summaryrefslogtreecommitdiff
path: root/sources/scalac/transformer/AddConstructors.java
blob: 4cb258e230512fd4977a5504e0df5a07169f770f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/*     ____ ____  ____ ____  ______                                     *\
**    / __// __ \/ __// __ \/ ____/    SOcos COmpiles Scala             **
**  __\_ \/ /_/ / /__/ /_/ /\_ \       (c) 2002, LAMP/EPFL              **
** /_____/\____/\___/\____/____/                                        **
\*                                                                      */

// $Id$

package scalac.transformer;

import scalac.Global;
import scalac.util.Name;
import scalac.util.Names;

import scalac.ast.Tree;
import Tree.*;
import scalac.ast.Transformer;

import scalac.symtab.Type;
import scalac.symtab.Symbol;
import scalac.symtab.TermSymbol;
import scalac.symtab.Scope;
import scalac.symtab.Kinds;
import scalac.symtab.Modifiers;

import java.util.HashMap;
import java.util.HashSet;
import java.util.ArrayList;

import scalac.util.Debug;

/**
 * 1. For each class add a single method (DefDef) designated as
 * constructor whose parameters are the class parameters and the
 * owner is the constructed class. The constructor contains:
 *
 *   - call to the constructor of the supertype with the appropriate arguments
 *   - initialize the fields corresponding to the class ValDefs
 *   - the bodies of the class level expressions;
 *     they are also removed from the ClassDef body
 *
 * 2. Additional constructors are assigned new symbols owned by the class
 *
 * 3. The right hand sides of the ValDefs are left empty
 *
 * 4. Substitute the appropriate constructor symbol into the
 * 'new' expressions and constructor applications
 *
 * @author Nikolay Mihaylov
 * @version 1.2
*/

public class AddConstructors extends Transformer {

    // True iff we generate code for INT backend.
    protected final boolean forINT;
    // True iff we generate code for JVM backend.
    protected final boolean forJVM;


    protected final HashMap/*<Symbol, Symbol>*/ constructors;

    public AddConstructors(Global global, HashMap constructors) {
	super(global);
        this.constructors = constructors;
        this.forINT = global.target == global.TARGET_INT;
        this.forJVM = (global.target == global.TARGET_JVM
                       || global.target == global.TARGET_JVM_BCEL);
    }

    /** return new constructor symbol if it isn't already defined
     */
    Symbol getConstructor(Symbol classConstr) {
   	assert classConstr.isConstructor() :
   	    "Class constructor expected: " + Debug.show(classConstr);
        Symbol owner = classConstr.constructorClass();
        Symbol[] tparamSyms = classConstr.typeParams();
        Symbol[] paramSyms = classConstr.valueParams();
	Symbol constr = (Symbol) constructors.get(classConstr);
	if (constr == null) {
	    assert !owner.isInterface() : Debug.show(owner) + " is interface";
            int flags =
                classConstr.flags & (Modifiers.PRIVATE | Modifiers.PROTECTED);
	    constr =
                new TermSymbol(classConstr.pos, classConstr.name, owner, flags);

	    Type constrType = Type.MethodType
		(paramSyms, forJVM ?
		 global.definitions.UNIT_TYPE : owner.type());
            if (tparamSyms.length != 0)
                constrType = Type.PolyType(tparamSyms, constrType);

	    constr.setInfo(constrType);
	    constructors.put(classConstr, constr);
	    constructors.put(constr, constr);
            owner.members().enterOrOverload(constr);
	}

	return constr;
    }

    /** process the tree
     */
    public Tree transform(Tree tree) {
	final Symbol treeSym = tree.symbol();
	switch (tree) {
	case ClassDef(_, _, _, _, _, Template impl):
	    if (treeSym.isInterface())
		return super.transform(tree);

	    // expressions that go before the call to the super constructor
	    final ArrayList constrBody = new ArrayList();

	    // expressions that go after the call to the super constructor
	    final ArrayList constrBody2 = new ArrayList();

	    // the body of the class after the transformation
	    final ArrayList classBody = new ArrayList();

	    // the Symbol of the new primary constructor
	    final Symbol constrSym =
		getConstructor(treeSym.primaryConstructor());

	    assert constrSym.owner() == treeSym :
		"Wrong owner of the constructor: \n\tfound: " +
		Debug.show(constrSym.owner()) + "\n\texpected: " +
		Debug.show(treeSym);

	    for (int i = 0; i < impl.body.length; i++) {
		Tree t = impl.body[i];
		if (t.definesSymbol()) {
		    Symbol sym = t.symbol();
		    switch (t) {
		    // for ValDefs move the initialization code to the constructor
		    case ValDef(_, _, _, Tree rhs):
			if (rhs != Tree.Empty) {
			    Tree lhs =
			        gen.Select(gen.This(t.pos, treeSym), sym);
			    Tree assign =
				gen.Assign(t.pos, lhs, transform(rhs));
			    t = gen.ValDef(sym, Tree.Empty);
			    if (rhs.hasSymbol() && rhs.symbol().isParameter()) {
				constrBody.add(assign);
			    } else {
				constrBody2.add(assign);
			    }
			}
			break;

		    // assign new symbols to the alternative constructors
		    case DefDef(_, _, _, _, _, Tree rhs):
			if (sym.isConstructor()) {
                            // add result expression consistent with the
                            // result type of the constructor
                            Tree result = forJVM
                                ? gen.mkUnitLit(t.pos)
                                : gen.This(t.pos, treeSym);
                            rhs = gen.mkBlock(new Tree[] { rhs, result });
			    t = gen.DefDef(getConstructor(sym), rhs);
			}
			break;
		    }
		    // do not transform(t). It will be done at the end
		    classBody.add(t);
		} else {
		    // move class-level expressions into the constructor
		    constrBody2.add(transform(impl.body[i]));
		}
	    }

	    // inline the call to the super constructor
            if ( !forINT || !treeSym.parents()[0].symbol().isJava()) {
		switch (impl.parents[0]) {
		case Apply(TypeApply(Tree fun, Tree[] targs), Tree[] args):
		    int pos = impl.parents[0].pos;
		    Tree superConstr = gen.Select
			(gen.Super(pos, treeSym),
			 getConstructor(fun.symbol()));
		    constrBody.add(gen.mkApplyTV(superConstr, transform(targs), transform(args)));
		    break;
		case Apply(Tree fun, Tree[] args):
		    int pos = impl.parents[0].pos;
		    Tree superConstr = gen.Select
			(gen.Super(pos, treeSym),
			 getConstructor(fun.symbol()));
		    constrBody.add(gen.mkApply_V(superConstr, transform(args)));
		    break;
		default:
                    throw Debug.abort("illegal case", impl.parents[0]);
		}
	    }

	    // inline initialization of module values
            if (forINT && treeSym.isModuleClass()) {
                Symbol module = treeSym.module();
                if (module.isGlobalModule()) {
                    constrBody.add(
                        gen.Assign(
                            gen.mkRef(tree.pos, module),
                            gen.This(tree.pos, treeSym)));
                } else {
                    Symbol owner = module.owner();
                    Name module_eqname = module.name.append(Names._EQ);
                    Symbol module_eq = owner.lookup(module_eqname);
                    assert module != Symbol.NONE :Debug.show(treeSym.module());
                    if (owner.isModuleClass() && owner.module().isStable()) {
                        constrBody.add(
                            gen.mkApply_V(
                                gen.mkRef(tree.pos, module_eq),
                                new Tree[] {gen.This(tree.pos, treeSym)}));
                    } else {
                        // !!! module_eq must be accessed via some outer field
                    }
                }
            }

	    // add valdefs and class-level expression to the constructorr body
	    constrBody.addAll(constrBody2);

	    // add result expression consistent with the
	    // result type of the constructor
            if (! forJVM)
                constrBody.add(gen.This(tree.pos, treeSym));
            else
                constrBody.add(gen.mkUnitLit(tree.pos));
            Tree constrTree = constrBody.size() > 1 ?
                gen.Block((Tree[])constrBody.
			  toArray(new Tree[constrBody.size()])):
                (Tree) constrBody.get(0);

	    classBody.add(gen.DefDef(constrSym, constrTree));

	    Tree[] newBody = (Tree[]) classBody.toArray(Tree.EMPTY_ARRAY);

	    // transform the bodies of all members in order to substitute
	    // the constructor references with the new ones
	    for (int i = 0; i < newBody.length - 1; i ++)
		newBody[i] = transform(newBody[i]);

	    return gen.ClassDef(treeSym, newBody);

	// Substitute the constructor into the 'new' expressions
	case New(Template(Tree[] baseClasses, _)):
	    Tree base = baseClasses[0];
	    switch (base) {
	    case Apply(TypeApply(Tree fun, Tree[] targs), Tree[] args):
                return gen.New(
                    tree.pos,
                    gen.mkApplyTV(
                        base.pos,
                        gen.Ident(fun.pos, getConstructor(fun.symbol())),
                        transform(targs),
                        transform(args)));
	    case Apply(Tree fun, Tree[] args):
                return gen.New(
                    tree.pos,
                    gen.mkApply_V(
                        base.pos,
                        gen.Ident(fun.pos, getConstructor(fun.symbol())),
                        transform(args)));
	    default:
		assert false;
	    }
	    break;

	// Substitute the constructor aplication;
	// this only occurs within constructors that terminate
	// by a call to another constructor of the same class
	case Apply(TypeApply(Tree fun, Tree[] targs), Tree[] args):
	    Symbol constr = (Symbol)constructors.get(fun.symbol());
	    if (constr != null)
		return gen.mkApplyTV(
                    tree.pos,
                    gen.Select(fun.pos, gen.This(fun.pos, constr.owner()), constr),
                    transform(targs),
                    transform(args));
	    break;
	case Apply(Tree fun, Tree[] args):
	    Symbol constr = (Symbol)constructors.get(fun.symbol());
	    if (constr != null)
		return gen.mkApply_V(
                    tree.pos,
                    gen.Select(fun.pos, gen.This(fun.pos, constr.owner()), constr),
                    transform(args));
	    break;

	} // switch(tree)

	return super.transform(tree);
    } // transform()

} // class AddConstructors