summaryrefslogtreecommitdiff
path: root/sources/scalac/transformer/matching/DetWordAutom.java
blob: 7691715623b12856627b0d77e5d9272e8105ccf9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
package scalac.transformer.matching ;

import scalac.ast.Tree ;
import Tree.* ;

import java.util.* ;

import scalac.ApplicationError ;

public class DetWordAutom  {

    // BEGIN stuff from FiniteAutom

    //final static Integer FINTAG = new Integer(0);

    /** number of states */
    protected int nstates;

    /** the 'alphabet' */
    protected HashSet labels;

    /** the set of final states, here as a TreeMap */
    protected TreeMap finals;

    /** dfa: HashMap trans: Object -> Integer
     *  nfa: HashMap trans: Object -> Vector [ Integer ]
     *
     *  nfa: Integer  ->(Object -> Vector [ Int ])
     *       [q]     |->( a |-> { q' | (q,a,q') in \deltaright } )
     *
     *  dfa: Integer  ->(Object -> Int)
     *       [q]     |->( a |-> q' | \deltaright(q,a) = q' } )
     */

    public HashMap[] deltaq;

    public Integer[] defaultq; // this gives the default transitions

    //protected HashMap deltaq[];

    // --- accessor methods

    /** returns number of states
     */
    public int nstates() {
	return nstates;
    }

    /** returns the labels
     */
    public HashSet labels() {
	return labels;
    }

    /** returns the transitions
     */
    public HashMap deltaq( int state ) {
	return deltaq[ state ];
    }

    /** returns the transitions
     */
    public HashMap deltaq( Integer state ) {
	return deltaq[ state.intValue() ];
    }


    /** returns the transitions
     */
    public Integer defaultq( int state ) {
	return defaultq[ state ];
    }

    /** returns the transitions
     */
    public Integer defaultq( Integer state ) {
	return defaultq[ state.intValue() ];
    }


    /** returns true if the state is final
     */
    public boolean isFinal( int state ) {
	return ((finals != null)
		&& (finals.get( new Integer( state )) != null));
    }

    /** returns true if the state is final
     */
    public boolean isFinal( Integer state ) {
	return ((finals != null) && finals.containsKey( state ));
    }

    /** returns true if the state is final
     */
    public Integer finalTag( Integer state ) {
	return (Integer) finals.get( state );
    }


    public Integer finalTag( int state ) {
	return (Integer) finals.get( new Integer (state ));
    }

    /** returns true if the set of states contains at least one final state
     */
    boolean containsFinal( TreeSet Q ) {
	for( Iterator it = Q.iterator(); it.hasNext(); ) {
	    if( isFinal( (Integer) it.next()))
		return true;
	}
	return false;
    }


    /** returns true if there are no finite states
     */
    public boolean isEmpty() {
	return finals.isEmpty();
    }

    // END stuff from FiniteAutom

    static final int FIRST = 0;
    static final int LAST  = FIRST + 1;

    //static final int WHICH_LONGEST_MATCH = FIRST ;
    static final int WHICH_LONGEST_MATCH = LAST ;

    // inherited from FiniteAutom:

    // int nstates;   // number of states
    // HashSet labels;// the alphabet
    // TreeMap finals;

    // HashMap deltaq[];
    //Integer defaultq[];


    // TEMPORARY VAR used only during determinization and debug printing
    // Q -> (Label -> Q )
    HashMap delta;
    // Q -> Integer;
    HashMap indexMap;

    // Integer -> Q
    HashMap invIndexMap;

    // only not null if this is a right-transducer
    public Vector qbinders[];

    final static Integer NODEFAULT = new Integer( -1 );

    public boolean isSink( int i ) {
	return  ( deltaq[ i ].keySet().isEmpty()
		  && (defaultq != null )
		  && (defaultq( i ).intValue() == i) );
    }

    public boolean hasDefault( int i ) {
	return defaultq( i ) != NODEFAULT;
    }

    void determinize( NondetWordAutom nfa ) {
	//System.out.println("DetWordAutom:determinize");
	//System.out.println("nfa:");nfa.print();
	TreeSet states;// temp: Set[Set[Integer]]
	HashMap deftrans; // Set[Integer] -> Int

	HashMap trans; // always points to a mapping ( Label -> Q )
	int ix = 0;    // state index

	this.labels = nfa.labels;
	////System.out.println("Labels: "+labels);
	this.delta = new HashMap();
	//this.dead = -1;

	states = new TreeSet( new StateSetComparator() );
	deftrans = new HashMap();
	// temporarily: Map[Set[Integer]] later: Map[Integer]
	this.finals = new TreeMap( new StateSetComparator() );
	this.invIndexMap = new HashMap();
	this.indexMap = new HashMap();

	// new initial state (singleton set { q0 } by construction)

	TreeSet q0 = new TreeSet();
	q0.addAll( nfa.initials ); /*new Integer( 0 )); */
	states.add( q0 );

	TreeSet empty = new TreeSet();
	deftrans.put( q0, empty );
	states.add( empty );
	deftrans.put( empty, empty );

	Stack rest = new Stack();
	if( nfa.isFinal( 0 ) )
	    this.finals.put( q0, nfa.finalTag( 0 ) );


	rest.push( empty );
	rest.push( q0 );
	while( !rest.empty() ) {
	    TreeSet P1 = (TreeSet) rest.pop();

	    //System.out.println("states:"+ states);
	    //System.out.println("P1:"+ P1);

	    invIndexMap.put( new Integer( ix ), P1 );
	    indexMap.put( P1, new Integer( ix++ ));
	    delta.put( P1, trans = new HashMap());

	    // labelled transitions

	    for( Iterator it = labels.iterator(); it.hasNext(); ) {
		Object label = it.next();
		//System.out.print( "Label: " + label +" ");
		// Qdest will contain all states reachable via `label'
		// from some nfa state in P1;
		TreeSet Qdest = nfa.getSide( P1, label );
		//System.out.println("Qdest:"+Qdest);
		if( !states.contains( Qdest ) ) {
		    states.add( Qdest );
		    ////System.out.print(" (added)" );
		    rest.push( Qdest );
		    ////System.out.print(" (pushed)");

		    if( nfa.containsFinal( Qdest ) )
			this.finals.put( Qdest, nfa.finalTag( Qdest ));
		    ////System.out.print(" (added final)");

		}
		////System.out.println(".Qdest");

		trans.put( label, Qdest );
		// //System.out.println( "Qdest: " + Qdest);

	    }

	    // default transitions

	    TreeSet defTarget = (TreeSet) nfa.defaultq( P1 );
	    //System.out.println("defTarget:"+defTarget);
	    deftrans.put( P1, defTarget );

	    if( !states.contains( defTarget ) ) {
		states.add( defTarget );
		rest.push( defTarget );
		if( nfa.containsFinal( defTarget ) )
		    this.finals.put( defTarget, nfa.finalTag( defTarget ));
	    }
	}

	// <DEBUG>
	//printBefore( states, deftrans );

	// </DEBUG> do not call printBefore after this point
	// //System.out.println("indexMap: "+indexMap);

	this.nstates = states.size();
	deltaq = new HashMap[ nstates ];
	defaultq = new Integer[ nstates ];

	// we replace Set[Set[Integer]] by its index and clean up

	for( Iterator it = states.iterator(); it.hasNext(); ) {
	    TreeSet state   = (TreeSet) it.next();
	    Integer state_x = (Integer) indexMap.get( state );

	    TreeSet defTarget  = (TreeSet) deftrans.get( state );
	    Integer defTarget_x;
	    if( defTarget != null ) {
		defTarget_x = (Integer) indexMap.get( defTarget );
		////System.out.println("deftarget" + defTarget);
	    } else
		defTarget_x = NODEFAULT;

	    ////System.out.print(state.toString() + " --> " + state_x);
	    //System.out.println(" deftarget " + defTarget + " --> "+defTarget_x);

	    trans = (HashMap) delta.get( state );
	    HashMap newTrans = new HashMap();
	    for( Iterator labs = labels.iterator(); labs.hasNext() ;) {
		Object label = labs.next();
		TreeSet target   = (TreeSet) trans.get( label );
		Integer target_x;
		if( target != null ) {
		    // //System.out.println("target :"+target);
		    target_x = (Integer) indexMap.get( target );

		    if( target_x.intValue() != defTarget_x.intValue() ) {
			// replace target by target_x
			// (use type-unawareness)
			newTrans.put( label, target_x );
		    }
		    trans.remove( label );
		}

	    }
	    deltaq[ state_x.intValue() ] = newTrans;
	    defaultq[ state_x.intValue() ] = defTarget_x;

	    delta.remove( state );
	    deftrans.remove( state );

	}

	TreeMap oldfin = finals;
	this.finals = new TreeMap();
	for( Iterator it = oldfin.keySet().iterator(); it.hasNext(); ) {
	    TreeSet state = (TreeSet) it.next();
	    Integer state_x = (Integer) indexMap.get( state );
	    this.finals.put( state_x, oldfin.get( state ) );// conserve tags
	}

	// clean up, delete temporary stuff
	/*
	// we cannot clean up, indexmap is needed later
	for( Iterator it = states.iterator(); it.hasNext(); ) {
	((TreeSet) it.next()).clear();
	}
	*/
	states.clear();

	//minimize();
    }

    public DetWordAutom() {}

    public boolean isDead( int state ) {
	return state == nstates - 1; // by construction
    }

    public boolean isDead( Integer state ) {
	return state.intValue() == nstates - 1; // by construction
    }

    /** determinization -- standard algorithm considering only
     *                    reachable states
     */
    public DetWordAutom( NondetWordAutom nfa ) {
	determinize( nfa );
    }

    /** for a set of nfa states (that must exist), returns its transitions
     */
    HashMap deltaq( TreeSet nset ) {
	return deltaq( (Integer) indexMap.get( nset ) );
    }


    /** for a set of nfa states (that must exist), returns its transitions
     */
    Integer defaultq( TreeSet nset ) {
	return defaultq( (Integer) indexMap.get( nset ) );
    }

    /** returns target of the transition from state i with label label.
     *  null if no such transition exists.
     */
    Integer delta( int i, Label label ) {
	Integer target;
	switch( label ) {
	case DefaultLabel:
	    if( !hasDefault( i ) )
		return null;
	    return (Integer) defaultq( i ) ;
	case SimpleLabel( _ ):
	case TreeLabel( _ ):
	    return (Integer) deltaq[ i ].get( label ) ;
	    /*case Pair( Integer state, Label lab ):
	      return state;
	    */
	default:
	    throw new ApplicationError("whut's this: label="+label+", class "+label.getClass());
	}
    }

    Integer delta( Integer i, Label label ) {
	return delta( i.intValue(), label );
    }

    /** should maybe in nfa, not here
     */
    protected static Integer smallestFinal( NondetWordAutom nfa,
					    TreeSet states ) {

	int min = Integer.MAX_VALUE ;
	for( Iterator it = states.iterator(); it.hasNext(); ) {
	    Integer state = (Integer) it.next();
	    if( nfa.isFinal( state ) && (state.intValue() < min ))
		min = state.intValue();
	}
	if( min == Integer.MAX_VALUE )
	    throw new ApplicationError("I expected a final set of states");
	return new Integer( min );

    }

    protected Vector allSetsThatContain( Integer ndstate ) {
	Vector v = new Vector();
	for( Iterator it = indexMap.keySet().iterator(); it.hasNext(); ) {
	    TreeSet ndstateSet = (TreeSet) it.next();
	    if( ndstateSet.contains( ndstate ))
		v.add( ndstateSet );
	}
	return v;
    }


    protected void filterItOutQuoi( DetWordAutom dLeft,
				    Cartesian.Npair npTarget,
				    Label.Pair lab,
				    TreeMap nsrc ) {
	Label theLabel  = lab.lab;
	Integer ntarget = lab.state;

	// e.g.[2,(3),4] --> 7
	Integer dstate = (Integer) dLeft.indexMap.get( npTarget.nset );

	// eg. 3 -> [3] [2,3]
	Vector targets = dLeft.allSetsThatContain( ntarget );

	////System.out.println( targets+", of these " ) ;

	// filter out those source states which arrive here...

	for( Iterator su = targets.iterator(); su.hasNext(); ) {
	    TreeSet nset   = (TreeSet) su.next();

	    HashMap ddelta = dLeft.deltaq( nset );

	    // ...  at THIS dstate
	    if( (Integer) ddelta.get( theLabel ) == dstate ) {

		Cartesian.Npair np1 = new Cartesian.Npair( ntarget, nset );

		////System.out.print( np1.toString( dLeft.indexMap ));

		if( WHICH_LONGEST_MATCH == FIRST )
		    addTransitionFLM( nsrc, np1 );
		else
		    addTransitionLLM( nsrc, np1 );
	    }

	}
    }

    /** all default transitions from sets that contain nq to npTarget
     */
    protected void filterItOutQuoiDefault( DetWordAutom dLeft,
					   Cartesian.Npair npTarget,
					   Integer nq,
					   TreeMap nsrc ) {


	////System.out.println( "npTarget = " + npTarget ) ;

	Vector allSources = dLeft.allSetsThatContain( npTarget.nstate );

	for( Iterator it = allSources.iterator(); it.hasNext(); ) {

	    // e.g.[2,(3),4] --> 7
	    //Integer dstate = (Integer) dLeft.indexMap.get( npTarget.nset );

	    Integer dstate = (Integer) dLeft.indexMap.get( it.next() );

	    //System.out.println( "dstate = " + dstate ) ;

	    assert dstate != null;

	    // eg. 3 -> [3] [2,3]
	    Vector targets = dLeft.allSetsThatContain( nq );

	    //System.out.println( "targets: " + targets ) ;

	    // filter out those source states which arrive here...

	    for( Iterator su = targets.iterator(); su.hasNext(); ) {
		TreeSet nset   = (TreeSet) su.next();

		Integer ddef = dLeft.defaultq( nset );

		//System.out.println( "ddef ="+ddef );

		// ...  at THIS dstate
		if( ddef == dstate ) {

		    Cartesian.Npair np1 = new Cartesian.Npair( nq, nset );

		    // print target
		    //System.out.print( np1.toString( dLeft.indexMap ));

		    if( WHICH_LONGEST_MATCH == FIRST )
			addTransitionFLM( nsrc, np1 );
		    else
			addTransitionLLM( nsrc, np1 );

		}

	    }
	}
    }

    /** this implements the first longest match policy
     */
    protected static void addTransitionFLM( TreeMap nsrc, Cartesian.Npair np ) {
	Cartesian.Npair np2 = (Cartesian.Npair) nsrc.get( np.nset );

	// (policy) first longest match
	if(( np2 == null )
	   ||( np2.nstate.intValue() > np.nstate.intValue())) {
	    nsrc.put( np.nset, np  );
	}

    }

    /** this implements the last longest match policy (!)
     */
    protected static void addTransitionLLM( TreeMap nsrc, Cartesian.Npair np ) {
	Cartesian.Npair np2 = (Cartesian.Npair) nsrc.get( np.nset );

	// (policy) first longest match
	if(( np2 == null )
	   ||( np2.nstate.intValue() < np.nstate.intValue())) {
	    nsrc.put( np.nset, np  );
	}

    }


    /** build a deterministic right to left transducer from the args
     */
    public DetWordAutom( NondetWordAutom right,
			 NondetWordAutom left,
			 DetWordAutom    dLeft ) {

	/* System.out.println("DetWordAutom.<init>(nfa,nfa,dfa)");
	   System.out.println("nfa-left:");left.print();
	   System.out.println("nfa-right:");right.print();
	   System.out.println("dLeft:"+dLeft.print());
	   System.out.println("dLeft.finals"+dLeft.finals);
	*/
	this.indexMap = dLeft.indexMap;
	this.invIndexMap = dLeft.invIndexMap;
	// fix indexMap
	/* // unnecessary
	   TreeSet q0 = new TreeSet();
	   q0.add( new Integer( 0 ));
	   indexMap.put( q0, new Integer( 0 ));
	   //System.out.println("check out the indexMap!" + indexMap);
	   */

	TreeSet visited_n = new TreeSet( new NpairComparator() );
	Stack rest    = new Stack();

	// right is "nearly deterministic"
	// we can follow reverse traces paths by using dLeft.indexMap

	// start with right.initials, left.final, dLeft.final
	for( Iterator it = dLeft.finals.keySet().iterator(); it.hasNext(); ) {
	    Integer fstate  = (Integer) it.next();
	    TreeSet nfstate = (TreeSet) invIndexMap.get( fstate );
	    //System.out.print( "final state:"+fstate);
	    //System.out.print( " correspond to set of states:"+ nfstate );

	    Integer min_ndstate = smallestFinal( left, nfstate );

	    Cartesian.Npair npair = new Cartesian.Npair( min_ndstate, nfstate );

	    //System.out.println( "  smallest final of these: "+ min_ndstate );


	    //System.out.println( "push final nfa state "+npair.toString( dLeft.indexMap ));

	    if( !visited_n.contains( npair )) {
		visited_n.add( npair );
		rest.push( npair );
	    }
	}

	HashMap ratLab     = new HashMap(); // maps nset to label,HashMap
	HashMap ratDelta   = new HashMap(); // maps nset to Vector[ NP ]targets

	HashMap ratDefault = new HashMap(); // maps nset to NP (one target)

	int ix = 1;
	Stack ix_initial = (Stack) rest.clone();
	TreeSet ix_final = new TreeSet( new NpairComparator() );;

	TreeMap newIndexMap = new TreeMap( new NpairComparator() );

	while( !rest.isEmpty() ) {

	    Cartesian.Npair npair = (Cartesian.Npair) rest.pop();
	    newIndexMap.put( npair, new Integer(ix));

	    ratDelta.put( npair, new Vector() );

	    if( npair.nset.contains( new Integer( 0 )) ) {
		ix_final.add( npair );
	    }
	    ix++;

	    //System.out.println(" popped "+npair.toString( dLeft.indexMap ));

	    ////System.out.print(" binders: ");
	    ////System.out.print( right.qbinders[ npair.nstate.intValue() ] );

	    HashMap delta = right.deltaq( npair.nstate );

	    ////System.out.print(" we could have arrived : ");
	    //search the delta for target invIndexMap

	    HashMap labelToNset = new HashMap();
	    HashMap labelToFrom = new HashMap();

	    // maps nsets to the active nstates
	    TreeMap nsrc = new TreeMap( new StateSetComparator() );

	    // berry-sethi construction assures that
	    //   there is only one label for outgoing transitions
	    Label theLabel = null;

	    // collect all transition possible in the DFA

	    for( Iterator it = delta.keySet().iterator(); it.hasNext(); ) {

		Label.Pair   lab = (Label.Pair) it.next();

		// lab.state is the target in the NFA

		if( theLabel == null ) {
		    ratLab.put( npair, lab.lab );
		    ////System.out.print(" with \""+lab.lab+"\" ");
		}
		theLabel = lab.lab ;

		////System.out.print("\nfrom n" + lab.state +"  ... ");

		// these are too many, filter out those that exist in DFA

		filterItOutQuoi( dLeft, npair, lab, nsrc );

	    }


	    ////System.out.println( "---" );

	    ////System.out.println("all sources: ");

	    // !!  first longest match

	    for( Iterator ut = nsrc.keySet().iterator(); ut.hasNext(); ) {
		TreeSet nset  = (TreeSet) ut.next();

		Cartesian.Npair np2 = (Cartesian.Npair) nsrc.get( nset );

		assert( np2 != null );
		////System.out.println("target: n"+npair.nstate+" via: "+theLabel+" from "+ np2.toString( dLeft.indexMap ));// nset:"+nset+ " namely state n"+ dest);

		Vector v = (Vector) ratDelta.get( npair );

		v.add( np2 );

		if( !visited_n.contains( np2 ) ) {

		    visited_n.add( np2 );
		    rest.push( np2 );
		}

	    }

	    //System.out.println("default sources: ");

	    // maps nsets to the active nstates
	    nsrc = new TreeMap( new StateSetComparator() );

	    // now for all default transitions that arrive at this nfa state
	    Vector defqs = right.defaultq( npair.nstate );
	    for( Iterator it = defqs.iterator(); it.hasNext(); ) {
		Integer nq = (Integer) it.next();
		//System.out.println("checking nq="+nq);
		filterItOutQuoiDefault( dLeft, npair, nq, nsrc );
		//System.out.println( "nsrc after "+nq+" is "+nsrc );
	    }

	    //System.out.println( "defqs :"+defqs );
	    //System.out.println( "nsrc :"+nsrc );

	    for( Iterator ut = nsrc.keySet().iterator(); ut.hasNext(); ) {

		Cartesian.Npair np2 = (Cartesian.Npair) nsrc.get( ut.next() );

		Vector v = (Vector) ratDefault.get( npair );
		if( v == null )
		    ratDefault.put( npair, v = new Vector() );
		v.add( np2 );

		if( !visited_n.contains( np2 ) ) {

		    visited_n.add( np2 );
		    rest.push( np2 );
		}

	    }

	    ////System.out.println("zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz");

	}

	// Renumbering

	////System.out.println( "output: a dfa with "+ix+"states");

	// FIX: empty regular expression (as in "List()") is valid
	//assert ( !ix_final.isEmpty() ) : "no final states found";

	////System.out.println( "final state:"+ix_final);

	//System.out.println( "indexMap: " +indexMap);
	//System.out.println( "newIndexMap: " +newIndexMap);
	this.finals = new TreeMap();
	this.nstates = ix;
	HashMap dratDelta[] = new HashMap[ ix ];
	qbinders  = new Vector[ ix ];
	labels = new HashSet();
	for( Iterator it = ratDelta.keySet().iterator(); it.hasNext(); ) {
	    Cartesian.Npair np = (Cartesian.Npair) it.next();

	    //System.out.print( "\nstate: "+np);
	    TreeSet ndset = np.nset;
	    Integer dstate = (Integer) newIndexMap.get( np );
	    assert dstate != null : "no dstate for "+np.toString(dLeft.indexMap);

	    //System.out.print(" binders:");

	    qbinders[ dstate.intValue() ] = left.qbinders[ np.nstate.intValue() ];

	    //System.out.print( qbinders[dstate.intValue() ]);

	    //System.out.println(" transitions:");
	    if( ix_final.contains( np ) ) {
		Integer fin_ix = (Integer) newIndexMap.get( np );
		finals.put( fin_ix, new Integer( 0 ));
	    }

	    Label   lab   = (Label)  ratLab.get( np );
	    Vector  v     = (Vector) ratDelta.get( np );

	    HashMap ddelta = new HashMap();

	    // v might be null if there are only default transitions
	    if( v != null )
		for( Iterator it2 = v.iterator(); it2.hasNext() ; ) {

		    Cartesian.Npair np2= (Cartesian.Npair) it2.next();
		    //System.out.print( "("+lab+","+np2+") " );
		    Integer ddestR = (Integer) newIndexMap.get( np2 );
		    Integer ddest = (Integer) indexMap.get( np2.nset );
		    assert ddest != null :
			"no ddest for "
			+np2.toString(dLeft.indexMap);

		    Label.Pair newLab = new Label.Pair(ddest, lab);
		    ddelta.put( newLab, ddestR );
		    labels.add( newLab );

		}
	    dratDelta[ dstate.intValue() ] = ddelta;

	}

	for( Iterator it = ratDefault.keySet().iterator(); it.hasNext(); ) {
	    Cartesian.Npair np  = (Cartesian.Npair) it.next();
	    Integer         dstate = (Integer) newIndexMap.get( np );

	    //System.out.print("\nstate: "+np+" default trans: ");

	    Vector v = (Vector) ratDefault.get( np );
	    for( Iterator ut = v.iterator(); ut.hasNext(); ) {
		Cartesian.Npair np2  = (Cartesian.Npair) ut.next();
		Integer targetL      = (Integer) indexMap.get( np2.nset );
		Integer targetR      = (Integer) newIndexMap.get( np2 );

		Label defLab = new Label.Pair( targetL,
					       Label.DefaultLabel );

		labels.add( defLab );
		//System.out.print( "("+defLab+","+np2+") " );

		HashMap d = dratDelta[ dstate.intValue() ];
		if( d == null )
		    dratDelta[ dstate.intValue() ] = d = new HashMap();

		d.put( defLab, targetR );
	    }
	}

	deltaq = dratDelta;

	HashMap hmap = new HashMap();

	// final states of left are initial states of right
	// problem: still need to choose the one

	while( !ix_initial.isEmpty() ) {
	    Cartesian.Npair np = (Cartesian.Npair) ix_initial.pop();

	    Integer i          = (Integer) newIndexMap.get( np ); //R-state
	    Integer dtarget    = (Integer) indexMap.get( np.nset );// left-d-state

	    hmap.put( dtarget, i );
	}
	deltaq[ 0 ]  = hmap; // careful, this maps Int to Int

	qbinders[ 0 ] = new Vector();
	//((Vector[])defaultq)[ 0 ] = new Vector(); is null
	printBeforeRAT( dratDelta );

    }

    void printBeforeRAT1( String str ) {
	StringBuffer tmp = new StringBuffer( str );
	for( int j = tmp.length(); j < 20; j++ ) {
	    tmp.append(" ");
	}
	//System.out.print( tmp.toString() );
    }

    void printBeforeRAT( HashMap dratDelta[] ) {
	//System.out.println();
	printBeforeRAT1( "dratDelta" );
	printBeforeRAT1( "[index]" );
	//System.out.println();

	for( int i = 0; i < dratDelta.length; i++ ) {
	    if( isFinal( i ))
		printBeforeRAT1( "*"+i );
	    else
		printBeforeRAT1( " "+i );

	    //System.out.println( dratDelta[ i ] );
	}
    }

    /** you may only call this before the set[set[...]] representation
     *  gets flattened.
     */
    public void printBefore( TreeSet states, HashMap deftrans ) {
	HashMap trans;
	System.out.println( states );
	for( Iterator it = states.iterator(); it.hasNext(); ) {
	    TreeSet state = (TreeSet) it.next();
	    System.out.print("state:"+state.toString()+" transitions ");
	    trans = (HashMap) delta.get( state );
	    for( Iterator labs = labels.iterator(); labs.hasNext() ;) {
		Object label = labs.next();
		TreeSet target = (TreeSet) trans.get( label );
		System.out.print( "  (" + label.toString()
				  + "," + target.toString()+")");
	    }
	    System.out.print("default trans"+deftrans.get( state ));
	    System.out.println();
	}
	System.out.println("final states:" + finals );
    }


    /*
      public void minimize() { // TO DO
      //System.out.println("minimization");
      boolean mark[][] = new boolean[nstates][];
      for( int i = 0; i < nstates; i++ ) {
      mark[i] = new boolean[nstates - i];
      for( int j = 0; j < (nstates - i); j++ )
      mark[i][j] = false;
      }
      debugPrint( mark );
      }

      protected void debugPrint( boolean mark[][] ) {
      for( int i = 0; i < nstates; i++ ) {
      //System.out.print("[");
      for( int j = 0; j < nstates - i; j++ ) {
      //System.out.print(" "+mark[i][j]);
      if( mark[i][j] )
      //System.out.print(" ");
      }
      //System.out.println(" ]");
      }
      }

    */

    /*

    public void createDeadState() {
    assert dead == -1;
    this.dead = this.nstates++;
    Integer deadI = new Integer( dead );

    HashMap odelta[] = ((HashMap[])deltaq);
    deltaq = new HashMap[ this.nstates ];
    System.arraycopy(odelta, 0, ((HashMap[])deltaq), 0, odelta.length);
    HashMap trans = new HashMap();
    ((HashMap[])deltaq)[ this.dead ] = trans;
    for( Iterator labs = labels.iterator(); labs.hasNext(); ) {
    trans.put( labels, deadI );
    }
    //System.out.println("createDeadState, new dead state:"+dead);
    }



    // adjusts the alphabet of this automaton

    public void addLabels( HashSet labels ) {

    for(Iterator it = labels.iterator(); it.hasNext(); ) {
    Object label = it.next();
    if( this.labels.add( label )) { // new
    // adjust all transitions

    if( this.dead == -1 )
    createDeadState();

    Integer deadI = new Integer( this.dead );

    for( int i = 0; i < this.nstates; i++ ) {
    ((HashMap[])deltaq)[ i ].put( label, deadI );
    }
    }
    }
    }
    */

    // wishlist for jaco: why does Cartesian have to be static ?
    // if not, error "inner classes must not have static members"

    /** cartesian
     */

    static class Cartesian {
	/** Int x TreeSet[ Int ]
	 */
	case Npair(Integer nstate, TreeSet nset);

	public boolean equals( Object that ) {
	    if( !(that instanceof Cartesian ))
		return false;
	    switch( this ) {
	    case Npair( Integer nstate, TreeSet nset ):
		switch((Cartesian) that) {
		case Npair( Integer _nstate, TreeSet _nset ):
		    return ((nstate == _nstate)
			    &&( nset == _nset ));
		}
	    }
	    return false;
	}

	public String toString() {
	    switch( this ) {
	    case Npair( Integer nstate, TreeSet nset ):
		//Integer dstate = (Integer) indexMap.get( nset );
		return "<n"+nstate.toString()+" in "+nset /*+" = d"+dstate*/+">";
	    }
	    return null;
	}

	public String toString( HashMap indexMap ) {
	    //assert indexMap != null;
	    switch( this ) {
	    case Npair( Integer nstate, TreeSet nset ):
		assert nstate!=null;
		Integer dstate = (Integer) indexMap.get( nset );
		return "<n"+nstate.toString()+" in "+nset +" = d"+dstate +">";
	    }
	    return null;
	}


    }

    static class NpairComparator extends StateSetComparator {
	public int compare( Object o1, Object o2 ) {
	    if(( o1 instanceof Cartesian.Npair )&&
	       ( o2 instanceof Cartesian.Npair ))
		switch((Cartesian) o1) {
		case Npair( Integer nstate, TreeSet nset ):
		    switch( (Cartesian) o2 ) {
		    case Npair( Integer _nstate, TreeSet _nset ):
			int res = nstate.compareTo( _nstate );

			////System.out.println("nstate"+nstate+" <> _nstate "+ _nstate+" res"+res);
			if( res != 0 )
			    return res;
			else
			    return super.compare( nset, _nset );
		    }
		}
	    throw new ApplicationError( "illegal arg. to compare. "
					+o1.getClass()+" "+o2.getClass());
	}
    }

}