summaryrefslogtreecommitdiff
path: root/sources/scalac/ast/parser/PatternNormalizer.java
blob: b76fd11a3b5e5227f5b8c86ccdd78cf337b114eb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/*     ____ ____  ____ ____  ______                                     *\
**    / __// __ \/ __// __ \/ ____/    SOcos COmpiles Scala             **
**  __\_ \/ /_/ / /__/ /_/ /\_ \       (c) 2002-2003, LAMP/EPFL         **
** /_____/\____/\___/\____/____/                                        **
**                                                                      **
** $Id$
\*                                                                      */

package scalac.ast.parser;

import scalac.Unit;
import scalac.ast.*;
import scalac.util.Name;
import Tree.*;
import java.util.HashMap;

import scalac.util.Names;

/** contains algorithms for `checking' and `normalizing' patterns
 *
 *  @author  Burak Emir
 *  @version 1.0
 */

public class PatternNormalizer {

    /** the compilation unit - needed for error reporting
     */
    Unit unit;

    /** the tree factory
     */
    public TreeFactory make;

    // constructor ... unit is needed to display errors

    public PatternNormalizer( Unit unit ) {
	this.unit = unit;
        this.make = unit.global.make;
    }

    //
    ///////// CHECKING patterns for well-formedness ///////////////////////////////
    //


    /** checks whether TO DO TO DO TO DO
     *  - @-recursion occurs only at the end just below a sequence
     *  returns true if the tree is ok.
     *  inSeq: flag, true if we are in a sequence '[' ... ']'
     *  t: the tree to be checked
     */
    protected boolean check1( Tree t, boolean inAlt ) {
	switch( t ) {

	case Literal( _ ):
	    return true;

	case Apply( _, Tree[] args ):
	    return check1( args, inAlt );

	case Sequence( Tree[] trees ):
	    return check1( trees, inAlt );

	case Alternative( Tree[] trees ):
	    return check1( trees, true );

	case Bind( Name var, Tree tree ):
	    if(( inAlt )
	       &&( var.toString().lastIndexOf("$") == -1)) {

		unit.error( t.pos,
			      "variable binding not allowed under alternative");
		return false;
	    }
	    this.boundVars.put( var /*t.symbol()*/, Boolean.FALSE );
	    /*
              boolean result = check( tree, inSeq );
              if(((Boolean) this.boundVars.get( t.symbol() ))
	      .booleanValue()) { // occurs recursively
	      // do something to RESTRICT recursion
              }
	    */
	    return check1( tree, inAlt );

	case Typed( _, _):
	    return true;

	case Ident( Name var ):
	    if(( inAlt )
	       &&( var != Names.PATTERN_WILDCARD )
	       &&( var.toString().lastIndexOf("$") == -1))
		{
		unit.error( t.pos,
			      "variable not allowed under alternative");
		return false;
	    }
              /*
              System.out.println( t.symbol().toString() );
              */
	    if(( this.boundVars.containsKey( var /*t.symbol()*/ ))
	       &&( var.toString().lastIndexOf("$") == -1)) {
		  unit.error( t.pos,
			      "recursive patterns not allowed");

		  //this.boundVars.put( t.symbol(), Boolean.TRUE ); //mark recursive
                    //System.out.println( t.symbol() + "occurs recursively");
              }

	    return true;

	case Select( _, _ ):
	    return true;

            /*
	case Empty: // may appear just as Sequence Sequence
	    if ( !inSeq )
		unit.error( t.pos,
			    "empty subsequence without surrounding '['']'");
	    return inSeq;
	    */
	default:
	    unit.error( t.pos, "whut'z dis ?"+t.toString()); // never happens
	}
	return false;

    }

    /** checkPat for every tree in array of trees, see below
     */
      protected boolean check1( Tree[] trees, boolean inAlt ) {
	for( int i = 0; i < trees.length; i++ )
	    if( !check1(  trees[ i ], inAlt ))
		return false;
	return true;
    }

      // if this map contains a symbol as a key, it is bound.
      // if this symbol is mapped to Boolean.True, it occurs recursively
    HashMap/*Name=>Boolean*/ boundVars;

      /**  method
       */
      public boolean check( Tree pat ) {
            this.boundVars = new HashMap();
            return check1( pat, false );
    }


    //
    /////////////// NORMALIZING patterns /////////////////////////////////////////////////////////////
    //

    boolean isEmptySequence( Tree tree ) {
	switch( tree ) {
	case Sequence( Tree[] trees ):
	    //return ((trees.length == 1)&&( trees[ 0 ] == Tree.Empty ));
	    return trees.length == 0;
	default:
	    return false;
	}
    }

    boolean isSequence( Tree tree ) {
	switch( tree ) {
	case Sequence( _ ):
	    return true;
	default:
	    return false;
	}
    }


    /** appends every non-empty tree in trees to ts
     */
    void appendNonEmpty( TreeList ts, Tree[] trees ) {
	for( int i = 0; i < trees.length; i++ )
	    if( !isEmptySequence( trees[ i ] ) )
		ts.append( trees[ i ] );
    }
    /** appends tree to ts if it is non-empty, leaves ts unchanged.
     */
    void appendNonEmpty( TreeList ts, Tree tree ) {
	//if( tree != Tree.Empty )
	if ( !isEmptySequence(tree))
	    ts.append( tree );
    }

    /** takes a (possibly empty) TreeList and make a Sequence out of it
     */
    Tree treeListToSequence( int pos, TreeList ts ) {
	//if( ts.length() == 0 ) // artefact of old version, where empty sequence was Subsequence node. delete soon
	//return make.Sequence( pos, Tree.EMPTY_ARRAY);
	return make.Sequence( pos, ts.toArray() );
    }



    /** (1) nested `Alternative' nodes are flattened (( tree traversal with clique contraction ))
     *       if all branches are empty, empty subsequence is returned.
     *       variables x are replaced by bindings x @ _
     */

    // apply `flattenAlternative' to each tree in ts
    Tree[] flattenAlternatives( Tree[] ts ) {
	Tree[] res = new Tree[ ts.length ];
	for( int i = 0; i < ts.length; i++ )
	    res[ i ] = flattenAlternative( ts[ i ] );
	return res;
    }

    // main algo for (1)
    Tree flattenAlternative( Tree tree ) {
	switch( tree ) {
	case Alternative( Tree[] choices ):
	    TreeList cs = new TreeList();
	    for( int i = 0; i < choices.length; i++ ) {
		Tree child = choices[ i ];
		switch( child ) {

		case Alternative( Tree[] child_choices ): // grab its flattened children
		    cs.append( flattenAlternativeChildren( child_choices ) );
		    break;
		default:
		    cs.append( child );
		}
	    }
	    Tree[] newtrees = cs.toArray();
	    switch( newtrees.length ) {
	    case 1:
		return newtrees[ 0 ];
	    case 0:
		return make.Sequence( tree.pos, Tree.EMPTY_ARRAY );
	    default:
		return make.Alternative( tree.pos, cs.toArray() );
	    }

	    // recursive call
	case Sequence( Tree[] trees):
	    return make.Sequence( tree.pos, flattenAlternatives( trees ));
	case Bind( Name var, Tree body ):
	    return make.Bind( tree.pos, var, flattenAlternative( body ));
	default:
	    return tree; // no alternatives can occur
	}
    }

    // main algo for (1), precondition: choices are children of an Alternative node
    TreeList flattenAlternativeChildren( Tree[] choices ) {
	TreeList cs = new TreeList();
	for( int j = 0; j < choices.length; j++ ) {
	    Tree tree = flattenAlternative( choices[ j ] ); // flatten child
	    switch( tree ) {
	    case Alternative( Tree[] child_choices ):
		appendNonEmpty( cs, child_choices );
		break;
	    default:
		appendNonEmpty( cs, tree );
	    }
	}
	//System.out.println( cs.length() );
	return cs;
    }



    /** (2) nested `Sequence' nodes are flattened (( clique elimination ))
     *      nested empty subsequences get deleted
     */

    // apply `flattenSequence' to each tree in trees
    Tree[] flattenSequences( Tree[] trees ) {
	Tree[] res = new Tree[ trees.length ];
	for( int i = 0; i < trees.length; i++ )
	    res[ i ] = flattenSequence( trees[ i ] );
	return res;
    }
    // main algo for (2)
    Tree flattenSequence( Tree tree ) {
	//System.out.println("flattenSequence of "+tree);
	switch( tree ) {
	    /*
	case Sequence( Tree[] trees ):
	    trees = flattenSequences( trees );
	    if(( trees.length == 1 )&&( isEmptySequence( trees[ 0 ] )))
		trees = Tree.EMPTY_ARRAY;
	    return make.Sequence( tree.pos, trees );
	    */
	case Sequence( Tree[] trees ):
	    TreeList ts = new TreeList();
	    for( int i = 0; i < trees.length; i++ ) {
		Tree child = trees[ i ];
		switch( child ) {
		case Sequence( Tree[] child_trees ): // grab its flattened children
		    ts.append( flattenSequenceChildren( child_trees ) );
		    break;
		default:
		    ts.append( child );
		}
	    }
	    /*
	      System.out.print("ts = ");
	    for(int jj = 0; jj<ts.length(); jj++) {
		System.out.print(ts.get( jj ).toString()+" ");
	    }
	    System.out.println();
	    */
	    return treeListToSequence( tree.pos, ts ) ;

	    // recursive call
	case Alternative( Tree[] choices ):
	    return make.Alternative( tree.pos, flattenSequences( choices ));
	case Bind( Name var, Tree body ):
	    return make.Bind( tree.pos, var, flattenSequence( body ));
	default:
	    return tree;
	}
    }

    // main algo for (2), precondition: trees are children of a Sequence node
    public TreeList flattenSequenceChildren( Tree[] trees ) {
	TreeList ts = new TreeList();
	for( int j = 0; j < trees.length; j++ ) {
	    Tree tree = flattenSequence( trees[ j ] );
	    switch( tree ) {
	    case Sequence( Tree[] child_trees ):
		appendNonEmpty( ts, child_trees );
		break;
	    default:
		appendNonEmpty( ts, tree );
	    }
	}
	return ts;
    }


    /** (3) in `Sequence':
     *             children of direct successor nodes labelled `Sequence' are moved up
     *      (( tree traversal, left-to-right traversal ))
     */

    /** applies `elimSequence' to each tree is ts
     */
    Tree[] elimSequences( Tree[] ts ) {
	Tree[] res = new Tree[ ts.length ];
	for( int i = 0; i < ts.length; i++ )
	    res[ i ] = elimSequence( ts[ i ] );
	return res;
    }

    Tree elimSequence( Tree tree ) {
	switch( tree ) {
	case Sequence( Tree[] trees ):
	    // might be empty ...
	    Tree[] newtrees = mergeHedge( trees ).toArray();
	    if(( newtrees.length == 1 )&&( isEmptySequence( newtrees[ 0 ] )))
		return make.Sequence( tree.pos, Tree.EMPTY_ARRAY );
	    return make.Sequence( tree.pos, newtrees );

	    // recurse
	    //case Sequence( Tree[] trees ): // after normalization (2), Sequence is flat
	    /*
	    TreeList ts = new TreeList();
	    for( int i = 0; i < trees.length; i++ ) {
		Tree t = trees[ i ];
		//if( t != Tree.Empty )                          // forget empty subsequences
		    ts.append( elimSequence( t )); // recurse
	    }
	    return treeListToSequence( tree.pos, ts );
	    */
	    //return make.Sequence( tree.pos, elimSequences( trees ));
	case Alternative( Tree[] choices ):
	    Tree result = make.Alternative( tree.pos, elimSequences( choices ) );
	    return flattenAlternative( result ); // apply
	case Bind( Name var, Tree body ):
	    return make.Bind( tree.pos, var, elimSequence( body ));
	default:
	    return tree; // nothing to do
	}
    }

    /** runs through an array of trees, merging adjacent `Sequence' nodes if possible
     *  returns a (possibly empty) TreeList
     *  precondition: trees are children of a Sequence node
     */
    TreeList mergeHedge( Tree[] trees ) {
	    TreeList ts = new TreeList();
	    if( trees.length > 1 ) {    // more than one child
		Tree left  = trees[ 0 ];
		Tree right = null;;
		Tree merge = null;
		for( int i = 0; i < trees.length - 1; i++) {
		    right = trees[ i+1 ];
		    merge = mergeThem( left, right );
		    if( merge != null ) {
			left = merge;
		    } else {
			ts.append( left );
			left = right;
		    }
		}
		if( merge!= null ) {
		    ts.append( merge );
		} else {
		    if( right != null )
			ts.append( right );
		}
	    } else if ( trees.length == 1 ) {
                  //if( trees[ 0 ] != Tree.Empty )
		    ts.append( trees[ 0 ] ); // append the single child
	    }
	    return ts;
    }

    /** if either left or right are subsequences, returns a new subsequences node
     *  with the children of both, where any occurences of Tree.Empty are removed
     *  otherwise, returns null. "move concatenation to the top"
     */
    Tree mergeThem( Tree left, Tree right ) {
	switch( left ) {
	case Sequence( Tree[] treesLeft ):             // left tree is subsequence
	    TreeList ts = new TreeList();
	    appendNonEmpty( ts, treesLeft );
	    switch( right ) {
	    case Sequence( Tree[] treesRight ):
		appendNonEmpty( ts, treesRight ); // ...and right tree is subsequence
		break;
	    default:
		ts.append( right );                       // ...and right tree is atom
	    }
	    return treeListToSequence( left.pos, ts );

	default:                                          // left tree is atom
	    switch( right ) {
	    case Sequence( Tree[] treesRight ):
		TreeList ts = new TreeList();
		ts.append( left );
		appendNonEmpty( ts, treesRight ); // ...and right tree is subsequence
		return treeListToSequence( left.pos, ts );
	    }
	}
	return null;                                      // ...and right tree is atom -- no merge
    }



    /* (4) If `Alternative' at least one subsequence branch, then we wrap every atom that may
     *        occur in a `Sequence' tree
     *       (( tree traversal ))
     */

    /** applies `warpAlternative' to each tree is ts
     */
    Tree[] wrapAlternatives( Tree[] trees ) {
	Tree[] newts = new Tree[ trees.length ];
	for( int i = 0; i < trees.length; i++ )
	    newts[ i ] = wrapAlternative( trees[ i ] );
	return newts;
    }

    /** main algo for (4)
     */
      Tree wrapAlternative( Tree tree ) {
            switch( tree ) {
            case Alternative( Tree[] choices ):
                  return make.Alternative( tree.pos, wrapAlternativeChildren( choices ));
                  // recursive
            case Sequence( Tree[] trees ):
                  return make.Sequence( tree.pos, wrapAlternatives( trees ));
            case Bind(Name var, Tree body ):
                  return make.Bind( tree.pos, var, wrapAlternative( body ));

            case Ident( Name name ):
                  /*
                  System.out.println( "in case Ident, name" +name);
                  if ( name != Name.fromString("_")
                       && ( boundVars.get( tree.symbol() ) == null )) {

                        System.out.println("TRANSF, name:"+name);

                        return make.Bind( tree.pos,
                                          name,
                                          make.Ident( tree.pos,
                                                      Name.fromString("_") ))
                              .symbol( tree.symbol() )
                              .type( tree.type );
                  }
                  */
              return tree;

	default:
	    return tree;

	}
    }

    /** algo for (4), precondition: choices are direct successors of an `Alternative' node
     */
    Tree[] wrapAlternativeChildren( Tree[] choices ) {
	Tree[] newchoices = new Tree[ choices.length ];


	for( int i = 0; i < choices.length; i++ )
	    newchoices[ i ] = wrapAlternative( choices[ i ] ); // recursive call

	if( hasSequenceBranch( newchoices ))
	    for( int i = 0; i < choices.length; i++ )
		newchoices[ i ] = wrapElement( choices[ i ] );
	return newchoices;
    }

    /** returns true if at least one tree in etrees is a subsequence value
     */
    boolean hasSequenceBranch( Tree[] trees ) {
	boolean isSubseq = false;
	for( int i = 0; i < trees.length && !isSubseq; i++ )
	    isSubseq |= isSequenceBranch( trees[ i ] );
	return isSubseq;
    }

    /*  returns true if the argument is a subsequence value, i.e. if
     *  is is labelled `Sequence' or  a `Bind' or an `Alternative' with a `Sequence' node below
     *  precondition: choices are in normal form w.r.t. to (4)
     */
    boolean isSequenceBranch( Tree tree ) {
	switch( tree ) {
	case Sequence( _ ):
	    return true;
	case Alternative( Tree[] trees ): // normal form -> just check first child
	    switch( trees[ 0 ] ) {
	    case Sequence( _ ):
		return true;
	    default:
		return false;
	    }
	case Bind( _, Tree body ):
	    return isSequenceBranch( body );
	default:
	    return false;
	}
    }

    Tree wrapElement( Tree tree ) {
	switch( tree ) {
	case Sequence(_):
	    return tree;
	default:
	    return make.Sequence(tree.pos, new Tree[] { tree } );
	}
    }

}