTypeTag.in]]
+ *
+ * See [[scala.reflect.api.TypeTags#WeakTypeTag.in]]
*
* === WeakTypeTag vs TypeTag ===
*
@@ -98,9 +98,9 @@ import scala.language.implicitConversions
* def apply[T: WeakTypeTag](name: String, x: T): NamedParam = new Typed[T](name, x)
* }
* }}}
- *
+ *
* This fragment of the Scala REPL implementation defines a `bind` function that carries a named value along with its type
- * into the heart of the REPL. Using a [[scala.reflect.base.Universe#WeakTypeTag]] here is reasonable, because it is desirable
+ * into the heart of the REPL. Using a [[scala.reflect.api.Universe#WeakTypeTag]] here is reasonable, because it is desirable
* to work with all types, even if they are type parameters or abstract type members.
*
* However if any of the three `WeakTypeTag` context bounds is omitted, the resulting code will be incorrect,
@@ -147,9 +147,9 @@ trait TypeTags { self: Universe =>
* they are used to embed the concrete types into the WeakTypeTag. Otherwise the WeakTypeTag will contain a reference
* to an abstract type. This behavior can be useful, when one expects T to be possibly partially abstract, but
* requires special care to handle this case. If however T is expected to be fully known, use
- * [[scala.reflect.base.Universe#TypeTag]] instead, which statically guarantees this property.
+ * [[scala.reflect.api.Universe#TypeTag]] instead, which statically guarantees this property.
*
- * @see [[scala.reflect.base.TypeTags]]
+ * @see [[scala.reflect.api.TypeTags]]
*/
@annotation.implicitNotFound(msg = "No WeakTypeTag available for ${T}")
trait WeakTypeTag[T] extends Equals with Serializable {
@@ -159,10 +159,10 @@ trait TypeTags { self: Universe =>
val mirror: Mirror
/**
* Migrates type tag to another universe.
- *
+ *
* Type tags are path dependent on their universe. This methods allows migration
* given the mirror corresponding to the target universe.
- *
+ *
* Migration means that all symbolic references to classes/objects/packages in the expression
* will be re-resolved within the new mirror (typically using that mirror's classloader).
*/
@@ -234,11 +234,11 @@ trait TypeTags { self: Universe =>
}
/**
- * A `TypeTag` is a [[scala.reflect.base.Universe#WeakTypeTag]] with the additional
+ * A `TypeTag` is a [[scala.reflect.api.Universe#WeakTypeTag]] with the additional
* static guarantee that all type references are concrete, i.e. it does <b>not</b> contain any references to
* unresolved type parameters or abstract types.
*
- * @see [[scala.reflect.base.TypeTags]]
+ * @see [[scala.reflect.api.TypeTags]]
*/
@annotation.implicitNotFound(msg = "No TypeTag available for ${T}")
trait TypeTag[T] extends WeakTypeTag[T] with Equals with Serializable {
@@ -347,9 +347,8 @@ private[scala] class SerializedTypeTag(var tpec: TypeCreator, var concrete: Bool
}
private def readResolve(): AnyRef = {
- import scala.reflect.basis._
+ import scala.reflect.runtime.universe._
if (concrete) TypeTag(rootMirror, tpec)
else WeakTypeTag(rootMirror, tpec)
}
}
- \ No newline at end of file
diff --git a/src/reflect/scala/reflect/api/Types.scala b/src/reflect/scala/reflect/api/Types.scala
index 1c79de02c3..af70c9e761 100644
--- a/src/reflect/scala/reflect/api/Types.scala
+++ b/src/reflect/scala/reflect/api/Types.scala
@@ -1,13 +1,39 @@
package scala.reflect
package api
-trait Types extends base.Types { self: Universe =>
+/**
+ * Defines the type hierachy for types.
+ *
+ * Note: Because of implementation details, some type factories have return type `Type`
+ * instead of a more precise type.
+ *
+ * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
+ */
+trait Types { self: Universe =>
+
+ /** The type of Scala types, and also Scala type signatures.
+ * (No difference is internally made between the two).
+ */
+ type Type >: Null <: TypeApi
- override type Type >: Null <: TypeApi
+ /** A tag that preserves the identity of the `Type` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeTagg: ClassTag[Type]
- /** The extended API of types
+ /** This constant is used as a special value that indicates that no meaningful type exists.
*/
- abstract class TypeApi extends TypeBase {
+ val NoType: Type
+
+ /** This constant is used as a special value denoting the empty prefix in a path dependent type.
+ * For instance `x.type` is represented as `SingleType(NoPrefix, <x>)`, where `<x>` stands for
+ * the symbol for `x`.
+ */
+ val NoPrefix: Type
+
+ /** The API of types
+ */
+ abstract class TypeApi {
/** The term symbol associated with the type, or `NoSymbol` for types
* that do not refer to a term symbol.
*/
@@ -152,42 +178,177 @@ trait Types extends base.Types { self: Universe =>
def contains(sym: Symbol): Boolean
}
- /** .. */
- override type ThisType >: Null <: SingletonType with ThisTypeApi
+ /** The type of Scala singleton types, i.e., types that are inhabited
+ * by only one nun-null value. These include types of the forms
+ * {{{
+ * C.this.type
+ * C.super.type
+ * x.type
+ * }}}
+ * as well as [[ConstantType constant types]].
+ */
+ type SingletonType >: Null <: Type
+
+ /** A tag that preserves the identity of the `SingletonType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SingletonTypeTag: ClassTag[SingletonType]
+
+ /** A singleton type that describes types of the form on the left with the
+ * corresponding `ThisType` representation to the right:
+ * {{{
+ * C.this.type ThisType(C)
+ * }}}
+ */
+ type ThisType >: Null <: AnyRef with SingletonType with ThisTypeApi
+
+ /** A tag that preserves the identity of the `ThisType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ThisTypeTag: ClassTag[ThisType]
+
+ /** The constructor/deconstructor for `ThisType` instances. */
+ val ThisType: ThisTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `ThisType(sym)`
+ * where `sym` is the class prefix of the this type.
+ */
+ abstract class ThisTypeExtractor {
+ /**
+ * Creates a ThisType from the given class symbol.
+ */
+ def apply(sym: Symbol): Type
+ def unapply(tpe: ThisType): Option[Symbol]
+ }
/** The API that all this types support */
trait ThisTypeApi extends TypeApi { this: ThisType =>
val sym: Symbol
}
- /** .. */
- override type SingleType >: Null <: SingletonType with SingleTypeApi
+ /** The `SingleType` type describes types of any of the forms on the left,
+ * with their TypeRef representations to the right.
+ * {{{
+ * (T # x).type SingleType(T, x)
+ * p.x.type SingleType(p.type, x)
+ * x.type SingleType(NoPrefix, x)
+ * }}}
+ */
+ type SingleType >: Null <: AnyRef with SingletonType with SingleTypeApi
+
+ /** A tag that preserves the identity of the `SingleType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SingleTypeTag: ClassTag[SingleType]
+
+ /** The constructor/deconstructor for `SingleType` instances. */
+ val SingleType: SingleTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `SingleType(pre, sym)`
+ * Here, `pre` is the prefix of the single-type, and `sym` is the stable value symbol
+ * referred to by the single-type.
+ */
+ abstract class SingleTypeExtractor {
+ def apply(pre: Type, sym: Symbol): Type // not SingleTypebecause of implementation details
+ def unapply(tpe: SingleType): Option[(Type, Symbol)]
+ }
/** The API that all single types support */
trait SingleTypeApi extends TypeApi { this: SingleType =>
val pre: Type
val sym: Symbol
}
+ /** The `SuperType` type is not directly written, but arises when `C.super` is used
+ * as a prefix in a `TypeRef` or `SingleType`. It's internal presentation is
+ * {{{
+ * SuperType(thistpe, supertpe)
+ * }}}
+ * Here, `thistpe` is the type of the corresponding this-type. For instance,
+ * in the type arising from C.super, the `thistpe` part would be `ThisType(C)`.
+ * `supertpe` is the type of the super class referred to by the `super`.
+ */
+ type SuperType >: Null <: AnyRef with SingletonType with SuperTypeApi
- /** .. */
- override type SuperType >: Null <: SingletonType with SuperTypeApi
+ /** A tag that preserves the identity of the `SuperType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SuperTypeTag: ClassTag[SuperType]
+
+ /** The constructor/deconstructor for `SuperType` instances. */
+ val SuperType: SuperTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `SingleType(thistpe, supertpe)`
+ */
+ abstract class SuperTypeExtractor {
+ def apply(thistpe: Type, supertpe: Type): Type // not SuperTypebecause of implementation details
+ def unapply(tpe: SuperType): Option[(Type, Type)]
+ }
/** The API that all super types support */
trait SuperTypeApi extends TypeApi { this: SuperType =>
val thistpe: Type
val supertpe: Type
}
+ /** The `ConstantType` type is not directly written in user programs, but arises as the type of a constant.
+ * The REPL expresses constant types like `Int(11)`. Here are some constants with their types:
+ * {{{
+ * 1 ConstantType(Constant(1))
+ * "abc" ConstantType(Constant("abc"))
+ * }}}
+ */
+ type ConstantType >: Null <: AnyRef with SingletonType with ConstantTypeApi
+
+ /** A tag that preserves the identity of the `ConstantType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ConstantTypeTag: ClassTag[ConstantType]
- /** .. */
- override type ConstantType >: Null <: SingletonType with ConstantTypeApi
+ /** The constructor/deconstructor for `ConstantType` instances. */
+ val ConstantType: ConstantTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `ConstantType(constant)`
+ * Here, `constant` is the constant value represented by the type.
+ */
+ abstract class ConstantTypeExtractor {
+ def apply(value: Constant): ConstantType
+ def unapply(tpe: ConstantType): Option[Constant]
+ }
/** The API that all constant types support */
trait ConstantTypeApi extends TypeApi { this: ConstantType =>
val value: Constant
}
- /** .. */
- override type TypeRef >: Null <: Type with TypeRefApi
+ /** The `TypeRef` type describes types of any of the forms on the left,
+ * with their TypeRef representations to the right.
+ * {{{
+ * T # C[T_1, ..., T_n] TypeRef(T, C, List(T_1, ..., T_n))
+ * p.C[T_1, ..., T_n] TypeRef(p.type, C, List(T_1, ..., T_n))
+ * C[T_1, ..., T_n] TypeRef(NoPrefix, C, List(T_1, ..., T_n))
+ * T # C TypeRef(T, C, Nil)
+ * p.C TypeRef(p.type, C, Nil)
+ * C TypeRef(NoPrefix, C, Nil)
+ * }}}
+ */
+ type TypeRef >: Null <: AnyRef with Type with TypeRefApi
+
+ /** A tag that preserves the identity of the `TypeRef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeRefTag: ClassTag[TypeRef]
+
+ /** The constructor/deconstructor for `TypeRef` instances. */
+ val TypeRef: TypeRefExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeRef(pre, sym, args)`
+ * Here, `pre` is the prefix of the type reference, `sym` is the symbol
+ * referred to by the type reference, and `args` is a possible empty list of
+ * type argumenrts.
+ */
+ abstract class TypeRefExtractor {
+ def apply(pre: Type, sym: Symbol, args: List[Type]): Type // not TypeRefbecause of implementation details
+ def unapply(tpe: TypeRef): Option[(Type, Symbol, List[Type])]
+ }
/** The API that all type refs support */
trait TypeRefApi extends TypeApi { this: TypeRef =>
@@ -196,8 +357,46 @@ trait Types extends base.Types { self: Universe =>
val args: List[Type]
}
- /** .. */
- override type RefinedType >: Null <: CompoundType with RefinedTypeApi
+ /** A subtype of Type representing refined types as well as `ClassInfo` signatures.
+ */
+ type CompoundType >: Null <: AnyRef with Type
+
+ /** A tag that preserves the identity of the `CompoundType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val CompoundTypeTag: ClassTag[CompoundType]
+
+ /** The `RefinedType` type defines types of any of the forms on the left,
+ * with their RefinedType representations to the right.
+ * {{{
+ * P_1 with ... with P_m { D_1; ...; D_n} RefinedType(List(P_1, ..., P_m), Scope(D_1, ..., D_n))
+ * P_1 with ... with P_m RefinedType(List(P_1, ..., P_m), Scope())
+ * { D_1; ...; D_n} RefinedType(List(AnyRef), Scope(D_1, ..., D_n))
+ * }}}
+ */
+ type RefinedType >: Null <: AnyRef with CompoundType with RefinedTypeApi
+
+ /** A tag that preserves the identity of the `RefinedType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val RefinedTypeTag: ClassTag[RefinedType]
+
+ /** The constructor/deconstructor for `RefinedType` instances. */
+ val RefinedType: RefinedTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `RefinedType(parents, decls)`
+ * Here, `parents` is the list of parent types of the class, and `decls` is the scope
+ * containing all declarations in the class.
+ */
+ abstract class RefinedTypeExtractor {
+ def apply(parents: List[Type], decls: Scope): RefinedType
+
+ /** An alternative constructor that passes in the synthetic classs symbol
+ * that backs the refined type. (Normally, a fresh class symbol is created automatically).
+ */
+ def apply(parents: List[Type], decls: Scope, clazz: Symbol): RefinedType
+ def unapply(tpe: RefinedType): Option[(List[Type], Scope)]
+ }
/** The API that all refined types support */
trait RefinedTypeApi extends TypeApi { this: RefinedType =>
@@ -205,8 +404,35 @@ trait Types extends base.Types { self: Universe =>
val decls: Scope
}
- /** .. */
- override type ClassInfoType >: Null <: CompoundType with ClassInfoTypeApi
+ /** The `ClassInfo` type signature is used to define parents and declarations
+ * of classes, traits, and objects. If a class, trait, or object C is declared like this
+ * {{{
+ * C extends P_1 with ... with P_m { D_1; ...; D_n}
+ * }}}
+ * its `ClassInfo` type has the following form:
+ * {{{
+ * ClassInfo(List(P_1, ..., P_m), Scope(D_1, ..., D_n), C)
+ * }}}
+ */
+ type ClassInfoType >: Null <: AnyRef with CompoundType with ClassInfoTypeApi
+
+ /** A tag that preserves the identity of the `ClassInfoType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ClassInfoTypeTag: ClassTag[ClassInfoType]
+
+ /** The constructor/deconstructor for `ClassInfoType` instances. */
+ val ClassInfoType: ClassInfoTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `ClassInfo(parents, decls, clazz)`
+ * Here, `parents` is the list of parent types of the class, `decls` is the scope
+ * containing all declarations in the class, and `clazz` is the symbol of the class
+ * itself.
+ */
+ abstract class ClassInfoTypeExtractor {
+ def apply(parents: List[Type], decls: Scope, typeSymbol: Symbol): ClassInfoType
+ def unapply(tpe: ClassInfoType): Option[(List[Type], Scope, Symbol)]
+ }
/** The API that all class info types support */
trait ClassInfoTypeApi extends TypeApi { this: ClassInfoType =>
@@ -215,8 +441,36 @@ trait Types extends base.Types { self: Universe =>
val typeSymbol: Symbol
}
- /** .. */
- override type MethodType >: Null <: Type with MethodTypeApi
+ /** The `MethodType` type signature is used to indicate parameters and result type of a method
+ */
+ type MethodType >: Null <: AnyRef with Type with MethodTypeApi
+
+ /** A tag that preserves the identity of the `MethodType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val MethodTypeTag: ClassTag[MethodType]
+
+ /** The constructor/deconstructor for `MethodType` instances. */
+ val MethodType: MethodTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `MethodType(params, respte)`
+ * Here, `params` is a potentially empty list of parameter symbols of the method,
+ * and `restpe` is the result type of the method. If the method is curried, `restpe` would
+ * be another `MethodType`.
+ * Note: `MethodType(Nil, Int)` would be the type of a method defined with an empty parameter list.
+ * {{{
+ * def f(): Int
+ * }}}
+ * If the method is completely parameterless, as in
+ * {{{
+ * def f: Int
+ * }}}
+ * its type is a `NullaryMethodType`.
+ */
+ abstract class MethodTypeExtractor {
+ def apply(params: List[Symbol], resultType: Type): MethodType
+ def unapply(tpe: MethodType): Option[(List[Symbol], Type)]
+ }
/** The API that all method types support */
trait MethodTypeApi extends TypeApi { this: MethodType =>
@@ -224,16 +478,53 @@ trait Types extends base.Types { self: Universe =>
val resultType: Type
}
- /** .. */
- override type NullaryMethodType >: Null <: Type with NullaryMethodTypeApi
+ /** The `NullaryMethodType` type signature is used for parameterless methods
+ * with declarations of the form `def foo: T`
+ */
+ type NullaryMethodType >: Null <: AnyRef with Type with NullaryMethodTypeApi
+
+ /** A tag that preserves the identity of the `NullaryMethodType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val NullaryMethodTypeTag: ClassTag[NullaryMethodType]
+
+ /** The constructor/deconstructor for `NullaryMethodType` instances. */
+ val NullaryMethodType: NullaryMethodTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `NullaryMethodType(resultType)`.
+ * Here, `resultType` is the result type of the parameterless method.
+ */
+ abstract class NullaryMethodTypeExtractor {
+ def apply(resultType: Type): NullaryMethodType
+ def unapply(tpe: NullaryMethodType): Option[(Type)]
+ }
/** The API that all nullary method types support */
trait NullaryMethodTypeApi extends TypeApi { this: NullaryMethodType =>
val resultType: Type
}
- /** .. */
- override type PolyType >: Null <: Type with PolyTypeApi
+ /** The `PolyType` type signature is used for polymorphic methods
+ * that have at least one type parameter.
+ */
+ type PolyType >: Null <: AnyRef with Type with PolyTypeApi
+
+ /** A tag that preserves the identity of the `PolyType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val PolyTypeTag: ClassTag[PolyType]
+
+ /** The constructor/deconstructor for `PolyType` instances. */
+ val PolyType: PolyTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `PolyType(typeParams, resultType)`.
+ * Here, `typeParams` are the type parameters of the method and `resultType`
+ * is the type signature following the type parameters.
+ */
+ abstract class PolyTypeExtractor {
+ def apply(typeParams: List[Symbol], resultType: Type): PolyType
+ def unapply(tpe: PolyType): Option[(List[Symbol], Type)]
+ }
/** The API that all polymorphic types support */
trait PolyTypeApi extends TypeApi { this: PolyType =>
@@ -241,8 +532,28 @@ trait Types extends base.Types { self: Universe =>
val resultType: Type
}
- /** .. */
- override type ExistentialType >: Null <: Type with ExistentialTypeApi
+ /** The `ExistentialType` type signature is used for existential types and
+ * wildcard types.
+ */
+ type ExistentialType >: Null <: AnyRef with Type with ExistentialTypeApi
+
+ /** A tag that preserves the identity of the `ExistentialType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ExistentialTypeTag: ClassTag[ExistentialType]
+
+ /** The constructor/deconstructor for `ExistentialType` instances. */
+ val ExistentialType: ExistentialTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax
+ * `ExistentialType(quantified, underlying)`.
+ * Here, `quantified` are the type variables bound by the existential type and `underlying`
+ * is the type that's existentially quantified.
+ */
+ abstract class ExistentialTypeExtractor {
+ def apply(quantified: List[Symbol], underlying: Type): ExistentialType
+ def unapply(tpe: ExistentialType): Option[(List[Symbol], Type)]
+ }
/** The API that all existential types support */
trait ExistentialTypeApi extends TypeApi { this: ExistentialType =>
@@ -250,8 +561,28 @@ trait Types extends base.Types { self: Universe =>
val underlying: Type
}
- /** .. */
- override type AnnotatedType >: Null <: Type with AnnotatedTypeApi
+ /** The `AnnotatedType` type signature is used for annotated types of the
+ * for `<type> @<annotation>`.
+ */
+ type AnnotatedType >: Null <: AnyRef with Type with AnnotatedTypeApi
+
+ /** A tag that preserves the identity of the `AnnotatedType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AnnotatedTypeTag: ClassTag[AnnotatedType]
+
+ /** The constructor/deconstructor for `AnnotatedType` instances. */
+ val AnnotatedType: AnnotatedTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax
+ * `AnnotatedType(annotations, underlying, selfsym)`.
+ * Here, `annotations` are the annotations decorating the underlying type `underlying`.
+ * `selfSym` is a symbol representing the annotated type itself.
+ */
+ abstract class AnnotatedTypeExtractor {
+ def apply(annotations: List[Annotation], underlying: Type, selfsym: Symbol): AnnotatedType
+ def unapply(tpe: AnnotatedType): Option[(List[Annotation], Type, Symbol)]
+ }
/** The API that all annotated types support */
trait AnnotatedTypeApi extends TypeApi { this: AnnotatedType =>
@@ -260,8 +591,34 @@ trait Types extends base.Types { self: Universe =>
val selfsym: Symbol
}
- /** .. */
- override type TypeBounds >: Null <: Type with TypeBoundsApi
+ /** The `TypeBounds` type signature is used to indicate lower and upper type bounds
+ * of type parameters and abstract types. It is not a first-class type.
+ * If an abstract type or type parameter is declared with any of the forms
+ * on the left, its type signature is the TypeBounds type on the right.
+ * {{{
+ * T >: L <: U TypeBounds(L, U)
+ * T >: L TypeBounds(L, Any)
+ * T <: U TypeBounds(Nothing, U)
+ * }}}
+ */
+ type TypeBounds >: Null <: AnyRef with Type with TypeBoundsApi
+
+ /** A tag that preserves the identity of the `TypeBounds` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeBoundsTag: ClassTag[TypeBounds]
+
+ /** The constructor/deconstructor for `TypeBounds` instances. */
+ val TypeBounds: TypeBoundsExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeBound(lower, upper)`
+ * Here, `lower` is the lower bound of the `TypeBounds` pair, and `upper` is
+ * the upper bound.
+ */
+ abstract class TypeBoundsExtractor {
+ def apply(lo: Type, hi: Type): TypeBounds
+ def unapply(tpe: TypeBounds): Option[(Type, Type)]
+ }
/** The API that all type bounds support */
trait TypeBoundsApi extends TypeApi { this: TypeBounds =>
@@ -269,8 +626,38 @@ trait Types extends base.Types { self: Universe =>
val hi: Type
}
- /** .. */
- override type BoundedWildcardType >: Null <: Type with BoundedWildcardTypeApi
+ /** An object representing an unknown type, used during type inference.
+ * If you see WildcardType outside of inference it is almost certainly a bug.
+ */
+ val WildcardType: Type
+
+ /** BoundedWildcardTypes, used only during type inference, are created in
+ * two places:
+ *
+ * 1. If the expected type of an expression is an existential type,
+ * its hidden symbols are replaced with bounded wildcards.
+ * 2. When an implicit conversion is being sought based in part on
+ * the name of a method in the converted type, a HasMethodMatching
+ * type is created: a MethodType with parameters typed as
+ * BoundedWildcardTypes.
+ */
+ type BoundedWildcardType >: Null <: AnyRef with Type with BoundedWildcardTypeApi
+
+ /** A tag that preserves the identity of the `BoundedWildcardType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val BoundedWildcardTypeTag: ClassTag[BoundedWildcardType]
+
+ /** The constructor/deconstructor for `BoundedWildcardType` instances. */
+ val BoundedWildcardType: BoundedWildcardTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `BoundedWildcardTypeExtractor(bounds)`
+ * with `bounds` denoting the type bounds.
+ */
+ abstract class BoundedWildcardTypeExtractor {
+ def apply(bounds: TypeBounds): BoundedWildcardType
+ def unapply(tpe: BoundedWildcardType): Option[TypeBounds]
+ }
/** The API that all this types support */
trait BoundedWildcardTypeApi extends TypeApi { this: BoundedWildcardType =>
diff --git a/src/reflect/scala/reflect/api/Universe.scala b/src/reflect/scala/reflect/api/Universe.scala
index 3165f9abcd..7d0f6cf0d6 100644
--- a/src/reflect/scala/reflect/api/Universe.scala
+++ b/src/reflect/scala/reflect/api/Universe.scala
@@ -1,17 +1,82 @@
package scala.reflect
package api
-abstract class Universe extends base.Universe
- with Symbols
+abstract class Universe extends Symbols
with Types
with FlagSets
+ with Scopes
with Names
with Trees
- with Printers
with Constants
+ with Annotations
with Positions
- with Mirrors
+ with Exprs
+ with TypeTags
+ with TagInterop
with StandardDefinitions
with StandardNames
+ with BuildUtils
+ with Mirrors
+ with Printers
with Importers
- with Annotations
+{
+ /** Produce the abstract syntax tree representing the given Scala expression.
+ *
+ * For example
+ *
+ * {{{
+ * val five = reify{ 5 } // Literal(Constant(5))
+ * reify{ 2 + 4 } // Apply( Select( Literal(Constant(2)), newTermName("$plus")), List( Literal(Constant(4)) ) )
+ * reify{ five.splice + 4 } // Apply( Select( Literal(Constant(5)), newTermName("$plus")), List( Literal(Constant(4)) ) )
+ * }}}
+ *
+ * The produced tree is path dependent on the Universe `reify` was called from.
+ *
+ * Use [[scala.reflect.api.Exprs#Expr.splice]] to embed an existing expression into a reify call. Use [[Expr]] to turn a [[Tree]] into an expression that can be spliced.
+ *
+ * == Further info and implementation details ==
+ *
+ * `reify` is implemented as a macro, which given an expression, generates a tree that when compiled and executed produces the original tree.
+ *
+ * For instance in `reify{ x + 1 }` the macro `reify` receives the abstract syntax tree of `x + 1` as its argument, which is
+ *
+ * {{{
+ * Apply(Select(Ident("x"), "+"), List(Literal(Constant(1))))
+ * }}}
+ *
+ * and returns a tree, which produces the tree above, when compiled and executed. So in other terms, the refiy call expands to something like
+ *
+ * {{{
+ * val $u: u.type = u // where u is a reference to the Universe that calls the reify
+ * $u.Expr[Int]($u.Apply($u.Select($u.Ident($u.newFreeVar("x", <Int>, x), "+"), List($u.Literal($u.Constant(1))))))
+ * }}}
+ *
+ * ------
+ *
+ * Reification performs expression splicing (when processing Expr.splice)
+ * and type splicing (for every type T that has a TypeTag[T] implicit in scope):
+ *
+ * {{{
+ * val two = mirror.reify(2) // Literal(Constant(2))
+ * val four = mirror.reify(two.splice + two.splice) // Apply(Select(two.tree, newTermName("$plus")), List(two.tree))
+ *
+ * def macroImpl[T](c: Context) = {
+ * ...
+ * // T here is just a type parameter, so the tree produced by reify won't be of much use in a macro expansion
+ * // however, if T were annotated with c.WeakTypeTag (which would declare an implicit parameter for macroImpl)
+ * // then reification would substitute T with the TypeTree that was used in a TypeApply of this particular macro invocation
+ * val factory = c.reify{ new Queryable[T] }
+ * ...
+ * }
+ * }}}
+ *
+ * The transformation looks mostly straightforward, but it has its tricky parts:
+ * - Reifier retains symbols and types defined outside the reified tree, however
+ * locally defined entities get erased and replaced with their original trees
+ * - Free variables are detected and wrapped in symbols of the type `FreeTermSymbol` or `FreeTypeSymbol`
+ * - Mutable variables that are accessed from a local function are wrapped in refs
+ */
+ // implementation is hardwired to `scala.reflect.reify.Taggers`
+ // using the mechanism implemented in `scala.tools.reflect.FastTrack`
+ def reify[T](expr: T): Expr[T] = ??? // macro
+} \ No newline at end of file
diff --git a/src/reflect/scala/reflect/api/package.scala b/src/reflect/scala/reflect/api/package.scala
index 5e31071e2d..0b2a43936e 100644
--- a/src/reflect/scala/reflect/api/package.scala
+++ b/src/reflect/scala/reflect/api/package.scala
@@ -1,15 +1,80 @@
package scala.reflect
-package object api {
-
- // type and value aliases for slices of the base Universe cake that are not
- // repeated in api.Universe
- type Scopes = base.Scopes
- type BuildUtils = base.BuildUtils
- type Attachments = base.Attachments
+import scala.reflect.api.{Universe => ApiUniverse}
- type MirrorOf[U <: base.Universe with Singleton] = base.MirrorOf[U]
+/**
+ * The main package of Scala's reflection library.
+ *
+ * The reflection library is structured according to the 'cake pattern'. The main layer
+ * resides in package [[scala.reflect.api]] and defines an interface to the following main types:
+ *
+ * - [[scala.reflect.api.Types#Type Types]] represent types
+ * - [[scala.reflect.api.Symbols#Symbol Symbols]] represent definitions
+ * - [[scala.reflect.api.Trees#Tree Trees]] represent abstract syntax trees
+ * - [[scala.reflect.api.Names#Name Names]] represent term and type names
+ * - [[scala.reflect.api.Annotations#Annotation Annotations]] represent annotations
+ * - [[scala.reflect.api.Positions#Position Positions]] represent source positions of tree nodes
+ * - [[scala.reflect.api.FlagSets#FlagSet FlagSet]] represent sets of flags that apply to symbols and
+ * definition trees
+ * - [[scala.reflect.api.Constants#Constant Constants]] represent compile-time constants.
+ *
+ * Each of these types are defined in their own enclosing traits, which are ultimately all inherited by class
+ * [[scala.reflect.api.Universe Universe]]. The main universe defines a minimal interface to the above types.
+ * Universes that provide additional functionality such as deeper introspection or runtime code generation,
+ * are defined in packages [[scala.reflect.api]] and `scala.tools.reflect`.
+ *
+ * The cake pattern employed here requires to write certain Scala idioms with more indirections that usual.
+ * What follows is a description of these indirections, which will help to navigate the Scaladocs easily.
+ *
+ * For instance, consider the base type of all abstract syntax trees: [[scala.reflect.api.Trees#Tree]].
+ * This type is not a class but is abstract and has an upper bound of [[scala.reflect.api.Trees#TreeApi]],
+ * which is a class defining the minimal base interface for all trees.
+ *
+ * For a more interesting tree type, consider [[scala.reflect.api.Trees#If]] representing if-expressions.
+ * It is defined next to a value `If` of type [[scala.reflect.api.Trees#IfExtractor]].
+ * This value serves as the companion object defining a factory method `apply` and a corresponding `unapply`
+ * for pattern matching.
+ *
+ * {{{
+ * import scala.reflect.runtime.universe._
+ * val cond = reify{ condition }.tree // <- just some tree representing a condition
+ * val body = Literal(Constant(1))
+ * val other = Literal(Constant(2))
+ * val iftree = If(cond,body,other)
+ * }}}
+ *
+ * is equivalent to
+ *
+ * {{{
+ * import scala.reflect.runtime.universe._
+ * val iftree = reify{ if( condition ) 1 else 2 }.tree
+ * }}}
+ *
+ * and can be pattern matched as
+ *
+ * {{{
+ * iftree match { case If(cond,body,other) => ... }
+ * }}}
+ *
+ * Moreover, there is an implicit value [[scala.reflect.api.Trees#IfTag]] of type
+ * `ClassTag[If]` that is used by the Scala compiler so that we can indeed pattern match on `If`:
+ * {{{
+ * iftree match { case _:If => ... }
+ * }}}
+ * Without the given implicit value, this pattern match would raise an "unchecked" warning at compile time
+ * since `If` is an abstract type that gets erased at runtime. See [[scala.reflect.ClassTag]] for details.
+ *
+ * To summarize: each tree type `X` (and similarly for other types such as `Type` or `Symbol`) is represented
+ * by an abstract type `X`, optionally together with a class `XApi` that defines `X`'s' interface.
+ * `X`'s companion object, if it exists, is represented by a value `X` that is of type `XExtractor`.
+ * Moreover, for each type `X`, there is a value `XTag` of type `ClassTag[X]` that allows to pattern match on `X`.
+ */
+package object api {
- private[scala] def materializeWeakTypeTag[T](u: base.Universe): u.WeakTypeTag[T] = ??? // macro
- private[scala] def materializeTypeTag[T](u: base.Universe): u.TypeTag[T] = ??? // macro
-}
+ // anchors for materialization macros emitted during tag materialization in Implicits.scala
+ // implementation is hardwired into `scala.reflect.reify.Taggers`
+ // using the mechanism implemented in `scala.tools.reflect.FastTrack`
+ // todo. once we have implicit macros for tag generation, we can remove these anchors
+ private[scala] def materializeWeakTypeTag[T](u: ApiUniverse): u.WeakTypeTag[T] = ??? // macro
+ private[scala] def materializeTypeTag[T](u: ApiUniverse): u.TypeTag[T] = ??? // macro
+} \ No newline at end of file
diff --git a/src/reflect/scala/reflect/internal/BuildUtils.scala b/src/reflect/scala/reflect/internal/BuildUtils.scala
index f7371f4180..9f41f0336e 100644
--- a/src/reflect/scala/reflect/internal/BuildUtils.scala
+++ b/src/reflect/scala/reflect/internal/BuildUtils.scala
@@ -3,9 +3,9 @@ package internal
import Flags._
-trait BuildUtils extends base.BuildUtils { self: SymbolTable =>
+trait BuildUtils { self: SymbolTable =>
- class BuildImpl extends BuildBase {
+ class BuildImpl extends BuildApi {
def selectType(owner: Symbol, name: String): TypeSymbol =
select(owner, newTypeName(name)).asType
@@ -64,5 +64,5 @@ trait BuildUtils extends base.BuildUtils { self: SymbolTable =>
def setSymbol[T <: Tree](tree: T, sym: Symbol): T = { tree.setSymbol(sym); tree }
}
- val build: BuildBase = new BuildImpl
+ val build: BuildApi = new BuildImpl
}
diff --git a/src/reflect/scala/reflect/internal/Definitions.scala b/src/reflect/scala/reflect/internal/Definitions.scala
index 08cf97673f..2db8c29a63 100644
--- a/src/reflect/scala/reflect/internal/Definitions.scala
+++ b/src/reflect/scala/reflect/internal/Definitions.scala
@@ -10,7 +10,7 @@ import scala.annotation.{ switch, meta }
import scala.collection.{ mutable, immutable }
import Flags._
import PartialFunction._
-import scala.reflect.base.{Universe => BaseUniverse}
+import scala.reflect.api.{Universe => ApiUniverse}
trait Definitions extends api.StandardDefinitions {
self: SymbolTable =>
@@ -484,7 +484,6 @@ trait Definitions extends api.StandardDefinitions {
// scala.reflect
lazy val ReflectPackage = requiredModule[scala.reflect.`package`.type]
- def ReflectBasis = getMemberValue(ReflectPackage, nme.basis)
lazy val ReflectApiPackage = getPackageObjectIfDefined("scala.reflect.api") // defined in scala-reflect.jar, so we need to be careful
lazy val ReflectRuntimePackage = getPackageObjectIfDefined("scala.reflect.runtime") // defined in scala-reflect.jar, so we need to be careful
def ReflectRuntimeUniverse = if (ReflectRuntimePackage != NoSymbol) getMemberValue(ReflectRuntimePackage, nme.universe) else NoSymbol
@@ -497,31 +496,31 @@ trait Definitions extends api.StandardDefinitions {
lazy val OptManifestClass = requiredClass[scala.reflect.OptManifest[_]]
lazy val NoManifest = requiredModule[scala.reflect.NoManifest.type]
- lazy val ExprsClass = requiredClass[scala.reflect.base.Exprs]
- lazy val ExprClass = getMemberClass(ExprsClass, tpnme.Expr)
- def ExprSplice = getMemberMethod(ExprClass, nme.splice)
- def ExprValue = getMemberMethod(ExprClass, nme.value)
- lazy val ExprModule = getMemberModule(ExprsClass, nme.Expr)
-
- lazy val ClassTagModule = requiredModule[scala.reflect.ClassTag[_]]
- lazy val ClassTagClass = requiredClass[scala.reflect.ClassTag[_]]
- lazy val TypeTagsClass = requiredClass[scala.reflect.base.TypeTags]
- lazy val WeakTypeTagClass = getMemberClass(TypeTagsClass, tpnme.WeakTypeTag)
- lazy val WeakTypeTagModule = getMemberModule(TypeTagsClass, nme.WeakTypeTag)
- lazy val TypeTagClass = getMemberClass(TypeTagsClass, tpnme.TypeTag)
- lazy val TypeTagModule = getMemberModule(TypeTagsClass, nme.TypeTag)
+ lazy val ExprsClass = getClassIfDefined("scala.reflect.api.Exprs") // defined in scala-reflect.jar, so we need to be careful
+ lazy val ExprClass = if (ExprsClass != NoSymbol) getMemberClass(ExprsClass, tpnme.Expr) else NoSymbol
+ def ExprSplice = if (ExprsClass != NoSymbol) getMemberMethod(ExprClass, nme.splice) else NoSymbol
+ def ExprValue = if (ExprsClass != NoSymbol) getMemberMethod(ExprClass, nme.value) else NoSymbol
+ lazy val ExprModule = if (ExprsClass != NoSymbol) getMemberModule(ExprsClass, nme.Expr) else NoSymbol
+
+ lazy val ClassTagModule = requiredModule[scala.reflect.ClassTag[_]]
+ lazy val ClassTagClass = requiredClass[scala.reflect.ClassTag[_]]
+ lazy val TypeTagsClass = getClassIfDefined("scala.reflect.api.TypeTags") // defined in scala-reflect.jar, so we need to be careful
+ lazy val WeakTypeTagClass = if (TypeTagsClass != NoSymbol) getMemberClass(TypeTagsClass, tpnme.WeakTypeTag) else NoSymbol
+ lazy val WeakTypeTagModule = if (TypeTagsClass != NoSymbol) getMemberModule(TypeTagsClass, nme.WeakTypeTag) else NoSymbol
+ lazy val TypeTagClass = if (TypeTagsClass != NoSymbol) getMemberClass(TypeTagsClass, tpnme.TypeTag) else NoSymbol
+ lazy val TypeTagModule = if (TypeTagsClass != NoSymbol) getMemberModule(TypeTagsClass, nme.TypeTag) else NoSymbol
def materializeClassTag = getMemberMethod(ReflectPackage, nme.materializeClassTag)
def materializeWeakTypeTag = if (ReflectApiPackage != NoSymbol) getMemberMethod(ReflectApiPackage, nme.materializeWeakTypeTag) else NoSymbol
def materializeTypeTag = if (ReflectApiPackage != NoSymbol) getMemberMethod(ReflectApiPackage, nme.materializeTypeTag) else NoSymbol
- lazy val BaseUniverseClass = requiredClass[scala.reflect.base.Universe]
- def BaseUniverseReify = getMemberMethod(BaseUniverseClass, nme.reify)
+ lazy val ApiUniverseClass = getClassIfDefined("scala.reflect.api.Universe") // defined in scala-reflect.jar, so we need to be careful
+ def ApiUniverseReify = if (ApiUniverseClass != NoSymbol) getMemberMethod(ApiUniverseClass, nme.reify) else NoSymbol
lazy val JavaUniverseClass = getClassIfDefined("scala.reflect.api.JavaUniverse") // defined in scala-reflect.jar, so we need to be careful
- lazy val MirrorOfClass = requiredClass[scala.reflect.base.MirrorOf[_]]
+ lazy val MirrorOfClass = getClassIfDefined("scala.reflect.api.MirrorOf") // defined in scala-reflect.jar, so we need to be careful
- lazy val TypeCreatorClass = requiredClass[scala.reflect.base.TypeCreator]
- lazy val TreeCreatorClass = requiredClass[scala.reflect.base.TreeCreator]
+ lazy val TypeCreatorClass = getClassIfDefined("scala.reflect.api.TypeCreator") // defined in scala-reflect.jar, so we need to be careful
+ lazy val TreeCreatorClass = getClassIfDefined("scala.reflect.api.TreeCreator") // defined in scala-reflect.jar, so we need to be careful
lazy val MacroContextClass = getClassIfDefined("scala.reflect.macros.Context") // defined in scala-reflect.jar, so we need to be careful
def MacroContextPrefix = if (MacroContextClass != NoSymbol) getMemberMethod(MacroContextClass, nme.prefix) else NoSymbol
@@ -529,10 +528,6 @@ trait Definitions extends api.StandardDefinitions {
def MacroContextUniverse = if (MacroContextClass != NoSymbol) getMemberMethod(MacroContextClass, nme.universe) else NoSymbol
def MacroContextMirror = if (MacroContextClass != NoSymbol) getMemberMethod(MacroContextClass, nme.mirror) else NoSymbol
lazy val MacroImplAnnotation = requiredClass[scala.reflect.macros.internal.macroImpl]
- lazy val MacroInternalPackage = getPackageObject("scala.reflect.macros.internal")
- def MacroInternal_materializeClassTag = getMemberMethod(MacroInternalPackage, nme.materializeClassTag)
- def MacroInternal_materializeWeakTypeTag = getMemberMethod(MacroInternalPackage, nme.materializeWeakTypeTag)
- def MacroInternal_materializeTypeTag = getMemberMethod(MacroInternalPackage, nme.materializeTypeTag)
lazy val StringContextClass = requiredClass[scala.StringContext]
def StringContext_f = getMemberMethod(StringContextClass, nme.f)
@@ -546,8 +541,8 @@ trait Definitions extends api.StandardDefinitions {
lazy val NoneModule: ModuleSymbol = requiredModule[scala.None.type]
lazy val SomeModule: ModuleSymbol = requiredModule[scala.Some.type]
- def compilerTypeFromTag(tt: BaseUniverse # WeakTypeTag[_]): Type = tt.in(rootMirror).tpe
- def compilerSymbolFromTag(tt: BaseUniverse # WeakTypeTag[_]): Symbol = tt.in(rootMirror).tpe.typeSymbol
+ def compilerTypeFromTag(tt: ApiUniverse # WeakTypeTag[_]): Type = tt.in(rootMirror).tpe
+ def compilerSymbolFromTag(tt: ApiUniverse # WeakTypeTag[_]): Symbol = tt.in(rootMirror).tpe.typeSymbol
// The given symbol represents either String.+ or StringAdd.+
def isStringAddition(sym: Symbol) = sym == String_+ || sym == StringAdd_+
diff --git a/src/reflect/scala/reflect/internal/Scopes.scala b/src/reflect/scala/reflect/internal/Scopes.scala
index 385e45997b..89332d0ae5 100644
--- a/src/reflect/scala/reflect/internal/Scopes.scala
+++ b/src/reflect/scala/reflect/internal/Scopes.scala
@@ -41,7 +41,7 @@ trait Scopes extends api.Scopes { self: SymbolTable =>
* This is necessary because when run from reflection every scope needs to have a
* SynchronizedScope as mixin.
*/
- class Scope protected[Scopes] (initElems: ScopeEntry = null, initFingerPrints: Long = 0L) extends ScopeBase with MemberScopeBase {
+ class Scope protected[Scopes] (initElems: ScopeEntry = null, initFingerPrints: Long = 0L) extends ScopeApi with MemberScopeApi {
protected[Scopes] def this(base: Scope) = {
this(base.elems)
diff --git a/src/reflect/scala/reflect/internal/StdAttachments.scala b/src/reflect/scala/reflect/internal/StdAttachments.scala
index 5f6a3bf777..5c4d1f7e28 100644
--- a/src/reflect/scala/reflect/internal/StdAttachments.scala
+++ b/src/reflect/scala/reflect/internal/StdAttachments.scala
@@ -8,7 +8,7 @@ trait StdAttachments {
* Common code between reflect-internal Symbol and Tree related to Attachments.
*/
trait Attachable {
- protected var rawatt: base.Attachments { type Pos = Position } = NoPosition
+ protected var rawatt: scala.reflect.api.Attachments { type Pos = Position } = NoPosition
def attachments = rawatt
def updateAttachment[T: ClassTag](attachment: T): this.type = { rawatt = rawatt.update(attachment); this }
def removeAttachment[T: ClassTag]: this.type = { rawatt = rawatt.remove[T]; this }
diff --git a/src/reflect/scala/reflect/internal/StdCreators.scala b/src/reflect/scala/reflect/internal/StdCreators.scala
index 3e6b7c1ab4..eba583d4b5 100644
--- a/src/reflect/scala/reflect/internal/StdCreators.scala
+++ b/src/reflect/scala/reflect/internal/StdCreators.scala
@@ -1,20 +1,20 @@
package scala.reflect
package internal
-import scala.reflect.base.{TreeCreator, TypeCreator}
-import scala.reflect.base.{Universe => BaseUniverse}
+import scala.reflect.api.{TreeCreator, TypeCreator}
+import scala.reflect.api.{Universe => ApiUniverse}
trait StdCreators {
self: SymbolTable =>
case class FixedMirrorTreeCreator(mirror: MirrorOf[StdCreators.this.type], tree: Tree) extends TreeCreator {
- def apply[U <: BaseUniverse with Singleton](m: MirrorOf[U]): U # Tree =
+ def apply[U <: ApiUniverse with Singleton](m: MirrorOf[U]): U # Tree =
if (m eq mirror) tree.asInstanceOf[U # Tree]
else throw new IllegalArgumentException(s"Expr defined in $mirror cannot be migrated to other mirrors.")
}
case class FixedMirrorTypeCreator(mirror: MirrorOf[StdCreators.this.type], tpe: Type) extends TypeCreator {
- def apply[U <: BaseUniverse with Singleton](m: MirrorOf[U]): U # Type =
+ def apply[U <: ApiUniverse with Singleton](m: MirrorOf[U]): U # Type =
if (m eq mirror) tpe.asInstanceOf[U # Type]
else throw new IllegalArgumentException(s"Type tag defined in $mirror cannot be migrated to other mirrors.")
}
diff --git a/src/reflect/scala/reflect/internal/StdNames.scala b/src/reflect/scala/reflect/internal/StdNames.scala
index 8e00ef74e5..2cdfb05e77 100644
--- a/src/reflect/scala/reflect/internal/StdNames.scala
+++ b/src/reflect/scala/reflect/internal/StdNames.scala
@@ -633,7 +633,6 @@ trait StdNames {
val asInstanceOf_Ob : NameType = "$asInstanceOf"
val assert_ : NameType = "assert"
val assume_ : NameType = "assume"
- val basis : NameType = "basis"
val box: NameType = "box"
val build : NameType = "build"
val bytes: NameType = "bytes"
diff --git a/src/reflect/scala/reflect/internal/Symbols.scala b/src/reflect/scala/reflect/internal/Symbols.scala
index 74f4769fec..d44790fd59 100644
--- a/src/reflect/scala/reflect/internal/Symbols.scala
+++ b/src/reflect/scala/reflect/internal/Symbols.scala
@@ -10,7 +10,6 @@ import scala.collection.{ mutable, immutable }
import scala.collection.mutable.ListBuffer
import util.Statistics
import Flags._
-import base.Attachments
import scala.annotation.tailrec
import scala.tools.nsc.io.AbstractFile
diff --git a/src/reflect/scala/reflect/internal/TreeGen.scala b/src/reflect/scala/reflect/internal/TreeGen.scala
index f953e9b757..ebf0998573 100644
--- a/src/reflect/scala/reflect/internal/TreeGen.scala
+++ b/src/reflect/scala/reflect/internal/TreeGen.scala
@@ -272,9 +272,6 @@ abstract class TreeGen extends macros.TreeBuilder {
def mkOr(tree1: Tree, tree2: Tree): Tree =
Apply(Select(tree1, Boolean_or), List(tree2))
- def mkBasisUniverseRef: Tree =
- mkAttributedRef(ReflectBasis) setType singleType(ReflectBasis.owner.thisPrefix, ReflectBasis)
-
def mkRuntimeUniverseRef: Tree = {
assert(ReflectRuntimeUniverse != NoSymbol)
mkAttributedRef(ReflectRuntimeUniverse) setType singleType(ReflectRuntimeUniverse.owner.thisPrefix, ReflectRuntimeUniverse)
diff --git a/src/reflect/scala/reflect/internal/Trees.scala b/src/reflect/scala/reflect/internal/Trees.scala
index 8e91431220..8145ed2263 100644
--- a/src/reflect/scala/reflect/internal/Trees.scala
+++ b/src/reflect/scala/reflect/internal/Trees.scala
@@ -7,7 +7,6 @@ package scala.reflect
package internal
import Flags._
-import base.Attachments
import scala.collection.mutable.{ListBuffer, LinkedHashSet}
import util.Statistics
diff --git a/src/reflect/scala/reflect/internal/package.scala b/src/reflect/scala/reflect/internal/package.scala
index 99b837152d..63568f6a6b 100644
--- a/src/reflect/scala/reflect/internal/package.scala
+++ b/src/reflect/scala/reflect/internal/package.scala
@@ -2,5 +2,5 @@ package scala.reflect
package object internal {
- type MirrorOf[U <: base.Universe with Singleton] = base.MirrorOf[U]
+ type MirrorOf[U <: scala.reflect.api.Universe with Singleton] = scala.reflect.api.MirrorOf[U]
}
diff --git a/src/reflect/scala/reflect/internal/util/Position.scala b/src/reflect/scala/reflect/internal/util/Position.scala
index 0268881be7..1621fb84d4 100644
--- a/src/reflect/scala/reflect/internal/util/Position.scala
+++ b/src/reflect/scala/reflect/internal/util/Position.scala
@@ -7,7 +7,7 @@
package scala.reflect.internal.util
import scala.reflect.ClassTag
-import scala.reflect.base.Attachments
+import scala.reflect.api.Attachments
import scala.reflect.api.PositionApi
object Position {
diff --git a/src/reflect/scala/reflect/macros/Reifiers.scala b/src/reflect/scala/reflect/macros/Reifiers.scala
index bdc6687edc..c2a6c5be05 100644
--- a/src/reflect/scala/reflect/macros/Reifiers.scala
+++ b/src/reflect/scala/reflect/macros/Reifiers.scala
@@ -6,11 +6,6 @@ import scala.reflect.api.PositionApi
trait Reifiers {
self: Context =>
- /** Reification prefix that refers to the base reflexive universe, ``scala.reflect.basis''.
- * Providing it for the ``prefix'' parameter of ``reifyTree'' or ``reifyType'' will create a tree that can be inspected at runtime.
- */
- val basisUniverse: Tree
-
/** Reification prefix that refers to the runtime reflexive universe, ``scala.reflect.runtime.universe''.
* Providing it for the ``prefix'' parameter of ``reifyTree'' or ``reifyType'' will create a full-fledged tree that can be inspected at runtime.
*/
@@ -20,7 +15,7 @@ trait Reifiers {
* For more information and examples see the documentation for ``Universe.reify''.
*
* The produced tree will be bound to the specified ``universe'' and ``mirror''.
- * Possible values for ``universe'' include ``basisUniverse'' and ``runtimeUniverse''.
+ * Possible values for ``universe'' include ``runtimeUniverse''.
* Possible values for ``mirror'' include ``EmptyTree'' (in that case the reifier will automatically pick an appropriate mirror).
*
* This function is deeply connected to ``Universe.reify'', a macro that reifies arbitrary expressions into runtime trees.
diff --git a/src/reflect/scala/reflect/macros/Universe.scala b/src/reflect/scala/reflect/macros/Universe.scala
index 7fa2e7cbae..f84c11ee63 100644
--- a/src/reflect/scala/reflect/macros/Universe.scala
+++ b/src/reflect/scala/reflect/macros/Universe.scala
@@ -7,7 +7,7 @@ abstract class Universe extends scala.reflect.api.Universe {
trait AttachableApi {
/** ... */
- def attachments: base.Attachments { type Pos = Position }
+ def attachments: scala.reflect.api.Attachments { type Pos = Position }
/** ... */
def updateAttachment[T: ClassTag](attachment: T): AttachableApi.this.type
diff --git a/src/reflect/scala/reflect/macros/package.scala b/src/reflect/scala/reflect/macros/package.scala
index 06ce0b3244..df93785d40 100644
--- a/src/reflect/scala/reflect/macros/package.scala
+++ b/src/reflect/scala/reflect/macros/package.scala
@@ -2,5 +2,5 @@ package scala.reflect
package object macros {
- type MirrorOf[U <: base.Universe with Singleton] = base.MirrorOf[U]
+ type MirrorOf[U <: scala.reflect.api.Universe with Singleton] = scala.reflect.api.MirrorOf[U]
}
diff --git a/test/files/neg/macro-invalidret-nonuniversetree.check b/test/files/neg/macro-invalidret-nonuniversetree.check
index 09df2c0a92..b3a4d0da80 100644
--- a/test/files/neg/macro-invalidret-nonuniversetree.check
+++ b/test/files/neg/macro-invalidret-nonuniversetree.check
@@ -1,7 +1,7 @@
Macros_Test_2.scala:2: error: macro implementation has wrong shape:
required: (c: scala.reflect.macros.Context): c.Expr[Any]
- found : (c: scala.reflect.macros.Context): reflect.basis.Literal
-type mismatch for return type: reflect.basis.Literal does not conform to c.Expr[Any]
+ found : (c: scala.reflect.macros.Context): reflect.runtime.universe.Literal
+type mismatch for return type: reflect.runtime.universe.Literal does not conform to c.Expr[Any]
def foo = macro Impls.foo
^
one error found
diff --git a/test/files/neg/macro-invalidret-nonuniversetree/Impls_1.scala b/test/files/neg/macro-invalidret-nonuniversetree/Impls_1.scala
index 8311d474c2..f98376a2ba 100644
--- a/test/files/neg/macro-invalidret-nonuniversetree/Impls_1.scala
+++ b/test/files/neg/macro-invalidret-nonuniversetree/Impls_1.scala
@@ -1,5 +1,6 @@
import scala.reflect.macros.{Context => Ctx}
+import scala.reflect.runtime.{universe => ru}
object Impls {
- def foo(c: Ctx) = scala.reflect.basis.Literal(scala.reflect.basis.Constant(42))
+ def foo(c: Ctx) = ru.Literal(ru.Constant(42))
}
diff --git a/test/files/pos/typetags.scala b/test/files/pos/typetags.scala
index 33390d7b89..239a9b32ec 100644
--- a/test/files/pos/typetags.scala
+++ b/test/files/pos/typetags.scala
@@ -1,12 +1,16 @@
-import scala.reflect.{basis => rb}
-import scala.reflect.runtime.{universe => ru}
+// TODO come up with a non-trivial universe different from ru
+// an rewrite this test, so that it makes sure that cross-universe implicit searches work
+//
+// import scala.reflect.{basis => rb}
+// import scala.reflect.runtime.{universe => ru}
+// object Test {
+// def main(args: Array[String]) {
+// def foo(implicit t: rb.TypeTag[List[Int]]) {
+// println(t)
+// val t2: ru.TypeTag[_] = t in ru.rootMirror
+// println(t2)
+// }
+// }
+// }
-object Test {
- def main(args: Array[String]) {
- def foo(implicit t: rb.TypeTag[List[Int]]) {
- println(t)
- val t2: ru.TypeTag[_] = t in ru.rootMirror
- println(t2)
- }
- }
-}
+object Test extends App \ No newline at end of file
diff --git a/test/files/run/abstypetags_serialize.scala b/test/files/run/abstypetags_serialize.scala
index 38a7aba325..93fb5dcd06 100644
--- a/test/files/run/abstypetags_serialize.scala
+++ b/test/files/run/abstypetags_serialize.scala
@@ -1,5 +1,6 @@
import java.io._
import scala.reflect.runtime.universe._
+import scala.reflect.runtime.{universe => ru}
import scala.reflect.runtime.{currentMirror => cm}
object Test extends App {
@@ -13,7 +14,7 @@ object Test extends App {
val fin = new ByteArrayInputStream(fout.toByteArray)
val in = new ObjectInputStream(fin)
- val retag = in.readObject().asInstanceOf[scala.reflect.basis.WeakTypeTag[_]].in(cm)
+ val retag = in.readObject().asInstanceOf[ru.WeakTypeTag[_]].in(cm)
in.close()
fin.close()
diff --git a/test/files/run/exprs_serialize.scala b/test/files/run/exprs_serialize.scala
index 075c902a34..c4310b0fe1 100644
--- a/test/files/run/exprs_serialize.scala
+++ b/test/files/run/exprs_serialize.scala
@@ -1,5 +1,6 @@
import java.io._
import scala.reflect.runtime.universe._
+import scala.reflect.runtime.{universe => ru}
import scala.reflect.runtime.{currentMirror => cm}
object Test extends App {
@@ -13,7 +14,7 @@ object Test extends App {
val fin = new ByteArrayInputStream(fout.toByteArray)
val in = new ObjectInputStream(fin)
- val reexpr = in.readObject().asInstanceOf[scala.reflect.basis.Expr[_]].in(cm)
+ val reexpr = in.readObject().asInstanceOf[ru.Expr[_]].in(cm)
in.close()
fin.close()
diff --git a/test/files/run/macro-expand-implicit-argument/Macros_1.scala b/test/files/run/macro-expand-implicit-argument/Macros_1.scala
index 86c4198870..b1665256cd 100644
--- a/test/files/run/macro-expand-implicit-argument/Macros_1.scala
+++ b/test/files/run/macro-expand-implicit-argument/Macros_1.scala
@@ -4,7 +4,7 @@ import scala.{specialized => spec}
import language.experimental.macros
-import scala.reflect.{ClassTag, TypeTag}
+import scala.reflect.ClassTag
import scala.reflect.macros.Context
object Macros {
diff --git a/test/files/run/macro-typecheck-macrosdisabled.check b/test/files/run/macro-typecheck-macrosdisabled.check
index c560b0e4b5..c88d33b48e 100644
--- a/test/files/run/macro-typecheck-macrosdisabled.check
+++ b/test/files/run/macro-typecheck-macrosdisabled.check
@@ -7,7 +7,7 @@
$treecreator1.super.<init>();
()
};
- def apply[U >: Nothing <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Tree = {
+ def apply[U >: Nothing <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Tree = {
val $u: U = $m$untyped.universe;
val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
$u.Literal.apply($u.Constant.apply(2))
@@ -20,7 +20,7 @@
$typecreator2.super.<init>();
()
};
- def apply[U >: Nothing <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Type = {
+ def apply[U >: Nothing <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Type = {
val $u: U = $m$untyped.universe;
val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
$u.ConstantType.apply($u.Constant.apply(2))
diff --git a/test/files/run/macro-typecheck-macrosdisabled2.check b/test/files/run/macro-typecheck-macrosdisabled2.check
index 55e7913250..469f41aa94 100644
--- a/test/files/run/macro-typecheck-macrosdisabled2.check
+++ b/test/files/run/macro-typecheck-macrosdisabled2.check
@@ -7,7 +7,7 @@
$treecreator1.super.<init>();
()
};
- def apply[U >: Nothing <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Tree = {
+ def apply[U >: Nothing <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Tree = {
val $u: U = $m$untyped.universe;
val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
$u.Apply.apply($u.Select.apply($u.Select.apply($u.build.Ident($m.staticPackage("scala")), $u.newTermName("Array")), $u.newTermName("apply")), scala.collection.immutable.List.apply[$u.Literal]($u.Literal.apply($u.Constant.apply(2))))
@@ -20,7 +20,7 @@
$typecreator2.super.<init>();
()
};
- def apply[U >: Nothing <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Type = {
+ def apply[U >: Nothing <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Type = {
val $u: U = $m$untyped.universe;
val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
$u.TypeRef.apply($u.ThisType.apply($m.staticPackage("scala").asModule.moduleClass), $m.staticClass("scala.Array"), scala.collection.immutable.List.apply[$u.Type]($m.staticClass("scala.Int").asType.toTypeConstructor))
diff --git a/test/files/run/newTags.check b/test/files/run/newTags.check
index 2cbc265d7a..0c1bd95eb2 100644
--- a/test/files/run/newTags.check
+++ b/test/files/run/newTags.check
@@ -1,5 +1,3 @@
-TypeRef(SingleType(SingleType(SingleType(NoPrefix,class <root>),module scala),module package),class List,List(TypeRef(ThisType(class scala),class Int,List())))
List[Int]
-TypeRef(SingleType(ThisType(class scala),module Predef),class Map,List(TypeRef(SingleType(ThisType(class scala),module Predef),class String,List()), TypeRef(SingleType(ThisType(class scala),module Predef),class String,List())))
Map[String,String]
-TypeTag[TypeRef(SingleType(ThisType(class scala),module Predef),class Map,List(TypeRef(SingleType(ThisType(class scala),module Predef),class String,List()), TypeRef(SingleType(ThisType(class scala),module Predef),class String,List())))]
+TypeTag[Map[String,String]]
diff --git a/test/files/run/newTags.scala b/test/files/run/newTags.scala
index a758599515..c5199d4e55 100644
--- a/test/files/run/newTags.scala
+++ b/test/files/run/newTags.scala
@@ -1,14 +1,11 @@
-import scala.reflect.base.{Universe => BaseUniverse}
-import scala.reflect.{basis => rb}
+import scala.reflect.api.{Universe => ApiUniverse}
import scala.reflect.runtime.{universe => ru}
object Test extends App {
- println(rb.typeOf[List[Int]])
println(ru.typeOf[List[Int]])
- def foo[T: rb.TypeTag] = {
- println(rb.typeOf[T])
+ def foo[T: ru.TypeTag] = {
println(ru.typeOf[T])
- println(implicitly[BaseUniverse#TypeTag[T]])
+ println(implicitly[ApiUniverse#TypeTag[T]])
}
foo[Map[String, String]]
} \ No newline at end of file
diff --git a/test/files/run/reflection-magicsymbols-invoke.check b/test/files/run/reflection-magicsymbols-invoke.check
index 674716adfe..bef492eb54 100644
--- a/test/files/run/reflection-magicsymbols-invoke.check
+++ b/test/files/run/reflection-magicsymbols-invoke.check
@@ -121,4 +121,4 @@ testing String.+: 23
CTM
testing Predef.classOf: class scala.ScalaReflectionException: Predef.classOf is a compile-time function, it cannot be invoked with mirrors
testing Predef.classOf: class scala.ScalaReflectionException: scala.Predef.classOf[T]: Class[T] takes 0 arguments
-testing Universe.reify: class scala.ScalaReflectionException: scala.reflect.base.Universe.reify is a macro, i.e. a compile-time function, it cannot be invoked with mirrors
+testing Universe.reify: class scala.ScalaReflectionException: scala.reflect.api.Universe.reify is a macro, i.e. a compile-time function, it cannot be invoked with mirrors
diff --git a/test/files/run/reflection-magicsymbols-invoke.scala b/test/files/run/reflection-magicsymbols-invoke.scala
index 61ecc6458d..b38d1be7b2 100644
--- a/test/files/run/reflection-magicsymbols-invoke.scala
+++ b/test/files/run/reflection-magicsymbols-invoke.scala
@@ -90,5 +90,5 @@ object Test extends App {
println("============\nCTM")
test(PredefModule.moduleClass.typeSignature, Predef, "classOf")
test(PredefModule.moduleClass.typeSignature, Predef, "classOf", typeOf[String])
- test(typeOf[scala.reflect.base.Universe], scala.reflect.runtime.universe, "reify", "2")
+ test(typeOf[scala.reflect.api.Universe], scala.reflect.runtime.universe, "reify", "2")
} \ No newline at end of file
diff --git a/test/files/run/toolbox_typecheck_macrosdisabled.check b/test/files/run/toolbox_typecheck_macrosdisabled.check
index 4d253f31fc..49e25bd0e7 100644
--- a/test/files/run/toolbox_typecheck_macrosdisabled.check
+++ b/test/files/run/toolbox_typecheck_macrosdisabled.check
@@ -1,41 +1,41 @@
-{
- val $u: ru.type = ru;
- val $m: $u.Mirror = ru.runtimeMirror({
- final class $anon extends scala.AnyRef {
- def <init>(): anonymous class $anon = {
- $anon.super.<init>();
- ()
- };
- ()
- };
- new $anon()
-}.getClass().getClassLoader());
- $u.Expr.apply[Int(2)]($m, {
- final class $treecreator1 extends TreeCreator {
- def <init>(): $treecreator1 = {
- $treecreator1.super.<init>();
- ()
- };
- def apply[U <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Tree = {
- val $u: U = $m$untyped.universe;
- val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
- $u.Literal.apply($u.Constant.apply(2))
- }
- };
- new $treecreator1()
- })($u.TypeTag.apply[Int(2)]($m, {
- final class $typecreator2 extends TypeCreator {
- def <init>(): $typecreator2 = {
- $typecreator2.super.<init>();
- ()
- };
- def apply[U <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Type = {
- val $u: U = $m$untyped.universe;
- val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
- $u.ConstantType.apply($u.Constant.apply(2))
- }
- };
- new $typecreator2()
- }))
-}
-ru.reify[Int](2)
+{
+ val $u: ru.type = ru;
+ val $m: $u.Mirror = ru.runtimeMirror({
+ final class $anon extends scala.AnyRef {
+ def <init>(): anonymous class $anon = {
+ $anon.super.<init>();
+ ()
+ };
+ ()
+ };
+ new $anon()
+}.getClass().getClassLoader());
+ $u.Expr.apply[Int(2)]($m, {
+ final class $treecreator1 extends TreeCreator {
+ def <init>(): $treecreator1 = {
+ $treecreator1.super.<init>();
+ ()
+ };
+ def apply[U <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Tree = {
+ val $u: U = $m$untyped.universe;
+ val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
+ $u.Literal.apply($u.Constant.apply(2))
+ }
+ };
+ new $treecreator1()
+ })($u.TypeTag.apply[Int(2)]($m, {
+ final class $typecreator2 extends TypeCreator {
+ def <init>(): $typecreator2 = {
+ $typecreator2.super.<init>();
+ ()
+ };
+ def apply[U <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Type = {
+ val $u: U = $m$untyped.universe;
+ val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
+ $u.ConstantType.apply($u.Constant.apply(2))
+ }
+ };
+ new $typecreator2()
+ }))
+}
+ru.reify[Int](2)
diff --git a/test/files/run/toolbox_typecheck_macrosdisabled2.check b/test/files/run/toolbox_typecheck_macrosdisabled2.check
index 149c3def12..8bbe65e21b 100644
--- a/test/files/run/toolbox_typecheck_macrosdisabled2.check
+++ b/test/files/run/toolbox_typecheck_macrosdisabled2.check
@@ -1,41 +1,41 @@
-{
- val $u: ru.type = ru;
- val $m: $u.Mirror = ru.runtimeMirror({
- final class $anon extends scala.AnyRef {
- def <init>(): anonymous class $anon = {
- $anon.super.<init>();
- ()
- };
- ()
- };
- new $anon()
-}.getClass().getClassLoader());
- $u.Expr.apply[Array[Int]]($m, {
- final class $treecreator1 extends TreeCreator {
- def <init>(): $treecreator1 = {
- $treecreator1.super.<init>();
- ()
- };
- def apply[U <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Tree = {
- val $u: U = $m$untyped.universe;
- val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
- $u.Apply.apply($u.Select.apply($u.Select.apply($u.build.Ident($m.staticPackage("scala")), $u.newTermName("Array")), $u.newTermName("apply")), scala.collection.immutable.List.apply[$u.Literal]($u.Literal.apply($u.Constant.apply(2))))
- }
- };
- new $treecreator1()
- })($u.TypeTag.apply[Array[Int]]($m, {
- final class $typecreator2 extends TypeCreator {
- def <init>(): $typecreator2 = {
- $typecreator2.super.<init>();
- ()
- };
- def apply[U <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Type = {
- val $u: U = $m$untyped.universe;
- val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
- $u.TypeRef.apply($u.ThisType.apply($m.staticPackage("scala").asModule.moduleClass), $m.staticClass("scala.Array"), scala.collection.immutable.List.apply[$u.Type]($m.staticClass("scala.Int").asType.toTypeConstructor))
- }
- };
- new $typecreator2()
- }))
-}
-ru.reify[Array[Int]](scala.Array.apply(2))
+{
+ val $u: ru.type = ru;
+ val $m: $u.Mirror = ru.runtimeMirror({
+ final class $anon extends scala.AnyRef {
+ def <init>(): anonymous class $anon = {
+ $anon.super.<init>();
+ ()
+ };
+ ()
+ };
+ new $anon()
+}.getClass().getClassLoader());
+ $u.Expr.apply[Array[Int]]($m, {
+ final class $treecreator1 extends TreeCreator {
+ def <init>(): $treecreator1 = {
+ $treecreator1.super.<init>();
+ ()
+ };
+ def apply[U <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Tree = {
+ val $u: U = $m$untyped.universe;
+ val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
+ $u.Apply.apply($u.Select.apply($u.Select.apply($u.build.Ident($m.staticPackage("scala")), $u.newTermName("Array")), $u.newTermName("apply")), scala.collection.immutable.List.apply[$u.Literal]($u.Literal.apply($u.Constant.apply(2))))
+ }
+ };
+ new $treecreator1()
+ })($u.TypeTag.apply[Array[Int]]($m, {
+ final class $typecreator2 extends TypeCreator {
+ def <init>(): $typecreator2 = {
+ $typecreator2.super.<init>();
+ ()
+ };
+ def apply[U <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Type = {
+ val $u: U = $m$untyped.universe;
+ val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
+ $u.TypeRef.apply($u.ThisType.apply($m.staticPackage("scala").asModule.moduleClass), $m.staticClass("scala.Array"), scala.collection.immutable.List.apply[$u.Type]($m.staticClass("scala.Int").asType.toTypeConstructor))
+ }
+ };
+ new $typecreator2()
+ }))
+}
+ru.reify[Array[Int]](scala.Array.apply(2))
diff --git a/test/files/run/typetags_serialize.check b/test/files/run/typetags_serialize.check
index 1b898250fb..30952113f6 100644
--- a/test/files/run/typetags_serialize.check
+++ b/test/files/run/typetags_serialize.check
@@ -1,2 +1,2 @@
-java.io.NotSerializableException: scala.reflect.base.TypeTags$PredefTypeCreator
+java.io.NotSerializableException: scala.reflect.api.TypeTags$PredefTypeCreator
java.io.NotSerializableException: Test$$typecreator1$1
diff --git a/test/files/run/typetags_serialize.scala b/test/files/run/typetags_serialize.scala
index 3917b69a93..3c842e6cc9 100644
--- a/test/files/run/typetags_serialize.scala
+++ b/test/files/run/typetags_serialize.scala
@@ -1,5 +1,6 @@
import java.io._
import scala.reflect.runtime.universe._
+import scala.reflect.runtime.{universe => ru}
import scala.reflect.runtime.{currentMirror => cm}
object Test extends App {
@@ -13,7 +14,7 @@ object Test extends App {
val fin = new ByteArrayInputStream(fout.toByteArray)
val in = new ObjectInputStream(fin)
- val retag = in.readObject().asInstanceOf[scala.reflect.basis.TypeTag[_]].in(cm)
+ val retag = in.readObject().asInstanceOf[ru.TypeTag[_]].in(cm)
in.close()
fin.close()
diff --git a/test/scaladoc/resources/implicits-known-type-classes-res.scala b/test/scaladoc/resources/implicits-known-type-classes-res.scala
index 9ad652947d..77c91aafce 100644
--- a/test/scaladoc/resources/implicits-known-type-classes-res.scala
+++ b/test/scaladoc/resources/implicits-known-type-classes-res.scala
@@ -6,7 +6,8 @@ package scala.test.scaladoc.implicits.typeclasses {
class A[T]
object A {
import language.implicitConversions
- import scala.reflect.{ClassTag, TypeTag}
+ import scala.reflect.ClassTag
+ import scala.reflect.runtime.universe.TypeTag
implicit def convertNumeric [T: Numeric] (a: A[T]) = new B(implicitly[Numeric[T]])
implicit def convertIntegral [T: Integral] (a: A[T]) = new B(implicitly[Integral[T]])
implicit def convertFractional [T: Fractional] (a: A[T]) = new B(implicitly[Fractional[T]])