summaryrefslogtreecommitdiff
path: root/sources/scala/tools/nsc/typechecker/Typers.scala
blob: 7cfa781624bc3e415c5cc051a92037b5beba66d4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
/* NSC -- new scala compiler
 * Copyright 2005 LAMP/EPFL
 * @author  Martin Odersky
 */
// $Id$
//todo: rewrite or disallow new T where T is a trait (currently: <init> not a member of T)
package scala.tools.nsc.typechecker;

import nsc.util.ListBuffer;
import symtab.Flags._;
import scala.tools.nsc.util.Position;
import collection.mutable.HashMap;

/** Methods to create symbols and to enter them into scopes. */
[_trait_] abstract class Typers: Analyzer {
  import global._;
  import definitions._;
  import posAssigner.atPos;

  var appcnt = 0;
  var idcnt = 0;
  var selcnt = 0;
  var implcnt = 0;
  var impltime = 0l;

  private val transformed = new HashMap[Tree, Tree];

  private val superDefs = new HashMap[Symbol, ListBuffer[Tree]];

  def resetTyper: unit = {
    resetContexts;
    transformed.clear;
    superDefs.clear;
  }

  def newTyper(context: Context): Typer = new Typer(context);

  class Typer(context0: Context) {
    import context0.unit;

    val infer = new Inferencer(context0) {
      override def isCoercible(tp: Type, pt: Type): boolean = (
        tp.isError || pt.isError ||
	context0.reportGeneralErrors && // this condition prevents chains of views
	inferView(Position.NOPOS, tp, pt, false) != EmptyTree
      )
    }

    private def inferView(pos: int, from: Type, to: Type, reportAmbiguous: boolean): Tree = {
      if (settings.debug.value) log("infer view from " + from + " to " + to);//debug
      if (phase.erasedTypes) EmptyTree
      else from match {
        case MethodType(_, _) => EmptyTree
        case OverloadedType(_, _) => EmptyTree
        case PolyType(_, _) => EmptyTree
        case _ => inferImplicit(pos, functionType(List(from), to), true, reportAmbiguous)
      }
    }

    private def inferView(pos: int, from: Type, name: Name, reportAmbiguous: boolean): Tree = {
      val to = refinedType(List(WildcardType), NoSymbol);
      val psym = (if (name.isTypeName) to.symbol.newAbstractType(pos, name)
		  else to.symbol.newValue(pos, name)) setInfo WildcardType;
      to.decls.enter(psym);
      inferView(pos, from, to, reportAmbiguous)
    }

    import infer._;

    private var namerCache: Namer = null;
    def namer = {
      if (namerCache == null || namerCache.context != context) namerCache = new Namer(context);
      namerCache
    }

    private var context = context0;

    /** Mode constants
     */
    val NOmode        = 0x000;
    val EXPRmode      = 0x001;   // these 3 modes are mutually exclusive.
    val PATTERNmode   = 0x002;
    val TYPEmode      = 0x004;

    val INCONSTRmode  = 0x008;   // orthogonal to above. When set we are
                                 // in the body of a constructor

    val FUNmode       = 0x10;    // orthogonal to above. When set
                                 // we are looking for a method or constructor

    val POLYmode      = 0x020;   // orthogonal to above. When set
                                 // expression types can be polymorphic.

    val QUALmode      = 0x040;   // orthogonal to above. When set
                                 // expressions may be packages and
                                 // Java statics modules.

    val TAPPmode      = 0x080;   // Set for the function/type constructor part
	                         // of a type application. When set we do not
	                         // decompose PolyTypes.

    val SUPERCONSTRmode = 0x100; // Set for the `super' in a superclass constructor call
                                 // super.<init>

    private val stickyModes: int  = EXPRmode | PATTERNmode | TYPEmode;

    /** Report a type error.
     *  @param pos    The position where to report the error
     *  @param ex     The exception that caused the error */
    def reportTypeError(pos: int, ex: TypeError): unit = {
      val msg = ex match {
	case CyclicReference(sym, info: TypeCompleter) =>
	  info.tree match {
	    case ValDef(_, _, tpt, _) if (tpt.tpe == null) =>
	      "recursive " + sym + " needs type"
	    case DefDef(_, _, _, _, tpt, _) if (tpt.tpe == null) =>
	      "recursive " + sym + " needs result type"
	    case _ =>
	      ex.getMessage()
	  }
	case _ =>
	  ex.getMessage()
      }
      if (settings.debug.value) ex.printStackTrace();
      if (context.reportGeneralErrors) error(pos, msg)
      else throw new Error(msg)
    }

    /** Check that tree is a stable expression.
     */
    def checkStable(tree: Tree): Tree =
      if (treeInfo.isPureExpr(tree) || tree.tpe.isError) tree;
      else errorTree(tree, "stable identifier required, but " + tree + " found.");

    /** Check that type `tp' is not a subtype of itself.
     */
    def checkNonCyclic(pos: int, tp: Type): unit = {
      def checkNotLocked(sym: Symbol): boolean = {
	sym.initialize;
	if (sym hasFlag LOCKED) {
	  error(pos, "cyclic aliasing or subtyping involving " + sym); false
	} else true
      }
      tp match {
	case TypeRef(pre, sym, args) =>
	  if (checkNotLocked(sym) && (sym.isAliasType || sym.isAbstractType)) {
	    //System.out.println("checking " + sym);//DEBUG
	    checkNonCyclic(pos, pre.memberInfo(sym).subst(sym.typeParams, args), sym);
	  }
	case SingleType(pre, sym) =>
	  checkNotLocked(sym)
	case st: SubType =>
	  checkNonCyclic(pos, st.supertype)
	case ct: CompoundType =>
	  for (val p <- ct.parents) checkNonCyclic(pos, p)
	case _ =>
      }
    }

    def checkNonCyclic(pos: int, tp: Type, lockedSym: Symbol): unit = {
      lockedSym.setFlag(LOCKED);
      checkNonCyclic(pos, tp);
      lockedSym.resetFlag(LOCKED)
    }

    /** Check that type of given tree does not contain local or private components
     */
    object checkNoEscaping extends TypeMap {
      private var owner: Symbol = _;
      private var scope: Scope = _;
      private var badSymbol: Symbol = _;

      /** Check that type `tree' does not refer to private components unless itself is wrapped
       *  in something private (`owner' tells where the type occurs). */
      def privates[T <: Tree](owner: Symbol, tree: T): T = {
	check(owner, EmptyScope, tree);
      }

      /**  Check that type `tree' does not refer to entities defined in scope `scope'. */
      def locals[T <: Tree](scope: Scope, pt: Type, tree: T): T =
        if (isFullyDefined(pt)) tree setType pt else check(NoSymbol, scope, tree);

      def check[T <: Tree](owner: Symbol, scope: Scope, tree: T): T = {
        this.owner = owner;
        this.scope = scope;
        badSymbol = NoSymbol;
	assert(tree.tpe != null, tree);//debug
        apply(tree.tpe);
        if (badSymbol == NoSymbol) tree
        else {
          error(tree.pos,
                (if (badSymbol.hasFlag(PRIVATE)) "private " else "") + badSymbol +
                " escapes its defining scope as part of type " + tree.tpe);
          setError(tree)
        }
      }

      override def apply(t: Type): Type = {
        def checkNoEscape(sym: Symbol): unit = {
          if (sym.hasFlag(PRIVATE)) {
            var o = owner;
            while (o != NoSymbol && o != sym.owner && !o.isLocal && !o.hasFlag(PRIVATE))
              o = o.owner;
            if (o == sym.owner) badSymbol = sym
          } else if (sym.owner.isTerm) {
            val e = scope.lookupEntry(sym.name);
            if (e != null && e.sym == sym && e.owner == scope && !e.sym.isTypeParameterOrSkolem)
              badSymbol = e.sym
          }
        }
        if (badSymbol == NoSymbol)
          t match {
            case TypeRef(_, sym, _) => checkNoEscape(sym)
            case SingleType(_, sym) => checkNoEscape(sym)
            case _ =>
          }
        mapOver(t)
      }
    }

    def reenterValueParams(vparamss: List[List[ValDef]]): unit =
      for (val vparams <- vparamss; val vparam <- vparams) context.scope enter vparam.symbol;

    def reenterTypeParams(tparams: List[AbsTypeDef]): List[Symbol] =
      for (val tparam <- tparams) yield {
	context.scope enter tparam.symbol;
	tparam.symbol.deSkolemize
      }

    def attrInfo(attr: Tree): AttrInfo = attr match {
      case Apply(Select(New(tpt), nme.CONSTRUCTOR), args) =>
        Pair(tpt.tpe, args map {
          case Literal(value) =>
            value
          case arg =>
            error(arg.pos, "attribute argument needs to be a constant; found: " + arg);
            null
        })
    }

    /** Post-process an identifier or selection node, performing the following:
     *  (1) Check that non-function pattern expressions are stable
     *  (2) Check that packages and static modules are not used as values
     *  (3) Turn tree type into stable type if possible and required by context. */
    private def stabilize(tree: Tree, pre: Type, mode: int, pt: Type): Tree = {
      if (tree.symbol.hasFlag(OVERLOADED) && (mode & FUNmode) == 0)
	inferExprAlternative(tree, pt);
      val sym = tree.symbol;
      if ((mode & (PATTERNmode | FUNmode)) == PATTERNmode && tree.isTerm) { // (1)
        checkStable(tree)
      } else if ((mode & (EXPRmode | QUALmode)) == EXPRmode && !sym.isValue) { // (2)
        errorTree(tree, sym.toString() + " is not a value");
      } else if (sym.isStable && pre.isStable && tree.tpe.symbol != ByNameParamClass &&
	         (pt.isStable || (mode & QUALmode) != 0 && !sym.isConstant ||
		  sym.isModule && !sym.isMethod)) {
	tree.setType(singleType(pre, sym))
      } else tree
    }

    def stabilizeFun(tree: Tree, mode: int, pt: Type): Tree = {
      val sym = tree.symbol;
      val pre = tree match {
	case Select(qual, _) => qual.tpe
	case _ => NoPrefix
      }
      if (tree.tpe.isInstanceOf[MethodType] && pre.isStable &&
	  (pt.isStable || (mode & QUALmode) != 0 && !sym.isConstant || sym.isModule)) {
	assert(sym.tpe.paramTypes.isEmpty);
	tree.setType(MethodType(List(), singleType(pre, sym)))
      } else tree
    }

    /** Perform the following adaptations of expression, pattern or type `tree' wrt to
     *  given mode `mode' and given prototype `pt':
     *  (0) Convert expressions with constant types to literals
     *  (1) Resolve overloading, unless mode contains FUNmode
     *  (2) Apply parameterless functions
     *  (3) Apply polymorphic types to fresh instances of their type parameters and
     *      store these instances in context.undetparams,
     *      unless followed by explicit type application.
     *  (4) Do the following to unapplied methods used as values:
     *  (4.1) If the method has only implicit parameters pass implicit arguments
     *  (4.2) otherwise, convert to function by eta-expansion,
     *        except if the method is a constructor, in which case we issue an error.
     *  (5) Convert a class type that serves as a constructor in a pattern as follows:
     *  (5.1) If this type refers to a case class, set tree's type to the unique
     *        instance of its primary constructor that is a subtype of the expected type.
     *  (5.2) Otherwise, if this type is a subtype of scala.Seq[A], set trees' type
     *        to a method type from a repeated parameter sequence type A* to the expected type.
     *  (6) Convert all other types to TypeTree nodes.
     *  (7) When in TYPEmode nut not FUNmode, check that types are fully parameterized
     *  (8) When in both EXPRmode and FUNmode, add apply method calls to values of object type.
     *  (9) If there are undetermined type variables and not POLYmode, infer expression instance
     *  Then, if tree's type is not a subtype of expected type, try the following adaptations:
     *  (10) If the expected type is byte, short or char, and the expression
     *      is an integer fitting in the range of that type, convert it to that type.
     *  (11) Widen numeric literals to their expected type, if necessary
     *  (12) When in mode EXPRmode, convert E to { E; () } if expected type is Scala.unit.
     *  (13) When in mode EXPRmode, apply a view
     *  If all this fails, error
     */
//    def adapt(tree: Tree, mode: int, pt: Type): Tree = {
    protected def adapt(tree: Tree, mode: int, pt: Type): Tree = tree.tpe match {
      case ct @ ConstantType(value) if ((mode & TYPEmode) == 0 && (ct <:< pt)) => // (0)
	copy.Literal(tree, value)
      case OverloadedType(pre, alts) if ((mode & FUNmode) == 0) => // (1)
	inferExprAlternative(tree, pt);
	adapt(tree, mode, pt)
      case PolyType(List(), restpe) => // (2)
	adapt(tree setType restpe, mode, pt);
      case TypeRef(_, sym, List(arg))
      if ((mode & EXPRmode) != 0 && sym == ByNameParamClass) => // (2)
	adapt(tree setType arg, mode, pt);
      case PolyType(tparams, restpe) if ((mode & TAPPmode) == 0) => // (3)
	val tparams1 = cloneSymbols(tparams);
        val tree1 = if (tree.isType) tree
                    else TypeApply(tree, tparams1 map (tparam =>
                      TypeTree(tparam.tpe) setPos tree.pos)) setPos tree.pos;
	context.undetparams = context.undetparams ::: tparams1;
	adapt(tree1 setType restpe.substSym(tparams, tparams1), mode, pt)
      case mt: ImplicitMethodType if ((mode & (EXPRmode | FUNmode)) == EXPRmode) => // (4.1)
	val tree1 =
	  if (!context.undetparams.isEmpty & (mode & POLYmode) == 0) { // (9)
	    val tparams = context.undetparams;
	    context.undetparams = List();
	    inferExprInstance(tree, tparams, pt);
	    adapt(tree, mode, pt)
	  } else tree;
	typed(applyImplicitArgs(tree1), mode, pt)
      case mt: MethodType if ((mode & (EXPRmode | FUNmode)) == EXPRmode &&
	                      isCompatible(tree.tpe, pt)) => // (4.2)
	if (tree.symbol.isConstructor || pt == WildcardType ||
            !(pt <:< functionType(mt.paramTypes map (t => WildcardType), WildcardType))) {
          errorTree(tree, "missing arguments for " + tree.symbol) //debug
	} else {
          if (settings.debug.value) log("eta-expanding " + tree + ":" + tree.tpe + " to " + pt);//debug
	  typed(etaExpand(tree), mode, pt)
	}
      case _ =>
	if (tree.isType) {
	  val clazz = tree.tpe.symbol;
	  if ((mode & PATTERNmode) != 0) { // (5)
	    if (tree.tpe.isInstanceOf[MethodType]) {
	      tree // everything done already
	    } else {
	      clazz.initialize;
	      if (clazz.hasFlag(CASE)) {   // (5.1)
		val tree1 = TypeTree(clazz.primaryConstructor.tpe.asSeenFrom(tree.tpe.prefix, clazz.owner)) setOriginal(tree);


		// tree.tpe.prefix.memberType(clazz.primaryConstructor); //!!!
		inferConstructorInstance(tree1, clazz.unsafeTypeParams, pt);
		tree1
	      } else if (clazz.isSubClass(SeqClass)) { // (5.2)
		pt.baseType(clazz).baseType(SeqClass) match {
		  case TypeRef(pre, seqClass, args) =>
		    tree.setType(MethodType(List(typeRef(pre, RepeatedParamClass, args)), pt))
		  case NoType =>
		    errorTree(tree, "expected pattern type " + pt +
			      " does not conform to sequence " + clazz)
		}
	      } else {
		if (!tree.tpe.isError)
		  error(tree.pos, clazz.toString() + " is neither a case class nor a sequence class");
		setError(tree)
	      }
	    }
	  } else if ((mode & FUNmode) != 0) {
	    tree
	  } else if (tree.hasSymbol && !tree.symbol.unsafeTypeParams.isEmpty) { // (7)
            errorTree(tree, "" + clazz + " takes type parameters");
          } else tree match { // (6)
            case TypeTree() => tree
            case _ => TypeTree(tree.tpe) setOriginal(tree)
          }
	} else if ((mode & (EXPRmode | FUNmode)) == (EXPRmode | FUNmode) &&
                   !tree.tpe.isInstanceOf[MethodType] && !tree.tpe.isInstanceOf[OverloadedType] &&
                   ((mode & TAPPmode) == 0 || tree.tpe.typeParams.isEmpty) &&
                   adaptToName(tree, nme.apply).tpe.nonLocalMember(nme.apply)
                     .filter(m => m.tpe.paramSectionCount > 0) != NoSymbol) { // (8)
	  typed(atPos(tree.pos)(Select(adaptToName(tree, nme.apply), nme.apply)), mode, pt)
	} else if (!context.undetparams.isEmpty & (mode & POLYmode) == 0) { // (9)
	    val tparams = context.undetparams;
	    context.undetparams = List();
	    inferExprInstance(tree, tparams, pt);
	    adapt(tree, mode, pt)
	} else if (tree.tpe <:< pt) {
	  tree
	} else {
	  val tree1 = constfold(tree, pt); // (10) (11)
	  if (tree1.tpe <:< pt) adapt(tree1, mode, pt)
	  else {
            if ((mode & (EXPRmode | FUNmode)) == EXPRmode) {
              pt match {
                case TypeRef(_, sym, _) =>
                  // note: was if (pt.symbol == UnitClass) but this leads to a potentially
                  // infinite expansion if pt is constant type ()
                  if (sym == UnitClass && tree.tpe <:< AnyClass.tpe) // (12)
                    return typed(atPos(tree.pos)(Block(List(tree), Literal(()))), mode, pt)
                case _ =>
              }
	      if (context.reportGeneralErrors && !tree.tpe.isError && !pt.isError) {
		// (13); the condition prevents chains of views
                if (settings.debug.value) log("inferring view from " + tree.tpe + " to " + pt);
	        val coercion = inferView(tree.pos, tree.tpe, pt, true);
	        if (coercion != EmptyTree) {
		  if (settings.debug.value) log("inferred view from " + tree.tpe + " to " + pt + " = " + coercion + ":" + coercion.tpe);
		  return typed(Apply(coercion, List(tree)) setPos tree.pos, mode, pt);
		}
	      }
            }
            if (settings.debug.value) log("error tree = " + tree);
	    typeErrorTree(tree, tree.tpe, pt)
          }
	}
    }
//      System.out.println("adapt " + tree + ":" + tree.tpe + ", mode = " + mode + ", pt = " + pt);
//      adapt(tree, mode, pt)
//    }

    def adaptToName(qual: Tree, name: Name): Tree =
      if (qual.isTerm && (qual.symbol == null || qual.symbol.isValue) &&
          !phase.erasedTypes && !qual.tpe.widen.isError &&
          qual.tpe.nonLocalMember(name) == NoSymbol) {
	val coercion = inferView(qual.pos, qual.tpe, name, true);
	if (coercion != EmptyTree) typedQualifier(atPos(qual.pos)(Apply(coercion, List(qual))))
        else qual
      } else qual;

    private def completeSuperType(supertpt: Tree, tparams: List[Symbol], enclTparams: List[Symbol], vparamss: List[List[ValDef]], superargs: List[Tree]): Type = {
      enclTparams foreach context.scope.enter;
      namer.enterValueParams(context.owner, vparamss);
      val newTree = New(supertpt)
        .setType(PolyType(tparams, appliedType(supertpt.tpe, tparams map (.tpe))));
      val tree = typed(atPos(supertpt.pos)(Apply(Select(newTree, nme.CONSTRUCTOR), superargs)));
      if (settings.debug.value) log("superconstr " + tree + " co = " + context.owner);//debug
      tree.tpe
    }

    def parentTypes(templ: Template): List[Tree] = try {
      if (templ.parents.isEmpty) List()
      else {
	var supertpt = typedTypeConstructor(templ.parents.head);
	var mixins = templ.parents.tail map typedType;
	// If first parent is trait, make it first mixin and add its superclass as first parent
	while (supertpt.tpe.symbol != null && supertpt.tpe.symbol.initialize.isTrait) {
	  mixins = typedType(supertpt) :: mixins;
	  supertpt = TypeTree(supertpt.tpe.parents.head) setPos supertpt.pos;
	}
	if (supertpt.hasSymbol) {
	  val tparams = supertpt.symbol.typeParams;
	  if (!tparams.isEmpty) {
	    val constr @ DefDef(_, _, _, vparamss, _, Apply(_, superargs)) =
	      treeInfo.firstConstructor(templ.body);
	    val outercontext = context.outer;
	    supertpt = TypeTree(
	      newTyper(outercontext.makeNewScope(constr, outercontext.owner/*.newValue(templ.pos, newTermName("<dummy>"))*/))
		.completeSuperType(
		  supertpt,
                  tparams,
		  context.owner.unsafeTypeParams,
		  vparamss map (.map(.duplicate.asInstanceOf[ValDef])),
		  superargs map (.duplicate))) setPos supertpt.pos;
	  }
	}
	//System.out.println("parents(" + context.owner + ") = " + supertpt :: mixins);//DEBUG
	List.mapConserve(supertpt :: mixins)(tpt => checkNoEscaping.privates(context.owner, tpt))
      }
    } catch {
      case ex: TypeError =>
	reportTypeError(templ.pos, ex);
	List(TypeTree(AnyRefClass.tpe))
    }

    /** Check that
     *  - all parents are class types,
     *  - first parent cluss is not a trait; following classes are traits,
     *  - final classes are not inherited,
     *  - sealed classes are only inherited by classes which are
     *    nested within definition of base class, or that occur within same
     *    statement sequence,
     *  - self-type of current class is a subtype of self-type of each parent class.
     *  - no two parents define same symbol.
     */
    def validateParentClasses(parents: List[Tree], selfType: Type): unit = {
      var c = context;
      do { c = c.outer } while (c.owner == context.owner);
      val defscope = c.scope;

      def validateParentClass(parent: Tree, isFirst: boolean): unit =
	if (!parent.tpe.isError) {
	  val psym = parent.tpe.symbol.initialize;
	  if (!psym.isClass)
	    error(parent.pos, "class type expected");
	  else if (!isFirst && !psym.isTrait)
	    error(parent.pos, "" + psym + " is not a trait; cannot be used as mixin");
	  else if (psym.hasFlag(FINAL))
	    error(parent.pos, "illegal inheritance from final class");
	  else if (psym.isSealed && !phase.erasedTypes) {
	    // are we in same scope as base type definition?
	    val e = defscope.lookupEntry(psym.name);
	    if (!(e != null && e.sym == psym && e.owner == defscope)) {
	      // we are not within same statement sequence
	      var c = context;
	      while (c != NoContext && c.owner !=  psym) c = c.outer.enclClass;
	      if (c == NoContext) error(parent.pos, "illegal inheritance from sealed " + psym)
	    }
	  }
	  if (!(selfType <:< parent.tpe.typeOfThis) && !phase.erasedTypes) {
	    System.out.println(context.owner);//debug
            System.out.println(context.owner.unsafeTypeParams);//debug
            System.out.println(List.fromArray(context.owner.info.closure));//debug
	    error(parent.pos, "illegal inheritance;\n self-type " +
		  selfType + " does not conform to " + parent +
		  "'s selftype " + parent.tpe.typeOfThis);
	    if (settings.explaintypes.value) explainTypes(selfType, parent.tpe.typeOfThis);
	  }
	  if (parents exists (p => p != parent && p.tpe.symbol == psym && !psym.isError))
	    error(parent.pos, "" + psym + " is inherited twice")
	}

      if (!parents.isEmpty) {
        validateParentClass(parents.head, true);
        for (val p <- parents.tail) validateParentClass(p, false);
      }
    }

    def typedClassDef(cdef: ClassDef): Tree = {
      val clazz = cdef.symbol;
      reenterTypeParams(cdef.tparams);
      val tparams1 = List.mapConserve(cdef.tparams)(typedAbsTypeDef);
      val tpt1 = checkNoEscaping.privates(clazz.thisSym, typedType(cdef.tpt));
      val impl1 = newTyper(context.make(cdef.impl, clazz, new Scope()))
        .typedTemplate(cdef.impl, parentTypes(cdef.impl));
      val impl2 = addSyntheticMethods(impl1, clazz);
      val ret = copy.ClassDef(cdef, cdef.mods, cdef.name, tparams1, tpt1, impl2)
	.setType(NoType);
      ret;
    }

    def typedModuleDef(mdef: ModuleDef): Tree = {
      val clazz = mdef.symbol.moduleClass;
      val impl1 = newTyper(context.make(mdef.impl, clazz, new Scope()))
        .typedTemplate(mdef.impl, parentTypes(mdef.impl));
      val impl2 = addSyntheticMethods(impl1, clazz);

      copy.ModuleDef(mdef, mdef.mods, mdef.name, impl2) setType NoType
    }

    def addGetterSetter(stat: Tree): List[Tree] = stat match {
      case ValDef(mods, name, tpe, rhs) if (mods & LOCAL) == 0 && !stat.symbol.isModuleVar =>
	val vdef = copy.ValDef(stat, mods | PRIVATE | LOCAL, nme.getterToLocal(name), tpe, rhs);
        val value = vdef.symbol;
        val getter = if ((mods & DEFERRED) != 0) value else value.getter(value.owner);
	if (getter hasFlag OVERLOADED) System.out.println("overloaded getter: " + getter.alternatives + getter.alternatives.map(.tpe));//debug
        assert(getter != NoSymbol, value);//debug
	val getterDef: DefDef = {
	  val result = atPos(vdef.pos)(
	    DefDef(getter, vparamss =>
	      if ((mods & DEFERRED) != 0) EmptyTree
	      else typed(atPos(vdef.pos)(Select(This(value.owner), value)), EXPRmode, value.tpe)));
          checkNoEscaping.privates(getter, result.tpt);
          result
	}
	def setterDef: DefDef = {
	  val setter = value.owner.info.decl(nme.getterToSetter(getter.name));
          assert(setter != NoSymbol, getter);//debug
          atPos(vdef.pos)(
	    DefDef(setter, vparamss =>
	      if ((mods & DEFERRED) != 0) EmptyTree
	      else typed(Assign(Select(This(value.owner), value),
				Ident(vparamss.head.head)))))
	}
	val gs = if ((mods & MUTABLE) != 0) List(getterDef, setterDef)
                 else List(getterDef);
	if ((mods & DEFERRED) != 0) gs else vdef :: gs
      case DocDef(comment, defn) =>
	addGetterSetter(defn) map (stat => DocDef(comment, stat))
      case Attributed(attr, defn) =>
	addGetterSetter(defn) map (stat => Attributed(attr.duplicate, stat))
      case _ =>
	List(stat)
    }

    def typedTemplate(templ: Template, parents1: List[Tree]): Template = {
      val clazz = context.owner;
      if (templ.symbol == NoSymbol) templ setSymbol clazz.newLocalDummy(templ.pos);
      val selfType =
        if (clazz.isAnonymousClass && !phase.erasedTypes)
          intersectionType(clazz.info.parents, clazz.owner)
        else if (settings.Xgadt.value) clazz.typeOfThis.asSeenFrom(context.prefix, clazz)
        else clazz.typeOfThis;
      // the following is necessary for templates generated later
      new Namer(context.outer.make(templ, clazz, clazz.info.decls)).enterSyms(templ.body);
      validateParentClasses(parents1, selfType);
      val body1 = typedStats(templ.body flatMap addGetterSetter, templ.symbol);
      copy.Template(templ, parents1, body1) setType clazz.tpe
    }

    def typedValDef(vdef: ValDef): ValDef = {
      val sym = vdef.symbol;
      val typer1 = if (sym.hasFlag(PARAM) && sym.owner.isConstructor)
                     newTyper(context.makeConstructorContext)
                   else this;
      var tpt1 = checkNoEscaping.privates(sym, typer1.typedType(vdef.tpt));
      checkNonCyclic(vdef.pos, tpt1.tpe, sym);
      val rhs1 =
        if (vdef.rhs.isEmpty) {
          if (sym.isVariable && sym.owner.isTerm && phase.id <= currentRun.typerPhase.id)
            error(vdef.pos, "local variables must be initialized");
          vdef.rhs
        } else {
          newTyper(context.make(vdef, sym)).transformedOrTyped(vdef.rhs, tpt1.tpe)
        }
      copy.ValDef(vdef, vdef.mods, vdef.name, tpt1, rhs1) setType NoType
    }

    /** Enter all aliases of local parameter accessors. */
    def computeParamAliases(clazz: Symbol, vparamss: List[List[ValDef]], rhs: Tree): unit = {
      if (settings.debug.value) log("computing param aliases for " + clazz + ":" + clazz.primaryConstructor.tpe + ":" + rhs);//debug
      def decompose(call: Tree): Pair[Tree, List[Tree]] = call match {
	case Apply(fn, args) =>
	  val Pair(superConstr, args1) = decompose(fn);
	  val formals = fn.tpe.paramTypes;
	  val args2 = if (formals.isEmpty || formals.last.symbol != RepeatedParamClass) args
		      else args.take(formals.length - 1) ::: List(EmptyTree);
	  if (args2.length != formals.length) assert(false, "mismatch " + clazz + " " + formals + " " + args2);//debug
	  Pair(superConstr, args1 ::: args2)
	case Block(stats, expr) =>
	  decompose(stats.head)
	case _ =>
	  Pair(call, List())
      }
      val Pair(superConstr, superArgs) = decompose(rhs);
      assert(superConstr.symbol != null);//debug
      if (superConstr.symbol.isPrimaryConstructor) {
	val superClazz = superConstr.symbol.owner;
        if (!superClazz.hasFlag(JAVA)) {
	  val superParamAccessors = superClazz.constrParamAccessors;
	  if (superParamAccessors.length != superArgs.length) {
	    System.out.println("" + superClazz + ":" + superClazz.info.decls.toList.filter(.hasFlag(PARAMACCESSOR)));
	    assert(false, "mismatch: " + superParamAccessors + ";" + rhs + ";" + superClazz.info.decls); //debug
	  }
	  List.map2(superParamAccessors, superArgs) { (superAcc, superArg) =>
	    superArg match {
	      case Ident(name) =>
	        if (vparamss.exists(.exists(vp => vp.symbol == superArg.symbol))) {
		  var alias = superAcc.initialize.alias;
		  if (alias == NoSymbol)
                    alias = superAcc.getter(superAcc.owner);
		  if (alias != NoSymbol &&
		      superClazz.info.nonPrivateMember(alias.name) != alias)
		    alias = NoSymbol;
		  if (alias != NoSymbol) {
		    var ownAcc = clazz.info.decl(name);
		    if (ownAcc hasFlag ACCESSOR) ownAcc = ownAcc.accessed;
		    if (settings.debug.value) log("" + ownAcc + " has alias " + alias + alias.locationString);//debug
		    ownAcc.asInstanceOf[TermSymbol].setAlias(alias)
		  }
	        }
	      case _ =>
	    }
          }
	  ()
        }
      }
    }

    def typedSuperCall(tree: Tree): Tree =
      typed(tree, EXPRmode | INCONSTRmode, UnitClass.tpe);

    def typedDefDef(ddef: DefDef): DefDef = {
      val meth = ddef.symbol;
      reenterTypeParams(ddef.tparams);
      reenterValueParams(ddef.vparamss);
      val tparams1 = List.mapConserve(ddef.tparams)(typedAbsTypeDef);
      val vparamss1 = List.mapConserve(ddef.vparamss)(vparams1 =>
	List.mapConserve(vparams1)(typedValDef));
      for (val vparams <- vparamss1; val vparam <- vparams) {
	checkNoEscaping.locals(context.scope, WildcardType, vparam.tpt); ()
      }
      var tpt1 =
	checkNoEscaping.locals(context.scope, WildcardType,
	  checkNoEscaping.privates(meth,
	      typedType(ddef.tpt)));
      checkNonCyclic(ddef.pos, tpt1.tpe, meth);
      val rhs1 =
	if (ddef.name == nme.CONSTRUCTOR) {
	  if (!meth.hasFlag(SYNTHETIC) &&
	      !(meth.owner.isClass ||
		meth.owner.isModuleClass ||
		meth.owner.isAnonymousClass ||
		meth.owner.isRefinementClass))
	    error(ddef.pos, "constructor definition not allowed here " + meth.owner);//debug
          val result = ddef.rhs match {
            case Block(stat :: stats, expr) =>
              val stat1 = typedSuperCall(stat);
              newTyper(context.makeConstructorSuffixContext).typed(
                copy.Block(ddef.rhs, stats, expr), UnitClass.tpe) match {
                case block1 @ Block(stats1, expr1) =>
                  copy.Block(block1, stat1 :: stats1, expr1)
              }
            case _ =>
              typedSuperCall(ddef.rhs)
          }
	  if (meth.isPrimaryConstructor && !phase.erasedTypes && reporter.errors == 0)
	    computeParamAliases(meth.owner, vparamss1, result);
	  result
	} else transformedOrTyped(ddef.rhs, tpt1.tpe);
      copy.DefDef(ddef, ddef.mods, ddef.name, tparams1, vparamss1, tpt1, rhs1) setType NoType
    }

    def typedAbsTypeDef(tdef: AbsTypeDef): AbsTypeDef = {
      val lo1 = checkNoEscaping.privates(tdef.symbol, typedType(tdef.lo));
      val hi1 = checkNoEscaping.privates(tdef.symbol, typedType(tdef.hi));
      checkNonCyclic(tdef.pos, tdef.symbol.tpe);
      copy.AbsTypeDef(tdef, tdef.mods, tdef.name, lo1, hi1) setType NoType
    }

    def typedAliasTypeDef(tdef: AliasTypeDef): AliasTypeDef = {
      reenterTypeParams(tdef.tparams);
      val tparams1 = List.mapConserve(tdef.tparams)(typedAbsTypeDef);
      val rhs1 = checkNoEscaping.privates(tdef.symbol, typedType(tdef.rhs));
      checkNonCyclic(tdef.pos, tdef.symbol.tpe);
      copy.AliasTypeDef(tdef, tdef.mods, tdef.name, tparams1, rhs1) setType NoType
    }

    private def enterLabelDef(stat: Tree): unit = stat match {
      case ldef @ LabelDef(_, _, _) =>
        if (ldef.symbol == NoSymbol)
          ldef.symbol = namer.enterInScope(
            context.owner.newLabel(ldef.pos, ldef.name) setInfo MethodType(List(), UnitClass.tpe));
      case _ =>
    }

    def typedLabelDef(ldef: LabelDef): LabelDef = {
      val restpe = ldef.symbol.tpe.resultType;
      val rhs1 = typed(ldef.rhs, restpe);
      ldef.params foreach (param => param.tpe = param.symbol.tpe);
      copy.LabelDef(ldef, ldef.name, ldef.params, rhs1) setType restpe
    }

    def typedBlock(block: Block, mode: int, pt: Type): Block = {
      namer.enterSyms(block.stats);
      block.stats foreach enterLabelDef;
      val stats1 = typedStats(block.stats, context.owner);
      val expr1 = typed(block.expr, mode & ~(FUNmode | QUALmode), pt);
      val block1 = copy.Block(block, stats1, expr1)
        .setType(if (treeInfo.isPureExpr(block)) expr1.tpe else expr1.tpe.deconst);
      if (isFullyDefined(pt)) block1
      else {
	if (block1.tpe.symbol.isAnonymousClass)
	  block1 setType intersectionType(block1.tpe.parents, block1.tpe.symbol.owner);
	checkNoEscaping.locals(context.scope, pt, block1)
      }
    }

    def typedCase(cdef: CaseDef, pattpe: Type, pt: Type): CaseDef = {
      val pat1: Tree = typedPattern(cdef.pat, pattpe);
      val guard1: Tree = if (cdef.guard == EmptyTree) EmptyTree
	                 else typed(cdef.guard, BooleanClass.tpe);
      var body1: Tree = typed(cdef.body, pt);
      if (!context.savedTypeBounds.isEmpty) {
        context.restoreTypeBounds;
        // the following is a hack to make the pattern matcher work
        body1 =
          typed {
            atPos(body1.pos) {
              TypeApply(Select(body1, Any_asInstanceOf), List(TypeTree(pt)))
            }
          }
      }
      copy.CaseDef(cdef, pat1, guard1, body1) setType body1.tpe
    }

    def typedCases(tree: Tree, cases: List[CaseDef], pattp: Type, pt: Type): List[CaseDef] = {
      List.mapConserve(cases)(cdef =>
	newTyper(context.makeNewScope(cdef, context.owner)).typedCase(cdef, pattp, pt))
    }

    def typedFunction(fun: Function, mode: int, pt: Type): Tree = {
      def decompose(pt: Type): Triple[Symbol, List[Type], Type] =
	if (isFunctionType(pt)
	    ||
            pt.symbol == PartialFunctionClass &&
            fun.vparams.length == 1 && fun.body.isInstanceOf[Match])
          Triple(pt.symbol, pt.typeArgs.init, pt.typeArgs.last)
        else
          Triple(FunctionClass(fun.vparams.length), fun.vparams map (x => NoType), WildcardType);

      val Triple(clazz, argpts, respt) =
        decompose(if (pt.symbol == TypedCodeClass) pt.typeArgs.head else pt);

      val vparamSyms = List.map2(fun.vparams, argpts) { (vparam, argpt) =>
        if (vparam.tpt.isEmpty)
          vparam.tpt.tpe =
            if (argpt == NoType) { error(vparam.pos, "missing parameter type"); ErrorType }
	    else argpt;
        namer.enterSym(vparam);
	vparam.symbol
      }
      val vparams = List.mapConserve(fun.vparams)(typedValDef);
      for (val vparam <- vparams) {
	checkNoEscaping.locals(context.scope, WildcardType, vparam.tpt); ()
      }
      val body = checkNoEscaping.locals(context.scope, respt, typed(fun.body, respt));
      val formals = vparamSyms map (.tpe);
      val restpe = body.tpe.deconst;
      val funtpe = typeRef(clazz.tpe.prefix, clazz, formals ::: List(restpe));
      val fun1 = copy.Function(fun, vparams, checkNoEscaping.locals(context.scope, restpe, body))
        .setType(funtpe);
      if (pt.symbol == TypedCodeClass) typed(atPos(fun.pos)(codify(fun1)))
      else fun1
    }

    def typedRefinement(stats: List[Tree]): List[Tree] = {
      namer.enterSyms(stats);
      for (val stat <- stats) stat.symbol setFlag OVERRIDE;
      typedStats(stats, NoSymbol);
    }

    def typedStats(stats: List[Tree], exprOwner: Symbol): List[Tree] =
      List.mapConserve(stats) { stat =>
        if (context.owner.isRefinementClass && !treeInfo.isDeclaration(stat))
	  errorTree(stat, "only declarations allowed here");
	stat match {
	  case imp @ Import(_, _) =>
	    context = context.makeNewImport(imp);
	    stat.symbol.initialize;
	    EmptyTree
	  case _ =>
	    (if (exprOwner != context.owner && (!stat.isDef || stat.isInstanceOf[LabelDef]))
	      newTyper(context.make(stat, exprOwner)) else this).typed(stat)
	}
      }

    protected def typed1(tree: Tree, mode: int, pt: Type): Tree = {

      def funmode = mode & stickyModes | FUNmode | POLYmode;

      def ptOrLub(tps: List[Type]) = if (isFullyDefined(pt)) pt else lub(tps);

      def typedTypeApply(fun: Tree, args: List[Tree]): Tree = fun.tpe match {
	case OverloadedType(pre, alts) =>
          inferPolyAlternatives(fun, args.length);
          typedTypeApply(fun, args)
        case PolyType(tparams, restpe) if (tparams.length != 0) =>
          if (tparams.length == args.length) {
            val targs = args map (.tpe);
            checkBounds(tree.pos, tparams, targs, "");
	    copy.TypeApply(tree, fun, args) setType restpe.subst(tparams, targs);
          } else {
            errorTree(tree, "wrong number of type parameters for " + treeSymTypeMsg(fun))
          }
	case ErrorType =>
	  setError(tree)
	case _ =>
	  System.out.println(fun.toString() + " " + args);//debug
          errorTree(tree, treeSymTypeMsg(fun) + " does not take type parameters.");
        }

      def typedArg(arg: Tree, pt: Type): Tree = {
        val argTyper = if ((mode & INCONSTRmode) != 0) newTyper(context.makeConstructorContext)
                       else this;
        argTyper.typed(arg, mode & stickyModes, pt)
      }

      def typedApply(fun: Tree, args: List[Tree]): Tree = fun.tpe match {
        case OverloadedType(pre, alts) =>
          val args1 = List.mapConserve(args)(arg =>
            typedArg(arg, WildcardType));
          inferMethodAlternative(fun, context.undetparams, args1 map (.tpe.deconst), pt);
          typedApply(adapt(fun, funmode, WildcardType), args1);
        case MethodType(formals0, restpe) =>
          val formals = formalTypes(formals0, args.length);
          if (formals.length != args.length) {
	    //System.out.println("" + formals.length + " " + args.length);//DEBUG
            errorTree(tree, "wrong number of arguments for " + treeSymTypeMsg(fun))
          } else {
            val tparams = context.undetparams;
            context.undetparams = List();
            if (tparams.isEmpty) {
              val args1 = List.map2(args, formals)(typedArg);
	      def ifPatternSkipFormals(tp: Type) = tp match {
		case MethodType(_, rtp) if ((mode & PATTERNmode) != 0) => rtp
		case _ => tp
	      }
              constfold(copy.Apply(tree, fun, args1).setType(ifPatternSkipFormals(restpe)));
	    } else {
	      assert((mode & PATTERNmode) == 0); // this case cannot arise for patterns
              val lenientTargs = protoTypeArgs(tparams, formals, restpe, pt);
              val strictTargs = List.map2(lenientTargs, tparams)((targ, tparam) =>
                if (targ == WildcardType) tparam.tpe else targ);
              def typedArgToPoly(arg: Tree, formal: Type): Tree = {
	        val lenientPt = formal.subst(tparams, lenientTargs);
	        val arg1 = typedArg(arg, lenientPt);
	        val argtparams = context.undetparams;
	        context.undetparams = List();
	        if (!argtparams.isEmpty) {
	          val strictPt = formal.subst(tparams, strictTargs);
	          inferArgumentInstance(arg1, argtparams, strictPt, lenientPt);
	        }
	        arg1
              }
              val args1 = List.map2(args, formals)(typedArgToPoly);
              if (args1 exists (.tpe.isError)) setError(tree)
              else {
                if (settings.debug.value) log("infer method inst " + fun + ", tparams = " + tparams + ", args = " + args1.map(.tpe) + ", pt = " + pt + ", lobounds = " + tparams.map(.tpe.bounds.lo));//debug
                val undetparams = inferMethodInstance(fun, tparams, args1, pt);
                val result = typedApply(fun, args1);
                context.undetparams = undetparams;
                result
              }
            }
          }
        case ErrorType =>
          setError(tree)
        case _ =>
	  errorTree(tree, "" + fun + " does not take parameters");
      }

      /** The qualifying class of a this or super with prefix `qual' */
      def qualifyingClassContext(qual: Name): Context = {
        if (qual == nme.EMPTY.toTypeName) {
          if (context.enclClass.owner.isPackageClass)
            error(tree.pos, "" + tree + " can be used only in a class, object, or template");
          context.enclClass
        } else {
          var c = context.enclClass;
          while (c != NoContext && c.owner.name != qual) c = c.outer.enclClass;
          if (c == NoContext) error(tree.pos, "" + qual + " is not an enclosing class");
	  c
        }
      }

      /** Attribute a selection where `tree' is `qual.name'.
       *  `qual' is already attributed.
       */
      def typedSelect(qual: Tree, name: Name): Tree = {
	val sym =
	  if (tree.symbol != NoSymbol) {
            if (phase.erasedTypes && qual.isInstanceOf[Super]) qual.tpe = tree.symbol.owner.tpe;
            if (false && settings.debug.value) { // todo: replace by settings.check.value?
	      val alts = qual.tpe.member(tree.symbol.name).alternatives;
	      if (!(alts exists (alt =>
                alt == tree.symbol || alt.isTerm && (alt.tpe matches tree.symbol.tpe))))
	        assert(false, "symbol " + tree.symbol + tree.symbol.locationString + " not in " + alts + " of " + qual.tpe +
		       "\n members = " + qual.tpe.members +
		       "\n type history = " + qual.tpe.symbol.infosString +
		       "\n phase = " + phase);
            }
	    tree.symbol
	  } else qual.tpe match {
            case ThisType(clazz) if (clazz == context.enclClass.owner) =>
              qual.tpe.member(name)
            case _  =>
              qual.tpe.nonLocalMember(name)
          }
        if (sym == NoSymbol) {
          val qual1 = adaptToName(qual, name);
          if (qual1 ne qual) return typed(copy.Select(tree, qual1, name), mode, pt)
	}
        if (sym.info == NoType) {
          if (settings.debug.value) log("qual = " + qual + ":" + qual.tpe + "\nSymbol=" + qual.tpe.symbol + "\nsymbol-info = " + qual.tpe.symbol.info + "\nscope-id = " + qual.tpe.symbol.info.decls.hashCode() + "\nmembers = " + qual.tpe.members + "\nfound = " + sym);
          if (!qual.tpe.widen.isError)
            error(tree.pos,
	      decode(name) + " is not a member of " + qual.tpe.widen +
              (if (Position.line(context.unit.source, qual.pos) <
                   Position.line(context.unit.source, tree.pos))
	        "\npossible cause: maybe a semicolon is missing before `" + name + "'?" else ""));
          setError(tree)
        } else {
	  val tree1 = tree match {
	    case Select(_, _) => copy.Select(tree, qual, name)
	    case SelectFromTypeTree(_, _) => copy.SelectFromTypeTree(tree, qual, name);
	  }
	  stabilize(checkAccessible(tree1, sym, qual.tpe, qual), qual.tpe, mode, pt);
	}
      }

      /** Attribute an identifier consisting of a simple name or an outer reference.
       *  @param tree      The tree representing the identifier.
       *  @param name      The name of the identifier.
       *  Transformations: (1) Prefix class members with this.
       *                   (2) Change imported symbols to selections
       */
      def typedIdent(name: Name): Tree = {
	def ambiguousError(msg: String) =
	  error(tree.pos, "reference to " + name + " is ambiguous;\n" + msg);

	var defSym: Symbol = tree.symbol;   // the directly found symbol
	var pre: Type = NoPrefix;        // the prefix type of defSym, if a class member
	var qual: Tree = EmptyTree;   // the qualififier tree if transformed tree is a select

	if (defSym == NoSymbol) {
	  var defEntry: ScopeEntry = null; // the scope entry of defSym, if defined in a local scope

	  var cx = context;
	  while (defSym == NoSymbol && cx != NoContext) {
	    pre = cx.enclClass.prefix;
	    defEntry = cx.scope.lookupEntry(name);
	    if (defEntry != null) {
	      defSym = defEntry.sym;
	    } else {
	      cx = cx.enclClass;
	      defSym = pre.member(name) filter (sym => context.isAccessible(sym, pre, false));
	      if (defSym == NoSymbol) cx = cx.outer;
	    }
	  }
	  val symDepth = if (defEntry == null) cx.depth
			 else cx.depth - (cx.scope.nestingLevel - defEntry.owner.nestingLevel);
	  var impSym: Symbol = NoSymbol;      // the imported symbol
	  var imports = context.imports;      // impSym != NoSymbol => it is imported from imports.head
	  while (impSym == NoSymbol && !imports.isEmpty && imports.head.depth > symDepth) {
	    impSym = imports.head.importedSymbol(name);
	    if (impSym == NoSymbol) imports = imports.tail;
	  }

	  // detect ambiguous definition/import,
	  // update `defSym' to be the final resolved symbol,
	  // update `pre' to be `sym's prefix type in case it is an imported member,
	  // and compute value of:

	  // imported symbols take precedence over external package-owned symbols (hack?)
	  if (defSym.tpe != NoType && impSym.tpe != NoType && defSym.isExternal && defSym.owner.isPackageClass)
	    defSym = NoSymbol;

	  if (defSym.tpe != NoType) {
	    if (impSym.tpe != NoType)
	      ambiguousError(
		"it is both defined in " + defSym.owner +
		" and imported subsequently by \n" + imports.head);
	    else if (!defSym.owner.isClass || defSym.owner.isPackageClass || defSym.isTypeParameterOrSkolem)
	      pre = NoPrefix
	    else
	      qual = atPos(tree.pos)(gen.mkQualifier(pre));
	  } else {
	    if (impSym.tpe != NoType) {
	      var impSym1 = NoSymbol;
	      var imports1 = imports.tail;
	      def ambiguousImportError = ambiguousError(
		"it is imported twice in the same scope by\n" + imports.head +  "\nand " + imports1.head);
	      while (!imports1.isEmpty && imports1.head.depth == imports.head.depth) {
		var impSym1 = imports1.head.importedSymbol(name);
		if (impSym1 != NoSymbol) {
		  if (imports1.head.isExplicitImport(name)) {
		    if (imports.head.isExplicitImport(name)) ambiguousImportError;
		    impSym = impSym1;
		    imports = imports1;
		  } else if (!imports.head.isExplicitImport(name)) ambiguousImportError
		}
		imports1 = imports1.tail;
	      }
	      defSym = impSym;
	      qual = imports.head.qual;
	      pre = qual.tpe;
	    } else {
              if (settings.debug.value) {
	        log(context.imports);//debug
              }
	      error(tree.pos, "not found: " + decode(name));
	      defSym = context.owner.newErrorSymbol(name);
	    }
	  }
	}
        if (defSym.owner.isPackageClass) pre = defSym.owner.thisType;
	val tree1 = if (qual == EmptyTree) tree
                    else atPos(tree.pos)(Select(qual, name));
		      // atPos necessary because qualifier might come from startContext
        //System.out.println("check acc: " + defSym + " " + pre);//DEBUG
	stabilize(checkAccessible(tree1, defSym, pre, qual), pre, mode, pt)
      }

      // begin typed1
      val sym: Symbol = tree.symbol;
      if (sym != null) sym.initialize;
      //if (settings.debug.value && tree.isDef) log("typing definition of " + sym);//DEBUG
      tree match {
        case PackageDef(name, stats) =>
          val stats1 = newTyper(context.make(tree, sym.moduleClass, sym.info.decls))
            .typedStats(stats, NoSymbol);
          copy.PackageDef(tree, name, stats1) setType NoType

        case cdef @ ClassDef(_, _, _, _, _) =>
          newTyper(context.makeNewScope(tree, sym)).typedClassDef(cdef)

        case mdef @ ModuleDef(_, _, _) =>
          newTyper(context.make(tree, sym.moduleClass)).typedModuleDef(mdef)

        case vdef @ ValDef(_, _, _, _) =>
          typedValDef(vdef)

        case ddef @ DefDef(_, _, _, _, _, _) =>
          newTyper(context.makeNewScope(tree, sym)).typedDefDef(ddef)

        case tdef @ AbsTypeDef(_, _, _, _) =>
          newTyper(context.makeNewScope(tree, sym)).typedAbsTypeDef(tdef)

        case tdef @ AliasTypeDef(_, _, _, _) =>
          newTyper(context.makeNewScope(tree, sym)).typedAliasTypeDef(tdef)

        case ldef @ LabelDef(_, _, _) =>
          var lsym = ldef.symbol;
          var typer1 = this;
          if (lsym == NoSymbol) { // labeldef is part of template
            typer1 = newTyper(context.makeNewScope(tree, context.owner));
            typer1.enterLabelDef(ldef);
          }
          typer1.typedLabelDef(ldef)

        case Attributed(attr, defn) =>
          val attr1 = typed(attr, AttributeClass.tpe);
          val defn1 = typed(defn, mode, pt);
	  val ai = attrInfo(attr1);
	  if (ai != null) defn1.symbol.attributes = defn1.symbol.attributes ::: List(ai);
          defn1

        case DocDef(comment, defn) =>
          typed(defn, mode, pt);

        case block @ Block(_, _) =>
          newTyper(context.makeNewScope(tree, context.owner))
            .typedBlock(block, mode, pt)

        case Sequence(elems) =>
	  val elems1 = List.mapConserve(elems)(elem => typed(elem, mode, pt));
          copy.Sequence(tree, elems1) setType pt

        case Alternative(alts) =>
	  val alts1 = List.mapConserve(alts)(alt => typed(alt, mode, pt));
          copy.Alternative(tree, alts1) setType pt

        case Star(elem) =>
	  val elem1 = typed(elem, mode, pt);
          copy.Star(tree, elem1) setType pt

        case Bind(name, body) =>
          var vble = tree.symbol;
          if (vble == NoSymbol) vble = context.owner.newValue(tree.pos, name);
          if (vble.name != nme.WILDCARD) namer.enterInScope(vble);
          val body1 = typed(body, mode, pt);
          vble.setInfo(if (treeInfo.isSequenceValued(body)) seqType(body1.tpe) else body1.tpe);
          copy.Bind(tree, name, body1) setSymbol vble setType body1.tpe; // buraq, was: pt

        case ArrayValue(elemtpt, elems) =>
	  val elemtpt1 = typedType(elemtpt);
	  val elems1 = List.mapConserve(elems)(elem => typed(elem, mode, elemtpt1.tpe));
          copy.ArrayValue(tree, elemtpt1, elems1)
            .setType(if (isFullyDefined(pt) && !phase.erasedTypes) pt
                     else appliedType(ArrayClass.typeConstructor, List(elemtpt1.tpe)))

        case fun @ Function(_, _) =>
/*
          newTyper(context.makeNewScope(tree, context.owner)).typedFunction(fun, mode, pt)
*/
          tree.symbol = context.owner.newValue(tree.pos, nme.ANON_FUN_NAME)
            .setFlag(SYNTHETIC).setInfo(NoType);
          newTyper(context.makeNewScope(tree, tree.symbol)).typedFunction(fun, mode, pt)

        case Assign(lhs, rhs) =>
          def isGetter(sym: Symbol) = sym.info match {
            case PolyType(List(), _) => sym.owner.isClass && !sym.isStable
            case _ => false
          }
          val lhs1 = typed(lhs);
          val varsym = lhs1.symbol;
          if (varsym != null && isGetter(varsym)) {
            lhs1 match {
              case Select(qual, name) =>
                typed(
		  Apply(
		    Select(qual, nme.getterToSetter(name)) setPos lhs.pos,
		    List(rhs)) setPos tree.pos, mode, pt)
            }
          } else if (varsym != null && (varsym.isVariable || varsym.isValue && phase.erasedTypes)) {
            val rhs1 = typed(rhs, lhs1.tpe);
            copy.Assign(tree, lhs1, rhs1) setType UnitClass.tpe;
          } else {
            System.out.println("" + lhs1 + " " + varsym + " " + varsym.isValue + " " + flagsToString(varsym.flags));//debug
            if (!lhs1.tpe.isError) error(tree.pos, "assignment to non-variable ");
            setError(tree)
          }

        case If(cond, thenp, elsep) =>
          val cond1 = typed(cond, BooleanClass.tpe);
          if (elsep.isEmpty) {
            val thenp1 = typed(thenp, UnitClass.tpe);
            copy.If(tree, cond1, thenp1, elsep) setType UnitClass.tpe
          } else {
            val thenp1 = typed(thenp, pt);
            val elsep1 = typed(elsep, pt);
            copy.If(tree, cond1, thenp1, elsep1) setType ptOrLub(List(thenp1.tpe, elsep1.tpe));
          }

        case Match(selector, cases) =>
          val selector1 = typed(selector);
          val cases1 = typedCases(tree, cases, selector1.tpe.widen, pt);
          copy.Match(tree, selector1, cases1) setType ptOrLub(cases1 map (.tpe))

        case Return(expr) =>
          val enclFun = if (tree.symbol != NoSymbol) tree.symbol else context.owner.enclMethod;
          if (!enclFun.isMethod || enclFun.isConstructor)
            errorTree(tree, "return outside method definition")
          else if (!context.owner.isInitialized)
            errorTree(tree, "method " + context.owner + " has return statement; needs result type")
          else {
            val expr1: Tree = typed(expr, enclFun.tpe.finalResultType);
            copy.Return(tree, expr1) setSymbol enclFun setType AllClass.tpe;
          }

        case Try(block, catches, finalizer) =>
          val block1 = typed(block, pt);
          val catches1 = typedCases(tree, catches, ThrowableClass.tpe, pt);
          val finalizer1 = if (finalizer.isEmpty) finalizer
                           else typed(finalizer, UnitClass.tpe);
          copy.Try(tree, block1, catches1, finalizer1)
            .setType(ptOrLub(block1.tpe :: (catches1 map (.tpe))))

        case Throw(expr) =>
          val expr1 = typed(expr, ThrowableClass.tpe);
          copy.Throw(tree, expr1) setType AllClass.tpe

        case New(tpt: Tree) =>
          var tpt1 = typedTypeConstructor(tpt);
          if (tpt1.hasSymbol && !tpt1.symbol.typeParams.isEmpty) {
	    context.undetparams = cloneSymbols(tpt1.symbol.unsafeTypeParams);
            tpt1 = TypeTree()
              .setPos(tpt1.pos)
              .setType(appliedType(tpt1.tpe, context.undetparams map (.tpe)));
          }
	  if (tpt1.tpe.symbol.isTrait) error(tree.pos, "traits cannot be instantiated");
          copy.New(tree, tpt1).setType(tpt1.tpe)

        case Typed(expr, tpt @ Ident(name)) if (name == nme.WILDCARD_STAR.toTypeName) =>
          val expr1 = typed(expr, mode & stickyModes, seqType(pt));
          expr1.tpe.baseType(SeqClass) match {
            case TypeRef(_, _, List(elemtp)) =>
              copy.Typed(tree, expr1, tpt setType elemtp) setType elemtp
            case _ =>
              setError(tree)
          }
        case Typed(expr, tpt) =>
          val tpt1 = typedType(tpt);
          val expr1 = typed(expr, mode & stickyModes, tpt1.tpe);
          copy.Typed(tree, expr1, tpt1) setType tpt1.tpe

        case TypeApply(fun, args) =>
	  val args1 = List.mapConserve(args)(typedType);
	  // do args first in order to maintain conext.undetparams on the function side.
          typedTypeApply(typed(fun, funmode | TAPPmode, WildcardType), args1)

        case Apply(Block(stats, expr), args) =>
          typed1(Block(stats, Apply(expr, args)), mode, pt)

        case Apply(fun, args) =>
	  val stableApplication = fun.symbol != null && fun.symbol.isMethod && fun.symbol.isStable;
	  if (stableApplication && (mode & PATTERNmode) != 0) {
	    // treat stable function applications f() as expressions.
	    typed1(tree, mode & ~PATTERNmode | EXPRmode, pt)
	  } else {
            val funpt = if ((mode & PATTERNmode) != 0) pt else WildcardType;
            var fun1 = typed(fun, funmode, funpt);
	    if (stableApplication) fun1 = stabilizeFun(fun1, mode, pt);
            // if function is overloaded, filter all alternatives that match
	    // number of arguments and expected result type.
	    // if (settings.debug.value) log("trans app " + fun1 + ":" + fun1.symbol + ":" + fun1.tpe + " " + args);//DEBUG
	    if (fun1.hasSymbol && fun1.symbol.hasFlag(OVERLOADED)) {
	      val argtypes = args map (arg => AllClass.tpe);
	      val pre = fun1.symbol.tpe.prefix;
              val sym = fun1.symbol filter (alt =>
		isApplicable(context.undetparams, pre.memberType(alt), argtypes, pt));
              if (sym != NoSymbol)
		fun1 = adapt(fun1 setSymbol sym setType pre.memberType(sym), funmode, WildcardType)
            }
	    if (util.Statistics.enabled) appcnt = appcnt + 1;
            typedApply(fun1, args)
	  }

        case Super(qual, mix) =>
          val Pair(clazz, selftype) =
            if (tree.symbol != NoSymbol) {
              Pair(tree.symbol, tree.symbol.thisType)
            } else {
              val clazzContext = qualifyingClassContext(qual);
              Pair(clazzContext.owner, clazzContext.prefix)
            }
          if (clazz == NoSymbol) setError(tree)
          else {
	    val owntype =
	      if (mix == nme.EMPTY.toTypeName)
                if ((mode & SUPERCONSTRmode) != 0) clazz.info.parents.head
                else intersectionType(clazz.info.parents)
              else {
                val ps = clazz.info.parents dropWhile (p => p.symbol.name != mix);
                if (ps.isEmpty) {
                  System.out.println(clazz.info.parents map (.symbol.name));//debug
                  error(tree.pos, "" + mix + " does not name a base class of " + clazz);
                  ErrorType
                } else ps.head
              }
	    tree setSymbol clazz setType SuperType(selftype, owntype)
	  }

        case This(qual) =>
          val Pair(clazz, selftype) =
            if (tree.symbol != NoSymbol) {
              Pair(tree.symbol, tree.symbol.thisType)
            } else {
              val clazzContext = qualifyingClassContext(qual);
              Pair(clazzContext.owner, clazzContext.prefix)
            }
          if (clazz == NoSymbol) setError(tree)
          else {
	    val owntype = if (pt.isStable || (mode & QUALmode) != 0) selftype
                          else selftype.singleDeref;
            tree setSymbol clazz setType owntype
	  }

        case Select(qual @ Super(_, _), nme.CONSTRUCTOR) =>
          val qual1 = typed(qual, EXPRmode | QUALmode | POLYmode | SUPERCONSTRmode, WildcardType);
          // the qualifier type of a supercall constructor is its first parent class
	  typedSelect(qual1, nme.CONSTRUCTOR);

        case Select(qual, name) =>
	  if (util.Statistics.enabled) selcnt = selcnt + 1;
          var qual1 = typedQualifier(qual);
          if (name.isTypeName) qual1 = checkStable(qual1);
          typedSelect(qual1, name);

        case Ident(name) =>
	  idcnt = idcnt + 1;
	  if (name == nme.WILDCARD && (mode & (PATTERNmode | FUNmode)) == PATTERNmode)
	    tree setType pt
	  else
	    typedIdent(name)

	// todo: try with case Literal(Constant(()))
        case Literal(value) =>
          tree setType (
            if (value.tag == UnitTag) UnitClass.tpe
            else ConstantType(value))

        case SingletonTypeTree(ref) =>
          val ref1 = checkStable(typed(ref, EXPRmode | QUALmode, AnyRefClass.tpe));
          tree setType ref1.tpe.resultType;

        case SelectFromTypeTree(qual, selector) =>
          tree setType typedSelect(typedType(qual), selector).tpe

        case CompoundTypeTree(templ: Template) =>
          tree setType {
            val parents1 = List.mapConserve(templ.parents)(typedType);
            if (parents1 exists (.tpe.isError)) ErrorType
            else {
              val decls = new Scope();
              val self = refinedType(parents1 map (.tpe), context.enclClass.owner, decls);
              newTyper(context.make(templ, self.symbol, decls)).typedRefinement(templ.body);
              self
            }
          }

        case AppliedTypeTree(tpt, args) =>
          val tpt1 = typed1(tpt, mode | FUNmode | TAPPmode, WildcardType);
          val tparams = tpt1.symbol.typeParams;
          val args1 = List.mapConserve(args)(typedType);
          if (tpt1.tpe.isError) {
            setError(tree)
          } else if (tparams.length == args1.length) {
	    val argtypes = args1 map (.tpe);
	    val owntype = if (tpt1.symbol.isClass) appliedType(tpt1.tpe, argtypes)
			  else tpt1.tpe.subst(tparams, argtypes);
            TypeTree(owntype) setOriginal(tree) // setPos tree.pos
          } else if (tparams.length == 0) {
            errorTree(tree, "" + tpt1.tpe + " does not take type parameters")
          } else {
            //System.out.println("\{tpt1}:\{tpt1.symbol}:\{tpt1.symbol.info}");
	    System.out.println("" + tpt1 + ":" + tpt1.symbol + ":" + tpt1.symbol.info);//debug
            errorTree(tree, "wrong number of type arguments for " + tpt1.tpe + ", should be " + tparams.length)
	  }
        case _ =>
          throw new Error("unexpected tree: " + tree);//debug
      }
    }

    def typed(tree: Tree, mode: int, pt: Type): Tree =
      try {
        if (settings.debug.value) {
          assert(pt != null, tree);//debug
	  //System.out.println("typing " + tree);//DEBUG
	}
        val tree1 = if (tree.tpe != null) tree else typed1(tree, mode, pt);
	//System.out.println("typed " + tree1 + ":" + tree1.tpe);//debug
        val result = if (tree1.isEmpty) tree1 else adapt(tree1, mode, pt);
	//System.out.println("adapted " + tree1 + ":" + tree1.tpe + " to " + pt);//debug
	result
      } catch {
        case ex: TypeError =>
          //System.out.println("caught " + ex + " in typed");//DEBUG
	  reportTypeError(tree.pos, ex);
	  setError(tree)
	case ex: Throwable =>
	  if (settings.debug.value)
	    System.out.println("exception when typing " + tree + ", pt = " + pt);
	  throw(ex)
      }

    def atOwner(owner: Symbol): Typer =
      new Typer(context.make(context.tree, owner));

    def atOwner(tree: Tree, owner: Symbol): Typer =
      new Typer(context.make(tree, owner));

    /** Types expression or definition `tree' */
    def typed(tree: Tree): Tree =
      typed(tree, EXPRmode, WildcardType);

    /** Types expression `tree' with given prototype `pt' */
    def typed(tree: Tree, pt: Type): Tree =
      typed(tree, EXPRmode, pt);

    /** Types qualifier `tree' of a select node. E.g. is tree occurs in acontext like `tree.m'. */
    def typedQualifier(tree: Tree): Tree =
      typed(tree, EXPRmode | QUALmode | POLYmode, WildcardType);

    /** Types function part of an application */
    def typedOperator(tree: Tree): Tree =
      typed(tree, EXPRmode | FUNmode | POLYmode | TAPPmode, WildcardType);

    /** Types a pattern with prototype `pt' */
    def typedPattern(tree: Tree, pt: Type): Tree =
      typed(tree, PATTERNmode, pt);

    /** Types a (fully parameterized) type tree */
    def typedType(tree: Tree): Tree =
      typed(tree, TYPEmode, WildcardType);

    /** Types a type constructor tree used in a new or supertype */
    def typedTypeConstructor(tree: Tree): Tree = {
      val result = typed(tree, TYPEmode | FUNmode, WildcardType);
      if (!phase.erasedTypes && result.tpe.isInstanceOf[TypeRef] && !result.tpe.prefix.isStable)
	error(tree.pos, result.tpe.prefix.toString() + " is not a legal prefix for a constructor");
      result
    }

    def computeType(tree: Tree): Type = {
      val tree1 = typed(tree);
      transformed(tree) = tree1;
      tree1.tpe
    }

    def transformedOrTyped(tree: Tree, pt: Type): Tree = transformed.get(tree) match {
      case Some(tree1) => transformed -= tree; tree1
      case None => typed(tree, pt)
    }

/*
    def convertToTypeTree(tree: Tree): Tree = tree match {
      case TypeTree() => tree
      case _ => TypeTree(tree.tpe)
    }
*/
    /* -- Views --------------------------------------------------------------- */

    private def depoly(tp: Type): Type = tp match {
      case PolyType(tparams, restpe) => restpe.subst(tparams, tparams map (t => WildcardType))
      case _ => tp
    }

    private def typedImplicit(pos: int, info: ImplicitInfo, pt: Type, local: boolean): Tree =
      if (isCompatible(depoly(info.tpe), pt)) {
	var tree: Tree = EmptyTree;
        def fail(reason: String): Tree = {
          if (settings.debug.value)
            log(tree.toString() + " is not a valid implicit value because:\n" + reason);
          EmptyTree
        }
	try {
          tree = Ident(info.name) setPos pos;
          if (!local) tree setSymbol info.sym;
	  tree = typed1(tree, EXPRmode, pt);
	  if (settings.debug.value)
            log("typed implicit " + tree + ":" + tree.tpe + ", pt = " + pt);//debug
	  val tree1 = adapt(tree, EXPRmode, pt);
	  if (settings.debug.value)
            log("adapted implicit " + tree.symbol + ":" + tree1.tpe + " to " + pt);//debug
	  if (info.sym == tree.symbol) tree1
          else fail("syms differ: " + tree.symbol + " " + info.sym)
	} catch {
	  case ex: TypeError => fail(ex.getMessage())
	}
      } else EmptyTree;

    private def inferImplicit(pos: int, pt: Type, isView: boolean, reportAmbiguous: boolean): Tree = {

      if (util.Statistics.enabled) implcnt = implcnt + 1;
      val startTime = if (util.Statistics.enabled) System.currentTimeMillis() else 0l;

      def isBetter(sym1: Symbol, tpe1: Type, sym2: Symbol, tpe2: Type): boolean = (
        sym2.isError ||
	(sym1.owner != sym2.owner) && (sym1.owner isSubClass sym2.owner) && (tpe1 matches tpe2)
      );
      val tc = newTyper(context.makeImplicit(reportAmbiguous));

      def searchImplicit(implicitInfoss: List[List[ImplicitInfo]], local: boolean): Tree = {
	var iss = implicitInfoss;
	var tree: Tree = EmptyTree;
	while (tree == EmptyTree && !iss.isEmpty) {
	  var is = iss.head;
	  iss = iss.tail;
	  while (!is.isEmpty) {
	    tree = tc.typedImplicit(pos, is.head, pt, local);
            if (settings.debug.value) log("tested " + is.head.sym + is.head.sym.locationString + ":" + is.head.tpe + "=" + tree);//debug
	    val is0 = is;
	    is = is.tail;
	    if (tree != EmptyTree) {
	      while (!is.isEmpty) {
		val tree1 = tc.typedImplicit(pos, is.head, pt, local);
		if (tree1 != EmptyTree) {
		  if (isBetter(is.head.sym, tree1.tpe, is0.head.sym, tree.tpe))
		    tree = tree1
		  else if (!isBetter(is0.head.sym, tree.tpe, is.head.sym, tree1.tpe))
		    error(
		      pos,
		      "ambiguous implicit value:\n" +
		      " both " + is0.head.sym + is0.head.sym.locationString + " of type " + tree.tpe +
		      "\n and " + is.head.sym + is.head.sym.locationString + " of type " + tree1.tpe +
		      (if (isView)
			  "\n are possible conversion functions from " +
			 pt.typeArgs(0) + " to " + pt.typeArgs(1)
		       else
			 "\n match expected type " + pt));
		}
		is = is.tail
	      }
	    }
	  }
	}
	tree
      }

      def implicitsOfType(tp: Type): List[List[ImplicitInfo]] = {
	val tp1 = if (isFunctionType(tp)) intersectionType(tp.typeArgs.reverse) else tp;
	tp1.baseClasses map implicitsOfClass;
      }

      def implicitsOfClass(clazz: Symbol): List[ImplicitInfo] = (
        clazz.initialize.linkedModule.moduleClass.info.decls.toList.filter(.hasFlag(IMPLICIT)) map
	  (sym => ImplicitInfo(sym.name, clazz.linkedModule.tpe.memberType(sym), sym))
      );

      var tree = searchImplicit(context.implicitss, true);
      if (tree == EmptyTree) tree = searchImplicit(implicitsOfType(pt.widen), false);
      if (util.Statistics.enabled) impltime = impltime + System.currentTimeMillis() - startTime;
      tree
    }

    def applyImplicitArgs(tree: Tree): Tree = tree.tpe match {
      case MethodType(formals, _) =>
        def implicitArg(pt: Type) = {
          val arg = inferImplicit(tree.pos, pt, false, true);
          if (arg != EmptyTree) arg
          else errorTree(tree, "no implicit argument matching parameter type " + pt + " was found.")
        }
      Apply(tree, formals map implicitArg) setPos tree.pos
    }
  }
}