summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/transform/Fields.scala
diff options
context:
space:
mode:
Diffstat (limited to 'src/compiler/scala/tools/nsc/transform/Fields.scala')
-rw-r--r--src/compiler/scala/tools/nsc/transform/Fields.scala449
1 files changed, 449 insertions, 0 deletions
diff --git a/src/compiler/scala/tools/nsc/transform/Fields.scala b/src/compiler/scala/tools/nsc/transform/Fields.scala
new file mode 100644
index 0000000000..0dd7b1fee0
--- /dev/null
+++ b/src/compiler/scala/tools/nsc/transform/Fields.scala
@@ -0,0 +1,449 @@
+/* NSC -- new Scala compiler
+ * Copyright 2005-2013 LAMP/EPFL
+ * @author
+ */
+
+package scala.tools.nsc
+package transform
+
+import scala.annotation.tailrec
+import symtab.Flags._
+
+
+/** Synthesize accessors and field for each (strict) val owned by a trait.
+ *
+ * For traits:
+ *
+ * - Namers translates a definition `val x = rhs` into a getter `def x = rhs` -- no underlying field is created.
+ * - This phase synthesizes accessors and fields for any vals mixed into a non-trait class.
+ * - Constructors will move the rhs to an assignment in the template body.
+ * and those statements then move to the template into the constructor,
+ * which means it will initialize the fields defined in this template (and execute the corresponding side effects).
+ * We need to maintain the connection between getter and rhs until after specialization so that it can duplicate vals.
+ *
+ * Runs before erasure (to get bridges), and thus before lambdalift/flatten, so that nested functions/definitions must be considered.
+ * We run after uncurry because it can introduce subclasses of traits with fields (SAMs with vals).
+ * Lambdalift also introduces new fields (paramaccessors for captured vals), but runs too late in the pipeline
+ * (mixins still synthesizes implementations for accessors that need to be mixed into subclasses of local traits that capture).
+ *
+ * In the future, would like to get closer to dotty, which lifts a val's RHS (a similar thing is done for template-level statements)
+ * to a method `$_initialize_$1$x` instead of a block, which is used in the constructor to initialize the val.
+ * This makes for a nice unification of strict and lazy vals, in that the RHS is lifted to a method for both,
+ * with the corresponding compute method called at the appropriate time.)
+ *
+ * This only reduces the required number of methods per field declaration in traits,
+ * if we encode the name (and place in initialisation order) of the field
+ * in the name of its initializing method, to allow separate compilation.
+ * (The name mangling must include ordering, and thus complicate incremental compilation:
+ * ideally, we'd avoid renumbering unchanged methods, but that would result in
+ * different bytecode between clean recompiles and incremental ones).
+ *
+ * In the even longer term (Scala 3?), I agree with @DarkDimius that it would make sense
+ * to hide the difference between strict and lazy vals. All vals are lazy,
+ * but the memoization overhead is removed when we statically know they are forced during initialiation.
+ * We could still expose the low-level field semantics through `private[this] val`s.
+ *
+ * In any case, the current behavior of overriding vals is pretty surprising.
+ * An overridden val's side-effect is still performed.
+ * The only change due to overriding is that its value is never written to the field
+ * (the overridden val's value is, of course, stored in the field in addition to its side-effect being performed).
+ */
+abstract class Fields extends InfoTransform with ast.TreeDSL with TypingTransformers {
+
+ import global._
+ import definitions._
+
+ /** the following two members override abstract members in Transform */
+ val phaseName: String = "fields"
+
+ protected def newTransformer(unit: CompilationUnit): Transformer = new FieldsTransformer(unit)
+ override def transformInfo(sym: Symbol, tp: Type): Type =
+ if (sym.isJavaDefined || sym.isPackageClass || !sym.isClass) tp
+ else synthFieldsAndAccessors(tp)
+
+ // we leave lazy vars/accessors and early-init vals alone for now
+ private def excludedAccessorOrFieldByFlags(statSym: Symbol): Boolean = statSym hasFlag LAZY | PRESUPER
+
+ // used for internal communication between info and tree transform of this phase -- not pickled, not in initialflags
+ // TODO: reuse MIXEDIN for NEEDS_TREES?
+ override def phaseNewFlags: Long = NEEDS_TREES | OVERRIDDEN_TRAIT_SETTER
+
+ private final val OVERRIDDEN_TRAIT_SETTER = TRANS_FLAG
+
+ final val TRAIT_SETTER_FLAGS = NEEDS_TREES | DEFERRED | ProtectedLocal
+
+ private def accessorImplementedInSubclass(accessor: Symbol) =
+ (accessor hasFlag SYNTHESIZE_IMPL_IN_SUBCLASS) && (accessor hasFlag (ACCESSOR))
+
+ private def concreteOrSynthImpl(sym: Symbol): Boolean = !(sym hasFlag DEFERRED) || (sym hasFlag SYNTHESIZE_IMPL_IN_SUBCLASS)
+
+ private def synthesizeImplInSubclasses(accessor: Symbol): Unit =
+ accessor setFlag lateDEFERRED | SYNTHESIZE_IMPL_IN_SUBCLASS
+
+ private def setClonedTraitSetterFlags(clazz: Symbol, correspondingGetter: Symbol, cloneInSubclass: Symbol): Unit = {
+ val overridden = isOverriddenAccessor(correspondingGetter, clazz)
+ if (overridden) cloneInSubclass setFlag OVERRIDDEN_TRAIT_SETTER
+ else if (correspondingGetter.isEffectivelyFinal) cloneInSubclass setFlag FINAL
+ }
+
+ // TODO: add MIXEDIN (see e.g., `accessed` on `Symbol`)
+ private def setMixedinAccessorFlags(orig: Symbol, cloneInSubclass: Symbol): Unit =
+ cloneInSubclass setFlag OVERRIDE | NEEDS_TREES resetFlag DEFERRED | lateDEFERRED | SYNTHESIZE_IMPL_IN_SUBCLASS
+
+ private def setFieldFlags(accessor: Symbol, fieldInSubclass: TermSymbol): Unit =
+ fieldInSubclass setFlag (NEEDS_TREES |
+ PrivateLocal
+ | (accessor getFlag MUTABLE | LAZY)
+ | (if (accessor hasFlag STABLE) 0 else MUTABLE)
+ )
+
+
+ def checkAndClearOverridden(setter: Symbol) = checkAndClear(OVERRIDDEN_TRAIT_SETTER)(setter)
+ def checkAndClearNeedsTrees(setter: Symbol) = checkAndClear(NEEDS_TREES)(setter)
+ def checkAndClear(flag: Long)(sym: Symbol) =
+ sym.hasFlag(flag) match {
+ case overridden =>
+ sym resetFlag flag
+ overridden
+ }
+
+
+ private def isOverriddenAccessor(member: Symbol, site: Symbol): Boolean = {
+ val pre = site.thisType
+ @tailrec def loop(bcs: List[Symbol]): Boolean = {
+ // println(s"checking ${bcs.head} for member overriding $member (of ${member.owner})")
+ bcs.nonEmpty && bcs.head != member.owner && (matchingAccessor(pre, member, bcs.head) != NoSymbol || loop(bcs.tail))
+ }
+
+ member.exists && loop(site.info.baseClasses)
+ }
+
+
+ def matchingAccessor(pre: Type, member: Symbol, clazz: Symbol) = {
+ val res = member.matchingSymbol(clazz, pre) filter (sym => (sym hasFlag ACCESSOR) && concreteOrSynthImpl(sym))
+ // if (res != NoSymbol) println(s"matching accessor for $member in $clazz = $res (under $pre)")
+ // else println(s"no matching accessor for $member in $clazz (under $pre) among ${clazz.info.decls}")
+ res
+ }
+
+
+ class FieldMemoization(accessorOrField: Symbol, site: Symbol) {
+ val tp = fieldTypeOfAccessorIn(accessorOrField, site.thisType)
+ // not stored, no side-effect
+ val pureConstant = tp.isInstanceOf[ConstantType]
+
+ // if !stored, may still have a side-effect
+ // (currently not distinguished -- used to think we could drop unit-typed vals,
+ // but the memory model cares about writes to unit-typed fields)
+ val stored = !pureConstant // || isUnitType(tp))
+ }
+
+ private def fieldTypeForGetterIn(getter: Symbol, pre: Type): Type = getter.info.finalResultType.asSeenFrom(pre, getter.owner)
+ private def fieldTypeForSetterIn(setter: Symbol, pre: Type): Type = setter.info.paramTypes.head.asSeenFrom(pre, setter.owner)
+
+ // TODO: is there a more elegant way?
+ def fieldTypeOfAccessorIn(accessor: Symbol, pre: Type) =
+ if (accessor.isSetter) fieldTypeForSetterIn(accessor, pre)
+ else fieldTypeForGetterIn(accessor, pre)
+
+
+ // Constant/unit typed vals are not memoized (their value is so cheap it doesn't make sense to store it in a field)
+ // for a unit-typed getter, we perform the effect at the appropriate time (constructor for eager ones, lzyCompute for lazy),
+ // and have the getter just return Unit (who does that!?)
+ // NOTE: this only considers type, filter on flags first!
+ def fieldMemoizationIn(accessorOrField: Symbol, site: Symbol) = new FieldMemoization(accessorOrField, site)
+
+ // drop field-targeting annotations from getters
+ // (in traits, getters must also hold annotations that target the underlying field,
+ // because the latter won't be created until the trait is mixed into a class)
+ // TODO do bean getters need special treatment to suppress field-targeting annotations in traits?
+ def dropFieldAnnotationsFromGetter(sym: Symbol) =
+ if (sym.isGetter && sym.owner.isTrait) {
+ sym setAnnotations (sym.annotations filter AnnotationInfo.mkFilter(GetterTargetClass, defaultRetention = false))
+ }
+
+ private object synthFieldsAndAccessors extends TypeMap {
+ private def newTraitSetter(getter: Symbol, clazz: Symbol) = {
+ // Add setter for an immutable, memoizing getter
+ // (can't emit during namers because we don't yet know whether it's going to be memoized or not)
+ val setterFlags = (getter.flags & ~(STABLE | PrivateLocal | OVERRIDE | IMPLICIT | FINAL)) | MUTABLE | ACCESSOR | TRAIT_SETTER_FLAGS
+ val setterName = nme.expandedSetterName(getter.name.setterName, clazz)
+ val setter = clazz.newMethod(setterName, getter.pos.focus, setterFlags)
+ val fieldTp = fieldTypeForGetterIn(getter, clazz.thisType)
+ // println(s"newTraitSetter in $clazz for $getter = $setterName : $fieldTp")
+
+ getter.asTerm.referenced = setter
+
+ setter setInfo MethodType(List(setter.newSyntheticValueParam(fieldTp)), UnitTpe)
+ setter
+ }
+
+ def apply(tp0: Type): Type = tp0 match {
+ // TODO: make less destructive (name changes, decl additions, flag setting --
+ // none of this is actually undone when travelling back in time using atPhase)
+ case tp@ClassInfoType(parents, decls, clazz) if clazz.isTrait =>
+ // setters for trait vars or module accessor
+ val newDecls = collection.mutable.ListBuffer[Symbol]()
+ val origDecls = decls.toList
+
+ // strict, memoized accessors will receive an implementation in first real class to extend this trait
+ origDecls.foreach { member =>
+ if (member hasFlag ACCESSOR) {
+ val fieldMemoization = fieldMemoizationIn(member, clazz)
+ // check flags before calling makeNotPrivate
+ val accessorUnderConsideration = !(member hasFlag (DEFERRED | LAZY))
+
+ // destructively mangle accessor's name (which may cause rehashing of decls), also sets flags
+ if (member hasFlag PRIVATE) member makeNotPrivate clazz
+
+ // Need to mark as notPROTECTED, so that it's carried over to the synthesized member in subclasses,
+ // since the trait member will receive this flag later in ExplicitOuter, but the synthetic subclass member will not.
+ // If we don't add notPROTECTED to the synthesized one, the member will not be seen as overriding the trait member.
+ // Therefore, addForwarders's call to membersBasedOnFlags would see the deferred member in the trait,
+ // instead of the concrete (desired) one in the class
+ // TODO: encapsulate as makeNotProtected, similar to makeNotPrivate (also do moduleClass, e.g.)
+ if (member hasFlag PROTECTED) member setFlag notPROTECTED
+
+ // must not reset LOCAL, as we must maintain protected[this]ness to allow that variance hole
+ // (not sure why this only problem only arose when we started setting the notPROTECTED flag)
+
+ // derive trait setter after calling makeNotPrivate (so that names are mangled consistently)
+ if (accessorUnderConsideration && fieldMemoization.stored) {
+ synthesizeImplInSubclasses(member)
+
+ if (member hasFlag STABLE) // TODO: check isGetter?
+ newDecls += newTraitSetter(member, clazz)
+ }
+ }
+ }
+
+ if (newDecls nonEmpty) {
+ val allDecls = newScope
+ origDecls foreach allDecls.enter
+ newDecls foreach allDecls.enter
+ ClassInfoType(parents, allDecls, clazz)
+ } else tp
+
+ // mix in fields & accessors for all mixed in traits
+
+ case tp@ClassInfoType(parents, oldDecls, clazz) if !clazz.isPackageClass =>
+ val site = clazz.thisType
+ // TODO (1): improve logic below, which is used to avoid mixing in anything that would result in an error in refchecks
+ // (a reason to run after refchecks? we should run before pickler, though, I think, so that the synthesized stats are pickled)
+
+ val membersNeedingSynthesis = clazz.mixinClasses.flatMap { mixin =>
+ // afterOwnPhase, so traits receive trait setters for vals
+ afterOwnPhase {mixin.info}.decls.toList.filter(accessorImplementedInSubclass)
+ }
+
+// println(s"mixing in for $clazz: $membersNeedingSynthesis from ${clazz.mixinClasses}")
+
+ // TODO: setter conflicts?
+ def accessorConflictsExistingVal(accessor: Symbol): Boolean = {
+ val existingGetter = oldDecls.lookup(accessor.name.getterName)
+ // println(s"$existingGetter from $accessor to ${accessor.name.getterName}")
+ val tp = fieldTypeOfAccessorIn(accessor, site)
+ (existingGetter ne NoSymbol) && (tp matches (site memberInfo existingGetter).resultType) // !existingGetter.isDeferred && -- see (3)
+ }
+
+ // mixin field accessors --
+ // invariant: (accessorsMaybeNeedingImpl, mixedInAccessorAndFields).zipped.forall(case (acc, clone :: _) => `clone` is clone of `acc` case _ => true)
+ val synthAccessorAndFields = membersNeedingSynthesis map { member =>
+ def cloneAccessor() = {
+ val clonedAccessor = (member cloneSymbol clazz) setPos clazz.pos
+ setMixedinAccessorFlags(member, clonedAccessor)
+
+ if (clonedAccessor.isGetter)
+ clonedAccessor setAnnotations (clonedAccessor.annotations filter AnnotationInfo.mkFilter(GetterTargetClass, defaultRetention = false))
+
+ // if we don't cloneInfo, method argument symbols are shared between trait and subclasses --> lambalift proxy crash
+ // TODO: use derive symbol variant?
+ // println(s"cloning accessor $accessor to $clazz / $clonedInfo -> $relativeInfo")
+ clonedAccessor setInfo ((clazz.thisType memberType member) cloneInfo clonedAccessor) // accessor.info.cloneInfo(clonedAccessor).asSeenFrom(clazz.thisType, accessor.owner)
+ }
+
+ // when considering whether to mix in the trait setter, forget about conflicts -- they will be reported for the getter
+ // a trait setter for an overridden val will receive a unit body in the tree transform
+ if (nme.isTraitSetterName(member.name)) {
+ val getter = member.getterIn(member.owner)
+ val clone = cloneAccessor()
+
+ setClonedTraitSetterFlags(clazz, getter, clone)
+ // println(s"mixed in trait setter ${clone.defString}")
+
+ List(clone)
+ }
+ // avoid creating early errors in case of conflicts (wait until refchecks);
+ // also, skip overridden accessors contributed by supertraits (only act on the last overriding one)
+ else if (accessorConflictsExistingVal(member) || isOverriddenAccessor(member, clazz)) Nil
+ else if (member.isGetter && fieldMemoizationIn(member, clazz).stored) {
+ // add field if needed
+ val field = clazz.newValue(member.localName, member.pos) setInfo fieldTypeForGetterIn(member, clazz.thisType)
+
+ setFieldFlags(member, field)
+
+ // filter getter's annotations to exclude those only meant for the field
+ // we must keep them around long enough to see them here, though, when we create the field
+ field setAnnotations (member.annotations filter AnnotationInfo.mkFilter(FieldTargetClass, defaultRetention = true))
+
+ List(cloneAccessor(), field)
+ } else List(cloneAccessor())
+ }
+
+ // println(s"new decls for $clazz: $mixedInAccessorAndFields")
+
+ // omit fields that are not memoized, retain all other members
+ def omittableField(sym: Symbol) = sym.isValue && !sym.isMethod && !fieldMemoizationIn(sym, clazz).stored
+
+ val newDecls =
+ if (synthAccessorAndFields.isEmpty) oldDecls.filterNot(omittableField)
+ else {
+ // must not alter `decls` directly
+ val newDecls = newScope
+ val enter = newDecls enter (_: Symbol)
+ val enterAll = (_: List[Symbol]) foreach enter
+
+ oldDecls foreach { d => if (!omittableField(d)) enter(d) }
+ synthAccessorAndFields foreach enterAll
+
+ newDecls
+ }
+
+ // println(s"new decls: $newDecls")
+
+ if (newDecls eq oldDecls) tp
+ else ClassInfoType(parents, newDecls, clazz)
+
+ case tp => mapOver(tp)
+ }
+ }
+
+
+
+ class FieldsTransformer(unit: CompilationUnit) extends TypingTransformer(unit) {
+ def mkTypedUnit(pos: Position) = localTyper.typedPos(pos)(CODE.UNIT)
+ def deriveUnitDef(stat: Tree) = deriveDefDef(stat)(_ => mkTypedUnit(stat.pos))
+
+ def mkAccessor(accessor: Symbol)(body: Tree) = localTyper.typedPos(accessor.pos)(DefDef(accessor, body)).asInstanceOf[DefDef]
+
+ def mkField(sym: Symbol) = localTyper.typedPos(sym.pos)(ValDef(sym)).asInstanceOf[ValDef]
+
+
+ // synth trees for accessors/fields and trait setters when they are mixed into a class
+ def fieldsAndAccessors(exprOwner: Symbol): List[ValOrDefDef] = {
+ if (exprOwner.isLocalDummy) {
+ val clazz = exprOwner.owner
+ def fieldAccess(accessor: Symbol): Option[Tree] = {
+ val fieldName = accessor.localName
+ val field = clazz.info.decl(fieldName)
+ // The `None` result denotes an error, but we defer to refchecks to report it.
+ // This is the result of overriding a val with a def, so that no field is found in the subclass.
+ if (field.exists) Some(Select(This(clazz), field))
+ else None
+ }
+
+ def getterBody(getter: Symbol): Option[Tree] = {
+ val fieldMemoization = fieldMemoizationIn(getter, clazz)
+ if (fieldMemoization.pureConstant) Some(gen.mkAttributedQualifier(fieldMemoization.tp)) // TODO: drop when we no longer care about producing identical bytecode
+ else fieldAccess(getter)
+ }
+
+ // println(s"accessorsAndFieldsNeedingTrees for $templateSym: $accessorsAndFieldsNeedingTrees")
+ def setterBody(setter: Symbol): Option[Tree] = {
+ // trait setter in trait
+ if (clazz.isTrait) Some(EmptyTree)
+ // trait setter for overridden val in class
+ else if (checkAndClearOverridden(setter)) Some(mkTypedUnit(setter.pos))
+ // trait val/var setter mixed into class
+ else fieldAccess(setter) map (fieldSel => Assign(fieldSel, Ident(setter.firstParam)))
+ }
+
+
+ clazz.info.decls.toList.filter(checkAndClearNeedsTrees) flatMap {
+ case setter if setter.isSetter => setterBody(setter) map mkAccessor(setter)
+ case getter if getter.isAccessor => getterBody(getter) map mkAccessor(getter)
+ case field if !(field hasFlag METHOD) => Some(mkField(field)) // vals/vars and module vars (cannot have flags PACKAGE | JAVA since those never receive NEEDS_TREES)
+ case _ => None
+ }
+ } else {
+// println(s"$exprOwner : ${exprOwner.info} --> ${exprOwner.info.decls}")
+ Nil
+ }
+ }
+
+ def rhsAtOwner(stat: ValOrDefDef, newOwner: Symbol): Tree =
+ atOwner(newOwner)(super.transform(stat.rhs.changeOwner(stat.symbol -> newOwner)))
+
+ private def transformStat(exprOwner: Symbol)(stat: Tree): List[Tree] = {
+ val clazz = currentOwner
+ val statSym = stat.symbol
+
+ // println(s"transformStat $statSym in ${exprOwner.ownerChain}")
+ // currentRun.trackerFactory.snapshot()
+
+ /*
+ For traits, the getter has the val's RHS, which is already constant-folded. There is no valdef.
+ For classes, we still have the classic scheme of private[this] valdef + getter & setter that read/assign to the field.
+
+ There are two axes: (1) is there a side-effect to the val (2) does the val need storage?
+ For a ConstantType, both answers are "no". (For a unit-typed field, there's a side-effect, but no storage needed.)
+
+ All others (getter for trait field, valdef for class field) have their rhs moved to an initialization statement.
+ Trait accessors for stored fields are made abstract (there can be no field in a trait).
+ (In some future version, accessors for non-stored, but effectful fields,
+ would receive a constant rhs, as the effect is performed by the initialization statement.
+ We could do this for unit-typed fields, but have chosen not to for backwards compatibility.)
+ */
+ stat match {
+ // TODO: consolidate with ValDef case
+ case stat@DefDef(_, _, _, _, _, rhs) if (statSym hasFlag ACCESSOR) && !excludedAccessorOrFieldByFlags(statSym) =>
+ /* TODO: defer replacing ConstantTyped tree by the corresponding constant until erasure
+ (until then, trees should not be constant-folded -- only their type tracks the resulting constant)
+ TODO: also remove ACCESSOR flag since there won't be an underlying field to access?
+ */
+ def statInlinedConstantRhs =
+ if (clazz.isTrait) stat // we've already done this for traits.. the asymmetry will be solved by the above todo
+ else deriveDefDef(stat)(_ => gen.mkAttributedQualifier(rhs.tpe))
+
+ if (rhs ne EmptyTree) {
+ val fieldMemoization = fieldMemoizationIn(statSym, clazz)
+
+ // if we decide to have non-stored fields with initialization effects, the stat's RHS should be replaced by unit
+ // if (!fieldMemoization.stored) deriveUnitDef(stat) else stat
+
+ if (fieldMemoization.pureConstant) statInlinedConstantRhs :: Nil
+ else super.transform(stat) :: Nil
+ } else {
+ stat :: Nil
+ }
+
+ case stat@ValDef(mods, _, _, rhs) if !excludedAccessorOrFieldByFlags(statSym) =>
+ if (rhs ne EmptyTree) {
+ val fieldMemoization = fieldMemoizationIn(statSym, clazz)
+
+ // drop the val for (a) constant (pure & not-stored) and (b) not-stored (but still effectful) fields
+ if (fieldMemoization.pureConstant) Nil // (a)
+ else super.transform(stat) :: Nil // if (fieldMemoization.stored)
+ // else rhsAtOwner(transformStat, exprOwner) :: Nil // (b) -- not used currently
+ } else {
+ stat :: Nil
+ }
+
+
+ case tree => List(
+ if (exprOwner != currentOwner && tree.isTerm) atOwner(exprOwner)(super.transform(tree))
+ else super.transform(tree)
+ )
+ }
+ }
+
+ // TODO flatMapConserve or something like it
+ // TODO use thicket encoding of multi-tree transformStat?
+ // if (!currentOwner.isClass || currentOwner.isPackageClass || currentOwner.isInterface) stats flatMap transformStat(exprOwner) // for the ModuleDef case, the only top-level case in that method
+ // else
+ override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] =
+ afterOwnPhase {
+ fieldsAndAccessors(exprOwner) ++ (stats flatMap transformStat(exprOwner))
+ }
+ }
+}