summaryrefslogtreecommitdiff
path: root/sources/scalac/typechecker/Analyzer.java
blob: 49c00ae457cdf4b7c828ede5061ddca8f13f64ae (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
/*     ____ ____  ____ ____  ______                                     *\
**    / __// __ \/ __// __ \/ ____/    SOcos COmpiles Scala             **
**  __\_ \/ /_/ / /__/ /_/ /\_ \       (c) 2002, LAMP/EPFL              **
** /_____/\____/\___/\____/____/                                        **
**
** $Id$
\*                                                                      */

// todo: (0) propagate target type in cast.
// todo: (1) check that only stable defs override stable defs
// todo: eliminate Typed nodes.

package scalac.typechecker;

import scalac.*;
import scalac.util.*;
import scalac.ast.*;
import scalac.ast.printer.*;
import scalac.symtab.*;
import Tree.*;
import java.util.HashMap;

public class Analyzer extends Transformer implements Modifiers, Kinds {

    private final Definitions definitions;
    private final DeSugarize desugarize;
    private final AnalyzerPhase descr;
    final Infer infer;

    public Analyzer(Global global, AnalyzerPhase descr) {
        super(global, descr);
        this.definitions = global.definitions;
	this.descr = descr;
	this.infer = new Infer(this);
	this.desugarize = new DeSugarize(this, global);
    }

    /** Phase variables, used and set in transformers;
     */
    private Unit unit;
    private Context context;
    private Type pt;
    private int mode;

    public void apply() {
	for (int i = 0; i < global.units.length; i++) {
            enterUnit(global.units[i]);
        }
	super.apply();
	int n = descr.newSources.size();
        while (n > 0) {
	    int l = global.units.length;
            Unit[] newUnits = new Unit[l + n];
            System.arraycopy(global.units, 0, newUnits, 0, l);
            for (int i = 0; i < n; i++)
                newUnits[i + l] = (Unit)descr.newSources.get(i);
            global.units = newUnits;
            descr.newSources.clear();
            for (int i = l; i < newUnits.length; i++) {
                apply(newUnits[i]);
	    }
	    n = descr.newSources.size();
        }
    }

    public void enterUnit(Unit unit) {
	enter(new Context(Tree.Empty, unit.console ? descr.consoleContext : descr.startContext), unit);
    }

    public void enter(Context context, Unit unit) {
        assert this.unit == null : "start unit non null for " + unit;
	this.unit = unit;
	this.context = context;
	ImportList prevImports = context.imports;
        descr.contexts.put(unit, context);
	enterSyms(unit.body);
	context.imports = prevImports;
        this.unit = null;
	this.context = null;
    }

    public void lateEnter(Unit unit, Symbol sym) {
	assert sym.pos == Position.NOPOS : sym;
	enterUnit(unit);
	if (sym.pos == Position.NOPOS) {
            sym.setInfo(Type.ErrorType);
	    String kind;
	    if (sym.name.isTermName()) kind = "module or method ";
	    else if (sym.name.isTypeName()) kind = "class ";
	    else kind = "constructor ";
	    throw new Type.Error("file " + unit.source + " does not define public " +
				 kind + sym.fullName());
	} else {
	    descr.newSources.add(unit);
	}
    }

    public void apply(Unit unit) {
	global.log("checking " + unit);
        assert this.unit == null : "start unit non null for " + unit;
	this.unit = unit;
        this.context = (Context)descr.contexts.remove(unit);
        assert this.context != null : "could not find context for " + unit;
	//context.imports = context.outer.imports;
	unit.body = transformStatSeq(unit.body, Symbol.NONE);
	/** todo: check what this is for
	if (global.target == global.TARGET_JAVA && unit.errors == 0) {
	    unit.symdata = new SymData(unit);
	}
	*/
        this.unit = null;
        this.context = null;
	global.operation("checked " + unit);
    }

    /** Mode constants
     */
    static final int NOmode        = 0x000;
    static final int EXPRmode      = 0x001;  // these 4 modes are mutually exclusive.
    static final int PATTERNmode   = 0x002;
    static final int CONSTRmode    = 0x004;
    static final int TYPEmode      = 0x008;

    static final int FUNmode       = 0x10;  // orthogonal to above. When set
                                             // we are looking for a method or constructor

    static final int POLYmode      = 0x020;  // orthogonal to above. When set
                                             // expression types can be polymorphic.

    static final int QUALmode      = 0x040;  // orthogonal to above. When set
                                             // expressions may be packages and
                                             // Java statics modules.

// Helper definitions ---------------------------------------------------------

    /** The qualifier type of a potential application of the `match' method.
     *  or NoType, if this is something else.
     */
    private Type matchQualType(Tree fn) {
	switch (fn) {
	case Select(Tree qual, _):
	    if (fn.symbol() == definitions.OBJECT_TYPE.lookup(Names.match))
		return qual.type.widen();
	    break;
	case TypeApply(Tree fn1, _):
	    return matchQualType(fn1);
	case Ident(_):
	    if (fn.symbol() == definitions.OBJECT_TYPE.lookup(Names.match))
		return context.enclClass.owner.type();
	    break;
	}
	return fn.type == Type.ErrorType ? Type.ErrorType : Type.NoType;
    }

    static Name value2TypeName(Object value) {
	if (value instanceof Character) return Name.fromString("scala.Char");
	else if (value instanceof Integer) return Name.fromString("scala.Int");
	else if (value instanceof Long) return Name.fromString("scala.Long");
	else if (value instanceof Float) return Name.fromString("scala.Float");
	else if (value instanceof Double) return Name.fromString("scala.Double");
	else if (value instanceof String) return Name.fromString("java.lang.String");
	else throw new ApplicationError();
    }

    Tree errorTree(int pos) {
	return make.Bad(pos).setSymbol(Symbol.ERROR).setType(Type.ErrorType);
    }

    Tree error(int pos, String msg) {
	unit.error(pos, msg);
	return errorTree(pos);
    }

    void explainTypes(Type found, Type required) {
	if (global.debug) {
	    Type.debugSwitch = true;
	    found.isSubType(required);
	    Type.debugSwitch = false;
	}
    }

    void typeError(int pos, Type found, Type req) {
	String explanation = "";
	switch (found) {
	case MethodType(_, Type restype):
	    if (infer.isCompatible(restype, req))
		explanation = "\n possible cause: missing arguments for method or constructor";
	}
	error(pos, infer.typeErrorMsg("type mismatch", found, req) + explanation);
    }

    void reportTypeError(int pos, Type.Error ex) {
	if (ex instanceof CyclicReference) {
	    if (global.debug) ex.printStackTrace();
	    CyclicReference cyc = (CyclicReference) ex;
	    if (cyc.info instanceof LazyTreeType) {
		switch (((LazyTreeType) cyc.info).tree) {
		case ValDef(_, _, Tree.Empty, _):
		    error(pos, "recursive " + cyc.sym + " needs type");
		    break;
		case DefDef(_, _, _, _, Tree.Empty, _):
		    error(pos, "recursive function " + cyc.sym.name + " needs result type");
		}
	    }
	}
	//throw ex;//DEBUG
	error(pos, ex.msg);
    }

// Name resolution -----------------------------------------------------------

    String decode(Name name) {
	if (name.isTypeName()) return "type " + name;
	else if (name.isConstrName()) return "constructor " + name;
	else return name.toString();
    }

    /** Is `sym' accessible as a member of tree `site' in current context?
     */
    boolean isAccessible(Symbol sym, Tree site) {
	return
	    (sym.flags & (PRIVATE | PROTECTED)) == 0
	    ||
	    accessWithin(sym.owner())
	    ||
	    ((sym.flags & PRIVATE) == 0) &&
	    site.type.symbol().isSubClass(sym.owner()) &&
	    (site instanceof Tree.Super ||
	     isSubClassOfEnclosing(site.type.symbol()));
    } //where

	/** Are we inside definition of `owner'?
	 */
	boolean accessWithin(Symbol owner) {
	    Context c = context;
	    while (c != Context.NONE && c.owner != owner) {
		c = c.outer.enclClass;
	    }
	    return c != Context.NONE;
	}

	/** Is `clazz' a subclass of an enclosing class?
	 */
        boolean isSubClassOfEnclosing(Symbol clazz) {
	    Context c = context;
	    while (c != Context.NONE && !clazz.isSubClass(c.owner)) {
		c = c.outer.enclClass;
	    }
	    return c != Context.NONE;
	}

// Checking methods ----------------------------------------------------------

    /** Check that symbol's definition is well-formed. This means:
     *   - no conflicting modifiers
     *   - def modifiers only in methods
     *   - declarations only in classes
     *   - classes with abstract members have `abstract' modifier.
     *   - symbols with `override' modifier override some other symbol.
     */
    void validate(Symbol sym) {
	checkNoConflict(sym, DEFERRED, PRIVATE);
	checkNoConflict(sym, FINAL, PRIVATE);
	checkNoConflict(sym, PRIVATE, PROTECTED);
	checkNoConflict(sym, PRIVATE, OVERRIDE);
	checkNoConflict(sym, DEFERRED, FINAL);
	if ((sym.flags & ABSTRACTCLASS) != 0 && sym.kind != CLASS) {
	    error(sym.pos, "`abstract' modifier can be used only for classes; " +
		  "\nit should be omitted for abstract members");
	}
	if ((sym.flags & OVERRIDE) != 0 && sym.kind == CLASS) {
	    error(sym.pos, "`override' modifier ot allowed for classes");
	}
	if ((sym.flags & DEF) != 0 && sym.owner().isPrimaryConstructor()) {
	    error(sym.pos, "`def' modifier not allowed for class parameters");
	}
	if ((sym.flags & DEFERRED) != 0) {
	    if (sym.owner().kind != CLASS ||
		(sym.owner().flags & MODUL) != 0 ||
		sym.owner().isAnonymousClass()) {
		error(sym.pos, abstractVarNote(sym,
		      "only classes can have declared but undefined members"));
		sym.flags &= ~DEFERRED;
	    }
	}
	if ((sym.flags & OVERRIDE) != 0) {
	    int i = -1;
	    if (sym.owner().kind == CLASS) {
		Type[] parents = sym.owner().info().parents();
		i = parents.length - 1;
		while (i >= 0 &&
		       parents[i].lookupNonPrivate(sym.name).kind == NONE)
		    i--;
	    }
	    if (i < 0) {
		error(sym.pos, sym + " overrides nothing");
		sym.flags &= ~OVERRIDE;
	    }
	}
    }

    /** Check that
     *  - all parents are class types
     *  - supertype conforms to supertypes of all mixin types.
     *  - final classes are only inherited by classes which are
     *    nested within definition of base class, or that occur within same
     *    statement sequence.
     *  - self-type of current class is a subtype of self-type of each parent class.
     *  - parent types do not refer to value parameters of class.
     */
    void validateParentClasses(Tree[] constrs, Type[] parents, Type selfType) {
	if (parents.length == 0 || !checkClassType(constrs[0].pos, parents[0])) return;
	for (int i = 0; i < parents.length; i++) {
	    if (!checkClassType(constrs[i].pos, parents[i])) return;
	    Symbol bsym = parents[i].symbol();
	    if (i == 0) {
		if ((bsym.flags & INTERFACE) != 0)
		    error(constrs[0].pos, "superclass may not be a Java interface");
	    } else {
		Type[] grandparents = parents[i].parents();
		if (grandparents.length > 0 &&
		    !parents[0].isSubType(grandparents[0]))
		    error(constrs[i].pos, "illegal inheritance;\n " + parents[0] +
			  " does not conform to " + parents[i] + "'s supertype");
	    }
	    if ((bsym.flags & FINAL) != 0) {
		// are we in same scope as base type definition?
		Scope.Entry e = context.scope.lookupEntry(bsym.name);
		if (e.sym != bsym || e.owner != context.scope) {
		    // we are not within same statement sequence
		    Context c = context;
		    while (c != Context.NONE && c.owner !=  bsym)
			c = c.outer;
		    if (c == Context.NONE) {
			error(constrs[i].pos, "illegal inheritance from final class");
		    }
		}
	    }
	    if (!selfType.isSubType(parents[i].instanceType())) {
		error(constrs[i].pos, "illegal inheritance;\n self-type " +
		      selfType + " does not conform to " + parents[i] +
		      "'s selftype " + parents[i].instanceType());
	    }
	}
    }

    /** Check that type is a class type.
     */
    private boolean checkClassType(int pos, Type tp) {
	switch (tp.unalias()) {
	case TypeRef(_, Symbol sym, _):
	    if (sym.kind == CLASS) return true;
	    else if (sym.kind == ERROR) return false;
	    break;
	case ErrorType:
	    return false;
	}
	error(pos, "class type expected");
	return false;
    }

    /** Check that type is an object type
     */
    private Type checkObjectType(int pos, Type tp) {
	if (tp.isObjectType()) return tp;
	else {
	    if (tp != Type.ErrorType) error(pos, "object type expected");
	    return Type.ErrorType;
	}
    }

    /** 1. Check that only parameterless (uniform) classes are inherited several times.
     *  2. Check that all type instances of an inherited uniform class are the same.
     *  3. Check that case classes do not inherit from case classes.
     */
    void validateBaseTypes(Symbol clazz) {
	validateBaseTypes(clazz, clazz.type().parents(),
			  new boolean[clazz.closure().length], 0);
    }
    //where
        void validateBaseTypes(Symbol clazz, Type[] tps, boolean[] seen, int start) {
	    for (int i = tps.length - 1; i >= start; i--) {
		validateBaseTypes(clazz, tps[i].unalias(), seen, i == 0 ? 0 : 1);
	    }
	}

	void validateBaseTypes(Symbol clazz, Type tp, boolean[] seen, int start) {
	    Symbol baseclazz = tp.symbol();
	    if (baseclazz.kind == CLASS) {
		int index = clazz.closurePos(baseclazz);
                if (index < 0) return;
		if (seen[index]) {
		    // check that only uniform classes are inherited several times.
		    if (!clazz.isCompoundSym() && !baseclazz.isTrait()) {
			error(clazz.pos, "illegal inheritance;\n" + clazz +
			      " inherits " + baseclazz + " twice");
		    }
		    // check no two different type instances of same class
		    // are inherited.
		    Type tp1 = clazz.closure()[index];
		    if (!tp1.isSameAs(tp)) {
			if (clazz.isCompoundSym())
			    error(clazz.pos,
				  "illegal combination;\n " + "compound type " +
				  " combines different type instances of " +
				  baseclazz + ":\n" + tp + " and " + tp1);
			else
			    error(clazz.pos, "illegal inheritance;\n " + clazz +
				  " inherits different type instances of " +
				  baseclazz + ":\n" + tp + " and " + tp1);
		    }
		}
		// check that case classes do not inherit from case classes
		if (clazz.isCaseClass() && baseclazz.isCaseClass())
		    error(clazz.pos, "illegal inheritance;\n " + "case " + clazz +
			  " inherits from other case " + baseclazz);

		seen[index] = true;
		validateBaseTypes(clazz, tp.parents(), seen, start);
	    }
	}

    /** Check that found type conforms to required one.
     */
    Type checkType(int pos, Type found, Type required) {
	if (found.isSubType(required)) return found;
	else {
	    typeError(pos, found, required);
	    explainTypes(found, required);
	    return Type.ErrorType;
	}
    }

    /** Check that type is eta-expandable (i.e. no `def' parameters)
     */
    void checkEtaExpandable(int pos, Type tp) {
	switch (tp) {
	case MethodType(Symbol[] params, Type restype):
	    for (int i = 0; i < params.length; i++) {
		if ((params[i].flags & DEF) != 0)
		    error(pos, "method with `def' parameters needs to be fully applied");
		if ((params[i].flags & REPEATED) != 0)
		    error(pos, "method with `*' parameters needs to be fully applied");
	    }
	    checkEtaExpandable(pos, restype);
	}
    }

    /** Check that `sym' does not contain both `flag1' and `flag2'
     */
    void checkNoConflict(Symbol sym, int flag1, int flag2) {
	if ((sym.flags & (flag1 | flag2)) == (flag1 | flag2)) {
	    if (flag1 == DEFERRED)
		error(sym.pos, "abstract member may not have " +
		      Modifiers.Helper.toString(flag2) + " modifier");
	    else
		error(sym.pos, "illegal combination of modifiers: " +
		      Modifiers.Helper.toString(flag1) + " and " +
		      Modifiers.Helper.toString(flag2));
	}
    }

    /** Check that type `tp' is not a subtype of itself.
     */
    public void checkNonCyclic(int pos, Type tp) {
	switch (tp) {
	case TypeRef(Type pre, Symbol sym, Type[] args):
	    sym.initialize();
	    if ((sym.flags & LOCKED) != 0) {
		error(pos, "cyclic aliasing or subtyping involving " + sym);
	    } else if (sym.kind == ALIAS || sym.kind == TYPE) {
		assert (sym.flags & LOCKED) == 0;
		sym.flags |= LOCKED;
		checkNonCyclic(
		    pos, pre.memberInfo(sym).subst(sym.typeParams(), args));
		sym.flags &= ~LOCKED;
	    }
	    break;
	case CompoundType(Type[] parents, Scope members):
	    for (int i = 0; i < parents.length; i++) {
		checkNonCyclic(pos, parents[i]);
	    }
	    break;
	case SingleType(Type pre, Symbol sym):
	    sym.initialize();
	    if ((sym.flags & LOCKED) != 0) {
		error(pos, "cyclic aliasing or subtyping involving " + sym);
	    }
	}
    }

    /** Check that type does not refer to components defined in current scope.
     */
    Type checkNoEscape(int pos, Type tp) {
	try {
	    return checkNoEscapeMap.apply(tp);
	} catch (Type.Error ex) {
	    error(pos, ex.msg + " as part of " + tp.unalias());
	    return Type.ErrorType;
	}
    }
    //where
	private Type.Map checkNoEscapeMap = new Type.Map() {
	    public Type apply(Type t) {
		switch (t) {
		case TypeRef(Type pre, Symbol sym, Type[] args):
		    if (sym.kind == ALIAS) return apply(t.unalias());
		    else if (pre instanceof Type.ThisType) checkNoEscape(t, sym);
		    break;
		case SingleType(ThisType(_), Symbol sym):
		    checkNoEscape(t, sym);
		    break;
		}
		return map(t);
	    }
    	    private void checkNoEscape(Type t, Symbol sym) {
		Scope.Entry e = context.scope.lookupEntry(sym.name);
		if (e.sym == sym && e.owner == context.scope &&
		    !(e.sym.kind == TYPE && (e.sym.flags & PARAM) != 0)) {
		    throw new Type.Error(
			"type " + t + " escapes its defining scope");
		}
	    }
	};

    /** Check that tree represents a pure definition.
     */
    void checkPureDef(Tree tree, Symbol clazz) {
	if (!TreeInfo.isPureDef(tree) && tree.type != Type.ErrorType)
	    error(tree.pos, clazz + " may contain only pure definitions");
    }

    /** Check that tree represents a pure definition.
     */
    void checkTrait(Tree tree, Symbol clazz) {
	if (!TreeInfo.isPureConstr(tree) &&
	    tree.type != Type.ErrorType /*&&
					  !tree.type.symbol().isTrait()*/)
	    error(tree.pos, " " + clazz + " may inherit only from stable trait constructors");
    }

    /** Check that tree is a stable expression .p
     */
    Tree checkStable(Tree tree) {
	if (TreeInfo.isPureExpr(tree) || tree.type == Type.ErrorType) return tree;
	//new TextTreePrinter().print(tree).end();//DEBUG
	//System.out.println(" " + tree.type);//DEBUG
	return error(tree.pos, "stable identifier required");
    }

    /** Check that (abstract) type can be instantiated.
     */
    void checkInstantiatable(int pos, Type tp) {
	error(pos, tp.symbol() + " is abstract; cannot be instantiated");
    }

    /** Check all members of class `clazz' for overriding conditions.
     */
    void checkAllOverrides(Symbol clazz) {
	Type[] closure = clazz.closure();
	for (int i = 0; i < closure.length; i++) {
	    for (Scope.SymbolIterator it = closure[i].members().iterator();
		 it.hasNext();) {
		Symbol other = it.next();
		Symbol member = clazz.info().lookup(other.name);
		if (other != member && (other.flags & PRIVATE) == 0 &&
		    member.kind != NONE)
		    checkOverride(clazz, member, other);
		if ((member.flags & DEFERRED) != 0 &&
		    clazz.kind == CLASS &&
		    (clazz.flags & ABSTRACTCLASS) == 0) {
		    if (clazz.isAnonymousClass())
			error(clazz.pos, "object creation impossible, since " +
			      member + member.locationString() + " is not defined");
		    else
			error(clazz.pos,
			    clazz + abstractVarNote(
				member,	" needs to be abstract; it does not define " +
				member + member.locationString()));
		    clazz.flags |= ABSTRACTCLASS;
		}
	    }
	}
    }

    /** Check that all conditions for overriding `other' by `member' are met.
     */
    void checkOverride(Symbol clazz, Symbol member, Symbol other) {
	int pos;
	if (member.owner() == clazz) pos = member.pos;
	else if (!member.owner().isSubClass(other.owner())) pos = context.tree.pos;
	else return; // everything was already checked elsewhere

	if ((member.flags & PRIVATE) != 0) {
	    overrideError(pos, member, other, "should not be private");
	} else if ((other.flags & PROTECTED) != 0 && (member.flags & PROTECTED) == 0) {
	    overrideError(pos, member, other,  "needs `protected' modifier");
	} else if ((other.flags & FINAL) != 0) {
	    overrideError(pos, member, other, "cannot override final member");
	} else if ((other.flags & DEFERRED) == 0 && ((member.flags & OVERRIDE) == 0)) {
	    overrideError(pos, member, other, "needs `override' modifier");
	} else if (other.isStable() && !member.isStable()) {
	    overrideError(pos, member, other, "needs to be an immutable value");
	} else {
	    Type self = clazz.thisType();
	    switch (other.kind) {
	    case CLASS:
 		overrideError(pos, member, other, "cannot override a class");
		break;
	    case ALIAS:
		if (!self.memberInfo(member).isSameAs(self.memberInfo(other)))
		    overrideTypeError(pos, member, other, self);
		break;
	    default:
		if (other.isConstructor())
		    overrideError(pos, member, other, "cannot override a class constructor");
		Type selftype = normalizedInfo(self, member);
		Type othertype = normalizedInfo(self, other);
		if (!selftype.isSubType(othertype))
		    overrideTypeError(pos, member, other, self);
	    }
	}
    }

    void overrideError(int pos, Symbol member, Symbol other, String msg) {
	if (other.type() != Type.ErrorType && member.type() != Type.ErrorType)
	    error(pos,
		"error overriding " + other + other.locationString() +
		"; " + member + member.locationString() + " " + msg);
    }

    void overrideTypeError(int pos, Symbol member, Symbol other, Type site) {
	if (other.type() != Type.ErrorType && member.type() != Type.ErrorType) {
	    error(pos,
		member + member.locationString() +
		infoString(member, normalizedInfo(site, member)) +
		"\n cannot override " + other + other.locationString() +
		infoString(other, normalizedInfo(site, other)));
	    explainTypes(normalizedInfo(site, member), normalizedInfo(site, other));
	}
    }

    Type normalizedInfo(Type site, Symbol sym) {
	Type tp = site.memberInfo(sym);
	if (sym.kind == VAL && (sym.flags & STABLE) != 0) tp = tp.resultType();
	return tp;
    }

    String infoString(Symbol sym, Type symtype) {
	switch (sym.kind) {
	case ALIAS: return ", which equals " + symtype;
	case TYPE:  return " bounded by " + symtype;
	case VAL:   return " of type " + symtype;
	default:    return "";
	}
    }

    String abstractVarNote(Symbol member, String msg) {
	String note = ((member.flags & MUTABLE) == 0) ? ""
	    : "\n(Note that variables need to be initialized to be defined)";
	return msg + note;
    }

// Entering Symbols ----------------------------------------------------------

    Tree transformPackageId(Tree tree) {
	switch (tree) {
	case Ident(Name name):
	    return tree
		.setSymbol(packageSymbol(tree.pos, definitions.ROOT, name))
	        .setType(tree.symbol().type());
	case Select(Tree qual, Name name):
	    Tree qual1 = transformPackageId(qual);
	    return copy.Select(tree, qual1, name)
		.setSymbol(packageSymbol(tree.pos, qual1.symbol(), name))
	        .setType(tree.symbol().type());
	default:
	    return transform(tree);
	}
    }

    Symbol packageSymbol(int pos, Symbol base, Name name) {
	Symbol p = base.members().lookup(name);
	if (p.kind == NONE) {
	    p = TermSymbol.newModule(
		Position.NOPOS, name, base.moduleClass(), JAVA | PACKAGE);
	    p.moduleClass().setInfo(Type.compoundType(Type.EMPTY_ARRAY, new Scope(), p));
	    base.members().enter(p);
	} else if (!p.isPackage()) {
	    error(pos, "package and class with same name");
	    p = Symbol.ERROR;
	}
	return p;
    }

    /** If `tree' is a definition, create a symbol for it with a lazily
     *  constructed type, and enter into current scope.
     */
    Symbol enterSym(Tree tree) {
	// todo: handle override qualifiers
	Symbol owner = context.owner;
	switch (tree) {
      	case PackageDef(Tree packaged, Tree.Template templ):
	    switch (templ) {
	    case Template(_, Tree[] body):
		pushContext(tree, context.owner, context.scope);
		context.imports = null;
		((PackageDef) tree).packaged = packaged = transformPackageId(packaged);
		popContext();
		Symbol pkg = checkStable(packaged).symbol();
		if (pkg != null && pkg.kind != ERROR) {
		    if (pkg.isPackage()) {
			pushContext(templ, pkg.moduleClass(), pkg.members());
			enterSyms(body);
			popContext();
		    } else {
			error(tree.pos, "only Java packages allowed for now");
		    }
		}
		templ.setSymbol(Symbol.NONE);
		return null;
	    default:
		throw new ApplicationError();
	    }

	case ClassDef(int mods, Name name, Tree.TypeDef[] tparams, Tree.ValDef[][] vparams, _, Tree.Template templ):
	    ClassSymbol clazz = new ClassSymbol(tree.pos, name, owner, mods);
	    if (clazz.isLocalClass()) unit.mangler.setMangledName(clazz);

	    enterSym(tree, clazz.constructor());
	    if ((mods & (ABSTRACTCLASS | CASE)) == CASE) {
		// enter case constructor method.
		enterInScope(
		    new TermSymbol(
			tree.pos, name.toTermName(), owner, mods & (ACCESSFLAGS | CASE))
		    .setInfo(new LazyConstrMethodType(tree)));
	    }
	    return enterSym(tree, clazz);

	case ModuleDef(int mods, Name name, _, _):
	    TermSymbol modul = TermSymbol.newModule(tree.pos, name, owner, mods);
	    Symbol clazz = modul.moduleClass();
	    clazz.setInfo(new LazyTreeType(tree));
	    if (clazz.isLocalClass()) unit.mangler.setMangledName(clazz);
	    return enterSym(tree, modul);

       	case ValDef(int mods, Name name, _, _):
	    return enterSym(tree, new TermSymbol(tree.pos, name, owner, mods));

	case DefDef(int mods, Name name, _, _, _, _):
	    return enterSym(tree, new TermSymbol(tree.pos, name, owner, mods));

	case TypeDef(int mods, Name name, _):
	    int kind = (mods & (DEFERRED | PARAM)) != 0 ? TYPE : ALIAS;
	    return enterSym(tree, new TypeSymbol(kind, tree.pos, name, owner, mods));

	case Import(Tree expr, Name[] selectors):
	    return enterImport(tree,
			new TermSymbol(
			    tree.pos,
			    Name.fromString("import " + expr),
			    Symbol.NONE, SYNTHETIC));

	default:
	    return null;
	}
    }//where

        /** Enter `sym' in current scope and make it the symbol of `tree'.
	 */
	private Symbol enterSym(Tree tree, Symbol sym) {
	    //if (global.debug) System.out.println("entering " + sym);//DEBUG
	    sym.setInfo(new LazyTreeType(tree));
	    sym = enterInScope(sym);
	    tree.setSymbol(sym);
	    return sym;
	}

	/** Make `sym' the symbol of import `tree' and create an entry in
	 *  current imports list.
	 */
	private Symbol enterImport(Tree tree, Symbol sym) {
	    sym.setInfo(new LazyTreeType(tree));
	    tree.setSymbol(sym);
	    context.imports = new ImportList(tree, context.scope, context.imports);
	    return sym;
	}

        /** Enter symbol `sym' in current scope. Check for double definitions.
	 *  Handle overloading.
	 */
	private Symbol enterInScope(Symbol sym) {
	    // handle double and overloaded definitions
	    Symbol result = sym;
	    Scope.Entry e = context.scope.lookupEntry(sym.name);
	    if (e.owner == context.scope) {
		Symbol other = e.sym;
		if (other.isPreloaded()) {
		    // symbol was preloaded from package;
		    // need to overwrite definition.
		    if (global.debug) System.out.println(sym + " overwrites " + other);//debug
		    sym.copyTo(other);
		    if (sym.isModule()) {
			sym.moduleClass().copyTo(
			    other.moduleClass());
			sym.moduleClass().constructor().copyTo(
			    other.moduleClass().constructor());
			other.moduleClass().constructor().setInfo(
			    Type.MethodType(
				Symbol.EMPTY_ARRAY,
				other.moduleClass().typeConstructor()));
		    }
		    result = other;
		} else if (sym.owner().isPackage()) {
		    if (global.compiledNow.contains(other)) {
			error(sym.pos, sym + " is compiled twice");
		    }
		    context.scope.unlink(e);
		    context.scope.enter(sym);
		} else if (sym.kind == VAL && other.kind == VAL) {
		    // it's an overloaded definition
		    if (((sym.flags ^ other.flags) & SOURCEFLAGS) != 0) {
			error(sym.pos,
			      "illegal overloaded definition of " + sym +
			      ": modifier lists differ in " +
			      Modifiers.Helper.toString(
				  (sym.flags ^ other.flags) & SOURCEFLAGS));
		    } else {
			e.setSymbol(other.overloadWith(sym));
		    }
		} else {
		    error(sym.pos,
			  sym.nameString() + " is already defined as " +
			  other + other.locationString());
		}
	    } else {
		context.scope.enter(sym);
	    }
	    if (result.owner().isPackage()) global.compiledNow.add(result);
	    return result;
	}

    /** Enter all symbols in statement list
     */
    public void enterSyms(Tree[] stats) {
	for (int i = 0; i < stats.length; i++)
	    enterSym(stats[i]);
    }

// Definining Symbols -------------------------------------------------------

    /** Define symbol associated with `tree' using given `context'.
     */
    void defineSym(Tree tree, Unit unit, Infer infer, Context curcontext) {
        Unit savedUnit = this.unit;
        this.unit = unit;
	Context savedContext = this.context;
	this.context = curcontext;
	int savedMode = this.mode;
	this.mode = EXPRmode;
	Type savedPt = this.pt;
	this.pt = Type.AnyType;

	try {
	    Symbol sym = tree.symbol();
	    if (global.debug) global.log("defining " + sym);
	    Type owntype;
	    switch (tree) {
	    case ClassDef(int mods, Name name, Tree.TypeDef[] tparams, Tree.ValDef[][] vparams, Tree tpe, Tree.Template templ):
		if ((mods & LOCKED) != 0 && !sym.isAnonymousClass()) {
		    sym.setInfo(Type.ErrorType);
		    throw new CyclicReference(sym, Type.NoType);
		}
		((ClassDef) tree).mods |= LOCKED;

		pushContext(tree, sym.constructor(), new Scope(context.scope));
		Symbol[] tparamSyms = enterParams(tparams);
		Symbol[][] vparamSyms = enterParams(vparams);

		if ((mods & CASE) != 0 && vparams.length > 0)
		    templ.body = desugarize.addCaseElements(templ.body, vparams[0]);

		Type constrtype = makeMethodType(
		    tparamSyms,
		    vparamSyms,
		    Type.TypeRef(sym.owner().thisType(), sym, Symbol.type(tparamSyms)));
		sym.constructor().setInfo(constrtype);
		// necessary so that we can access tparams
		sym.constructor().flags |= INITIALIZED;

		if (tpe != Tree.Empty)
		    sym.setTypeOfThis(transform(tpe, TYPEmode).type);

		defineTemplate(templ, sym);
		owntype = templ.type;
		popContext();
		break;

	    case ModuleDef(int mods, Name name, Tree tpe, Tree.Template templ):
		Symbol clazz = sym.moduleClass();
		defineTemplate(templ, clazz);
		clazz.setInfo(templ.type);
		if (tpe == Tree.Empty) owntype = clazz.type();
		else owntype = transform(tpe, TYPEmode).type;
		break;

	    case ValDef(int mods, Name name, Tree tpe, Tree rhs):
		if (tpe == Tree.Empty) {
		    pushContext(tree, sym, context.scope);
		    if (rhs == Tree.Empty) {
			if ((sym.owner().flags & ACCESSOR) != 0) {
			    // this is the paremeter of a variable setter method.
			    ((ValDef) tree).tpe = tpe =
				gen.mkType(tree.pos, sym.owner().accessed().type());
			} else {
			    error(tree.pos, "missing parameter type");
			    ((ValDef) tree).tpe = tpe =
				gen.mkType(tree.pos, Type.ErrorType);
			}
			owntype = tpe.type;
		    } else {
			if ((mods & CASEACCESSOR) != 0) {
			    //rhs was already attributed
			} else {
			    ((ValDef) tree).rhs = rhs = transform(rhs, EXPRmode);
			}
			owntype = rhs.type;
		    }
		    popContext();
		}  else {
		    owntype = transform(tpe, TYPEmode).type;
		}
		checkNonCyclic(tree.pos, owntype);
		break;

	    case DefDef(int mods, Name name, Tree.TypeDef[] tparams, Tree.ValDef[][] vparams, Tree tpe, Tree rhs):
		pushContext(tree, sym, new Scope(context.scope));
		Symbol[] tparamSyms = enterParams(tparams);
		Symbol[][] vparamSyms = enterParams(vparams);
		Type restpe;
		if (tpe == Tree.Empty) {
		    int rhsmode = name.isConstrName() ? CONSTRmode : EXPRmode;
		    ((DefDef) tree).rhs = rhs = transform(rhs, rhsmode);
		    restpe = checkNoEscape(rhs.pos, rhs.type);
		} else {
		    restpe = checkNoEscape(
			tpe.pos, transform(tpe, TYPEmode).type);
		}
		checkNonCyclic(tree.pos, restpe);
		popContext();
		owntype = makeMethodType(tparamSyms, vparamSyms, restpe);
		//System.out.println("methtype " + name + ":" + owntype);//DEBUG
		break;

	    case TypeDef(int mods, Name name, Tree rhs):
		//todo: alwyas have context.owner as owner.
		if (sym.kind == TYPE) {
		    pushContext(rhs, context.owner, context.scope);
		    context.delayArgs = true;
		    owntype = transform(rhs, TYPEmode).type;
		    owntype.symbol().initialize();//to detect cycles
		    popContext();
		} else { // sym.kind == ALIAS
		    pushContext(tree, sym, new Scope(context.scope));
		    owntype = transform(rhs, TYPEmode | FUNmode).type;
		    popContext();
		}
		checkNonCyclic(tree.pos, owntype);
		break;

	    case Import(Tree expr, Name[] selectors):
		Tree expr1 = transform(expr, EXPRmode | QUALmode);
		((Import) tree).expr = expr1;
		checkStable(expr1);
		owntype = expr1.type;
		break;

	    default:
		throw new ApplicationError();
	    }
	    sym.setInfo(owntype);
	    validate(sym);
	    if (global.debug) global.log("defined " + sym);//debug
	} catch (Type.Error ex) {
	    reportTypeError(tree.pos, ex);
	    tree.type = Type.ErrorType;
            if (tree.hasSymbol()) tree.setSymbol(Symbol.ERROR);
	}

        this.unit = savedUnit;
	this.context = savedContext;
	this.mode = savedMode;
	this.pt = savedPt;
    }

    /** Definition phase for a template. This enters all symbols in template
     *  into symbol table.
     */
    void defineTemplate(Tree.Template templ, Symbol clazz) {
	// attribute parent constructors
	Tree[] constrs = transformConstrInvocations(
	    templ.pos, templ.parents, true, Type.AnyType);

	Type[] parents = new Type[constrs.length];
	for (int i = 0; i < parents.length; i++)
	    parents[i] = constrs[i].type;

	// enter all members
	Scope members = new Scope();
	pushContext(templ, clazz, members);
	if ((clazz.flags & CASE) != 0)
	    templ.body = desugarize.addCaseMethods(templ.body, clazz, parents);
	templ.body = desugarize.Statements(templ.body, false);
	enterSyms(templ.body);
	popContext();

	templ.type = Type.compoundType(parents, members, clazz);
    }

    Symbol[] enterParams(Tree[] params) {
	for (int i = 0; i < params.length; i++) {
	    enterSym(params[i]);
	    switch (params[i]) {
	    case ValDef(int mods, _, _, _):
		if ((mods & REPEATED) != 0 && params.length > 1)
		    error(params[i].pos,
			  "`*' parameter must be the only parameter a `('...`)' section");
	    }
	}
	return Tree.symbolOf(params);
    }

    Symbol[][] enterParams(Tree[][] vparams) {
	Symbol[][] vparamSyms = new Symbol[vparams.length][];
	for (int i = 0; i < vparams.length; i++) {
	    vparamSyms[i] = enterParams(vparams[i]);
	}
	return vparamSyms;
    }

    Type makeMethodType(Symbol[] tparams, Symbol[][] vparams, Type restpe) {
	if (tparams.length == 0 && vparams.length == 0) {
	    return Type.PolyType(tparams, restpe);
	} else {
	    Type result = restpe;
	    for (int i = vparams.length - 1; i >= 0; i--)
		result = Type.MethodType(vparams[i], result);
	    if (tparams.length != 0)
		result = Type.PolyType(tparams, result);
	    return result;
	}
    }

    /** Re-enter type parameters in current scope.
     */
    void reenterParams(Tree[] params) {
	for (int i = 0; i < params.length; i++) {
	    context.scope.enter(params[i].symbol());
	}
    }

    /** Re-enter value parameters in current scope.
     */
    void reenterParams(Tree[][] vparams) {
	for (int i = 0; i < vparams.length; i++)
	    reenterParams(vparams[i]);
    }

// Attribution and Transform -------------------------------------------------

    /** Attribute an identifier consisting of a simple name or an outer reference.
     *  @param tree      The tree representing the identifier.
     *  @param name      The name of the identifier.
     */
    Tree transformIdent(Tree tree, Name name) {
	// find applicable definition and assign to `sym'
	Symbol sym = Symbol.NONE;
	Type pre;
	Type symtype;

	int stopPos = Integer.MIN_VALUE;
	Context nextcontext = context;
	while (sym.kind == NONE && nextcontext != Context.NONE) {
	    sym = nextcontext.scope.lookup(name);
	    if (sym.kind != NONE) {
		stopPos = sym.pos;
	    } else {
		nextcontext = nextcontext.enclClass;
		if (nextcontext != Context.NONE) {
		    sym = nextcontext.owner.info().lookup(name);
		    if (sym.kind != NONE) {
			stopPos = nextcontext.owner.pos;
		    } else {
			nextcontext = nextcontext.outer;
		    }
		}
	    }
	}

	// find applicable import and assign to `sym1'
	ImportList nextimports = context.imports;
	ImportList lastimports = null;
	Symbol sym1 = Symbol.NONE;

//	System.out.println("name = " + name + ", pos = " + tree.pos + ", importlist = ");//DEBUG
//	for (ImportList imp = nextimports; imp != null; imp = imp.prev) {
//	    new TextTreePrinter().print("    ").print(imp.tree).println().end();//DEBUG
//	}

	while (nextimports != null && nextimports.tree.pos >= tree.pos) {
	    nextimports = nextimports.prev;
	}
	while (sym1.kind == NONE &&
	       nextimports != null && nextimports.tree.pos > stopPos) {
	    sym1 = nextimports.importedSymbol(name);
	    lastimports = nextimports;
	    nextimports = nextimports.prev;
	}

	// evaluate what was found
	if (sym1.kind == NONE) {
	    if (sym.kind == NONE) {
		return error(tree.pos, "not found: " + decode(name));
	    } else {
		sym.flags |= ACCESSED;
		if (sym.owner().kind == CLASS) {
		    pre = nextcontext.enclClass.owner.thisType();
		    if (!sym.owner().isPackage()) {
			Tree qual = gen.mkStableId(tree.pos, pre);
			tree = make.Select(tree.pos, qual, name);
			//System.out.println(name + " :::> " + tree + " " + qual.symbol());//DEBUG
		    }
		} else {
		    pre = Type.localThisType;
		}
	    }
	} else if (sym.kind != NONE && !sym.isPreloaded()) {
	    return error(tree.pos,
			 "reference to " + name + " is ambiguous;\n" +
			 "it is both defined in " + sym.owner() +
			 " and imported subsequently by \n" + nextimports.tree);
	} else {
	    // check that there are no other applicable imports in same scope.
	    while (nextimports != null &&
		   nextimports.enclscope == lastimports.enclscope) {
		if (!nextimports.sameImport(lastimports) &&
		    nextimports.importedSymbol(name).kind != NONE) {
		    return error(tree.pos,
				 "reference to " + name + " is ambiguous;\n" +
				 "it is imported twice in the same scope by\n    " +
				 lastimports.tree + "\nand " + nextimports.tree);
		}
		nextimports = nextimports.prev;
	    }
	    sym = sym1;
	    sym.flags |= (ACCESSED | SELECTOR);
	    Tree qual = lastimports.importPrefix().duplicate();
	    pre = qual.type;
	    //new TextTreePrinter().print(name + " => ").print(lastimports.tree).print("." + name).println().end();//DEBUG
	    tree = make.Select(tree.pos, qual, name);
	}
	symtype = pre.memberType(sym);
	if ((pt != null && pt.isStable() || (mode & QUALmode) != 0) && sym.isStable()) {
	    //System.out.println("making single " + sym + ":" + symtype);//DEBUG
	    symtype = Type.singleType(pre, sym);
	}
	//System.out.println(name + ":" + symtype);//DEBUG
	return tree.setSymbol(sym).setType(symtype);
    }

    /** Attribute a selection where `tree' is `qual.name'.
     *  `qual' is already attributed.
     */
    Tree transformSelect(Tree tree, Tree qual, Name name) {
	Symbol[] uninst = Symbol.EMPTY_ARRAY;
	switch (qual.type) {
	case PolyType(Symbol[] tparams, Type restype):
	    qual = infer.mkTypeApply(qual, tparams, restype, Symbol.type(tparams));
	    uninst = tparams;
	}
	Symbol sym = qual.type.lookup(name);
	if (sym.kind == NONE) {
	    //System.out.println(qual.type + " has members " + qual.type.members());//DEBUG
	    return error(tree.pos,
			 decode(name) + " is not a member of " + qual.type.widen());
	} else if (!isAccessible(sym, qual)) {
	    return error(tree.pos, sym + " cannot be accessed in " + qual.type);
	} else {
	    sym.flags |= (ACCESSED | SELECTOR);
	    Type symtype = qual.type.memberType(sym);
	    //System.out.println(sym.name + ":" + symtype);//DEBUG
	    if (uninst.length != 0) {
		switch (symtype) {
		case PolyType(Symbol[] tparams, Type restype):
		    symtype = Type.PolyType(
			tparams, Type.PolyType(uninst, restype));
		    break;
		default:
		    symtype = Type.PolyType(uninst, symtype);
		}
	    }
	    if ((pt != null && pt.isStable() || (mode & QUALmode) != 0) &&
		sym.isStable() && qual.type.isStable())
		symtype = Type.singleType(qual.type, sym);
	    //System.out.println(qual.type + ".member: " + sym + ":" + symtype);//DEBUG
	    switch (tree) {
	    case Select(_, _):
		return copy.Select(tree, qual, name)
		    .setSymbol(sym).setType(symtype);
	    case SelectFromType(_, _):
		return make.TypeTerm(tree.pos).setType(symtype);
	    default:
		throw new ApplicationError();
	    }
	}
    }

    /** Attribute a pattern matching expression where `pattpe' is the
     *  expected type of the patterns and `pt' is the expected type of the
     *  results.
     */
    Tree transformVisitor(Tree tree, Type pattpe, Type pt) {
	//System.out.println("trans visitor with " + pt);//DEBUG
	switch (tree) {
	case Visitor(Tree.CaseDef[] cases):
	    Tree.CaseDef[] cases1 = cases;
	    for (int i = 0; i < cases.length; i++)
		cases1[i] = transformCase(cases[i], pattpe, pt);

	    return copy.Visitor(tree, cases1)
		.setType(Type.lub(Tree.typeOf(cases1)));
	default:
	    throw new ApplicationError();
	}
    }

    /** Attribute a case where `pattpe' is the expected type of the pattern
     *  and `pt' is the expected type of the result.
     */
    Tree.CaseDef transformCase(Tree.CaseDef tree, Type pattpe, Type pt) {
	switch (tree) {
	case CaseDef(Tree pat, Tree guard, Tree body):
	    pushContext(tree, context.owner, new Scope(context.scope));
	    Tree pat1 = transform(pat, PATTERNmode, pattpe);
	    Tree guard1 = guard;
	    if (guard != Tree.Empty)
		guard1 = transform(guard, EXPRmode, definitions.BOOLEAN_TYPE);
	    Tree body1 = transform(body, EXPRmode, pt);
	    popContext();
	    return (Tree.CaseDef) copy.CaseDef(tree, pat1, guard1, body1)
		.setType(body1.type);
	default:
	    throw new ApplicationError();
	}
    }

    Tree[] transformStatSeq(Tree[] stats, Symbol exprOwner) {
	Tree[] stats1 = stats;
	for (int i = 0; i < stats.length; i++) {
	    Tree stat = stats[i];
	    if (context.owner.isCompoundSym() && !TreeInfo.isDeclaration(stat)) {
		error(stat.pos, "only declarations allowed here");
	    }
	    Tree stat1;
	    if (exprOwner.kind != NONE && !TreeInfo.isOwnerDefinition(stat)) {
		pushContext(stat, exprOwner, context.scope);
		if (TreeInfo.isDefinition(stat)) stat1 = transform(stat);
		else stat1 = transform(stat, EXPRmode);
		popContext();
	    } else {
		if (TreeInfo.isDefinition(stat)) stat1 = transform(stat);
		else stat1 = transform(stat, EXPRmode);
	    }
	    if (stat1 != stat && stats1 == stats) {
		stats1 = new Tree[stats.length];
		System.arraycopy(stats, 0, stats1, 0, i);
	    }
	    stats1[i] = stat1;
	}
	return stats1;
    }

    /** Attribute a sequence of constructor invocations.
     */
    Tree[] transformConstrInvocations(int pos, Tree[] constrs,
				      boolean delayArgs, Type pt) {
	for (int i = 0; i < constrs.length; i++) {
	    pushContext(constrs[i], context.owner, context.scope);
	    context.delayArgs = delayArgs;
	    constrs[i] = transform(constrs[i], CONSTRmode, pt);
	    Symbol f = TreeInfo.methSymbol(constrs[i]);
	    if (f != null) {
		Symbol c = f.primaryConstructorClass();
		if (c.kind == CLASS) c.initialize();//to detect cycles
	    }
	    popContext();
	}
	return constrs;
    }

    /** Attribute a template
     */
    public Tree.Template transformTemplate(Tree.Template templ, Symbol owner) {
	if (global.debug) global.log("transforming " + owner);//debug
	//System.out.println(owner.info());//DEBUG
	Tree[] parents1 = transformConstrInvocations(
	    templ.pos, templ.parents, false, Type.AnyType);
	if (owner.kind != ERROR) {
	    validateParentClasses(
		templ.parents, owner.info().parents(), owner.typeOfThis());
	    validateBaseTypes(owner);
	}
	pushContext(templ, owner, owner.members());
	templ.setSymbol(gen.localDummy(templ.pos, owner));
	Tree[] body1 = transformStatSeq(templ.body, templ.symbol());
	checkAllOverrides(owner);
	popContext();
	if (owner.isTrait()) {
	    for (int i = 0; i < templ.parents.length; i++)
		checkTrait(parents1[i], owner);
	    for (int i = 0; i < templ.body.length; i++)
		checkPureDef(body1[i], owner);
	}
	Tree.Template templ1 = copy.Template(templ, parents1, body1);
	templ1.setType(owner.type());
	return templ1;
    }

    public Tree transformApply(Tree tree, Tree fn, Tree[] args) {
	Tree fn1;
	int argMode;
	if ((mode & (EXPRmode | CONSTRmode)) != 0) {
	    fn1 = transform(fn, mode | FUNmode, Type.AnyType);
	    argMode = EXPRmode;
	} else {
	    assert (mode & PATTERNmode) != 0;
	    fn1 = transform(fn, mode | FUNmode, pt);
	    argMode = PATTERNmode;
	}

	// if function is overloaded with one alternative whose arity matches
	// argument length, preselect this alternative.
	switch (fn1.type) {
	case OverloadedType(Symbol[] alts, Type[] alttypes):
	    int matching1 = -1;
	    int matching2 = -1;
	    for (int i = 0; i < alttypes.length; i++) {
		Type alttp = alttypes[i];
		switch (alttp) {
		case PolyType(_, Type restp): alttp = restp;
		}
		switch (alttp) {
		case MethodType(Symbol[] params, _):
		    if (params.length == args.length ||
			params.length == 1 && (params[0].flags & REPEATED) != 0) {
			matching2 = matching1;
			matching1 = i;
		    }
		}
	    }
	    if (matching1 >= 0 && matching2 < 0)
		fn1.setSymbol(alts[matching1]).setType(alttypes[matching1]);
	}

	// handle the case of application of match to a visitor specially
	if (args.length == 1 && args[0] instanceof Visitor) {
	    Type pattp = matchQualType(fn1);
	    switch (fn1.type) {
	    case PolyType(Symbol[] tparams, _):
		if (pattp.containsSome(tparams)) {
		    if (global.debug) System.out.println(fn1.type + "+" + pattp);//debug
		    pattp = Type.AnyType; // so isFullyDefined fails below.
		}
	    }
	    if (pattp == Type.ErrorType) {
		return tree.setType(Type.ErrorType);
	    } else if (pattp != Type.NoType) {
		if (infer.isFullyDefined(pattp)) {
		    Tree fn2 = desugarize.postMatch(fn1, context.enclClass.owner);
		    Tree arg1 = transformVisitor(args[0], pattp, pt);
		    return copy.Apply(tree, fn2, new Tree[]{arg1})
			.setType(arg1.type);
		} else {
		    return error(tree.pos, "expected pattern type of cases could not be determined");
		}
	    }
	}

	// return prematurely if delayArgs is true and no type arguments
	// need to be inferred.
	if (context.delayArgs) {
	    switch (fn1.type) {
	    case MethodType(_, Type restp):
		return copy.Apply(tree, fn1, args).setType(restp);
	    }
	}

	// type arguments with formals as prototypes if they exist.
	fn1.type = infer.freshInstance(fn1.type);
	Type[] argtypes = transformArgs(
	    tree.pos, fn1.symbol(), Symbol.EMPTY_ARRAY, fn1.type, argMode, args, pt);

	// propagate errors in arguments
	if (argtypes == null) {
	    return tree.setType(Type.ErrorType);
	}
	for (int i = 0; i < argtypes.length; i++) {
	    if (argtypes[i] == Type.ErrorType) {
		return tree.setType(Type.ErrorType);
	    }
	}

	// resolve overloading
	switch (fn1.type) {
	case OverloadedType(Symbol[] alts, Type[] alttypes):
	    try {
		infer.methodAlternative(fn1, alts, alttypes, argtypes, pt);
	    } catch (Type.Error ex) {
		error(tree.pos, ex.msg);
	    }
	}

	switch (fn1.type) {
	case PolyType(Symbol[] tparams, Type restp):
	    // if method is polymorphic,
	    // infer instance, and adapt arguments to instantiated formals
	    try {
		fn1 = infer.methodInstance(fn1, tparams, restp, argtypes);
	    } catch (Type.Error ex) {
		error(tree.pos, ex.msg);
	    }
	    switch (fn1.type) {
	    case MethodType(Symbol[] params, Type restp1):
		Type[] formals = infer.formalTypes(params, args.length);
		for (int i = 0; i < args.length; i++) {
		    args[i] = adapt(args[i], argMode, formals[i]);
		}
		return copy.Apply(tree, fn1, args)
		    .setType(restp1);
	    }
	    break;
	case MethodType(Symbol[] params, Type restp):
	    // if method is monomorphic,
	    // check that it can be applied to arguments.
	    if (infer.isApplicable(fn1.type, argtypes, Type.AnyType)) {
		return copy.Apply(tree, fn1, args)
		    .setType(restp);
	    }
	}

	if (fn1.type == Type.ErrorType)
	    return tree.setType(Type.ErrorType);

	//new TextTreePrinter().print(tree).println().end();//DEBUG
	return error(tree.pos,
	    infer.applyErrorMsg(
		"", fn1, " cannot be applied to ", argtypes, pt));

    }

    /** Attribute an argument list.
     *  @param pos      Position for error reporting
     *  @param meth     The symbol of the called method, or `null' if none exists.
     *  @param tparams  The type parameters that need to be instantiated
     *  @param methtype The method's type w/o type parameters
     *  @param argMode  The argument mode (either EXPRmode or PATTERNmode)
     *  @param args     The actual arguments
     *  @param pt       The proto-resulttype.
     *  @return         The vector of instantiated argument types, or null if error.
     */
    Type[] transformArgs(int pos, Symbol meth, Symbol[] tparams, Type methtype,
			 int argMode, Tree[] args, Type pt) {
	//System.out.println("trans args " + meth + ArrayApply.toString(tparams) + ":" + methtype + "," + pt);//DEBUG
	Type[] argtypes = new Type[args.length];
	switch (methtype) {
	case MethodType(Symbol[] params, Type restp):
	    Type[] formals = infer.formalTypes(params, args.length);
	    if (formals.length != args.length) {
		error(pos, "wrong number of arguments" +
		      (meth == null ? "" : " for " + meth));
		return null;
	    }
	    if (tparams.length == 0) {
		for (int i = 0; i < args.length; i++) {
		    args[i] = transform(args[i], argMode, formals[i]);
		    argtypes[i] = args[i].type;
		}
	    } else {
		// targs: the type arguments inferred from the prototype
		Type[] targs = infer.protoTypeArgs(tparams, restp, pt, params);

		// argpts: prototypes for arguments
		Type[] argpts = new Type[formals.length];
		for (int i = 0; i < formals.length; i++)
		    argpts[i] = formals[i].subst(tparams, targs);

 		// transform arguments with [targs/tparams]formals as prototypes
		for (int i = 0; i < args.length; i++)
		    args[i] = transform(
			args[i], argMode | POLYmode, formals[i].subst(tparams, targs));

		// targs1: same as targs except that every AnyType is mapped to
		// formal parameter type.
		Type[] targs1 = new Type[targs.length];
		for (int i = 0; i < targs.length; i++)
		    targs1[i] = (targs[i] != Type.AnyType) ? targs[i]
			: tparams[i].type();

		for (int i = 0; i < args.length; i++) {
		    argtypes[i] = args[i].type;
		    switch (argtypes[i]) {
		    case PolyType(Symbol[] tparams1, Type restype1):
			argtypes[i] = infer.argumentTypeInstance(
			    tparams1, restype1,
			    formals[i].subst(tparams, targs1),
			    argpts[i]);
		    }
		}
	    }
	    return argtypes;

	case PolyType(Symbol[] tparams1, Type restp):
	    Symbol[] tparams2;
	    if (tparams.length == 0) tparams2 = tparams1;
	    else {
		tparams2 = new Symbol[tparams.length + tparams1.length];
		System.arraycopy(tparams, 0, tparams2, 0, tparams.length);
		System.arraycopy(tparams1, 0, tparams2, tparams.length, tparams1.length);
	    }
	    return transformArgs(pos, meth, tparams2, restp, argMode, args, pt);

	default:
	    for (int i = 0; i < args.length; i++) {
		args[i] = transform(args[i], argMode, Type.AnyType);
		argtypes[i] = args[i].type;
	    }
	    return argtypes;
	}
    }

    /** Atribute an expression or pattern with prototype `pt'.
     *  Check that expression's type conforms to `pt'.
     *  Resolve overloading and apply parameterless functions.
     *  Insert `apply' function if needed.
     */
    Tree transform(Tree tree, int mode, Type pt) {
	int savedMode = this.mode;
	Type savedPt = this.pt;
	this.mode = mode;
	this.pt = pt;
	Tree tree1 = adapt(transform(tree), mode, pt);

	this.mode = savedMode;
	this.pt = savedPt;
	return tree1;
    }

    Tree adapt(Tree tree, int mode, Type pt) {
	//new TextTreePrinter().print(tree).print(" adapt " + pt).println().end();//DEBUG
	switch (tree.type) {
	case OverloadedType(Symbol[] alts, Type[] alttypes):
	    // resolve overloading
	    if ((mode & FUNmode) == 0) {
		try {
		    infer.exprAlternative(tree, alts, alttypes, pt);
		} catch (Type.Error ex) {
		    error(tree.pos, ex.msg);
		}
		switch (tree.type) {
		case OverloadedType(_, _):
		    // overload resolution failed bcs no alternative matched prototype.
		    typeError(tree.pos, tree.type, pt);
		    tree.setSymbol(Symbol.ERROR).setType(Type.ErrorType);
		    break;
		default:
		    return adapt(tree, mode, pt);
		}
	    }
	    break;

	case PolyType(Symbol[] tparams, Type restp):
	    // apply parameterless functions
	    // instantiate polymorphic expressions
	    if (tparams.length == 0) {
		return adapt(tree.setType(restp), mode, pt);
	    } else if ((mode & (FUNmode | POLYmode)) == 0) {
		try {
		    tree = infer.exprInstance(tree, tparams, restp, pt);
		} catch (Type.Error ex) {
		    tree = error(tree.pos, ex.msg);
		}
		return adapt(tree, mode, pt);
//	    } else if ((mode & EXPRmode) != 0) {
//		// will be instantiated later
//		return tree;
	    }
	    break;

	case MethodType(_, _):
	    // convert unapplied methods to functions.
	    if ((mode & (EXPRmode | FUNmode)) == EXPRmode &&
		infer.isCompatible(tree.type, pt)) {
		checkEtaExpandable(tree.pos, tree.type);
		return transform(desugarize.etaExpand(tree, tree.type), mode, pt);
	    } else if ((mode & (CONSTRmode | FUNmode)) == CONSTRmode) {
		return error(tree.pos, "missing arguments for class constructor");
	    }
	}
	if ((mode & PATTERNmode) != 0) {
	    if (tree.isType()) {
		Symbol clazz = tree.type.unalias().symbol();
		if (clazz.isCaseClass()) {
		    // set type to instantiated case class constructor
		    tree.type = clazz.constructor().type();
		    switch (tree.type) {
		    case PolyType(Symbol[] tparams, Type restp):
			try {
			    infer.constructorInstance(tree, tparams, restp, pt);
			} catch (Type.Error ex) {
			    if (pt != Type.ErrorType) error(tree.pos, ex.msg);
			    return tree.setType(Type.ErrorType);
			}
			if (!(tree.type instanceof Type.MethodType))
			    tree = make.Apply(tree.pos, tree, Tree.EMPTY_ARRAY)
				.setType(tree.type);
		    }
		} else if (clazz.isSubClass(definitions.SEQ_CLASS)) {
		    // set type to instantiated sequence class constructor
		    Type seqtp = dropVarArgs(pt.baseType(clazz));
		    if (seqtp != Type.NoType) {
			tree.type = seqConstructorType(seqtp, pt);
		    } else {
			error(tree.pos, "expected pattern type " + pt +
			      " does not conform to sequence " + clazz);
		    }
		} else if (tree.type != Type.ErrorType) {
		    error(tree.pos, tree.symbol() +
			  " is neither a case class constructor nor a sequence class constructor");
		}
	    }
	    if ((mode & FUNmode) != 0) {
		return tree;
	    } else {
		Symbol sym = tree.symbol();
		// convert nullary case methods to types
		// check that other idents or selects are stable.
		switch (tree) {
		case Ident(Name name):
		    if (sym != null && isNullaryMethod(sym) && (sym.flags & CASE) != 0) {
			((Ident)tree).name = name.toTypeName();
			return transform(tree, mode, pt);
		    } else {
			checkStable(tree);
		    }
		    break;
		case Select(_, Name selector):
		    if (sym != null && isNullaryMethod(sym) && (sym.flags & CASE) != 0) {
			((Select)tree).selector = selector.toTypeName();
			return transform(tree, mode, pt);
		    } else {
			checkStable(tree);
		    }
		}
	    }
	} else if ((mode & EXPRmode) != 0) {
	    if ((mode & FUNmode) != 0) {
		if (tree.type.isObjectType()) {
		    // insert apply method
		    Symbol applyMeth = tree.type.lookup(Names.apply);
		    if (applyMeth != Symbol.NONE && isAccessible(applyMeth, tree)) {
			applyMeth.flags |= (ACCESSED | SELECTOR);
			tree = make.Select(tree.pos, tree, Names.apply)
			    .setSymbol(applyMeth)
			    .setType(tree.type.memberType(applyMeth));
			return adapt(tree, mode, pt);
		    }
		}
	    } else {
		Symbol fsym = TreeInfo.methSymbol(tree);
		if (fsym != null && fsym.isMethod() && (fsym.flags & CASE) != 0) {
		    // convert case methods to new's
		    Symbol constr = fsym.owner().info()
			.lookup(fsym.name.toTypeName()).constructor();
		    Template templ = make.Template(
			tree.pos,
			new Tree[]{desugarize.toConstructor(tree, constr)},
			Tree.EMPTY_ARRAY);
		    return transform(make.New(tree.pos, templ), mode, pt);
		} else if ((mode & QUALmode) == 0) {
		    // check that packages and static modules are not used as values
		    Symbol sym = tree.symbol();
		    if (sym != null && sym.kind != ERROR && !sym.isValue() &&
			tree.isTerm()) {
			new TextTreePrinter().print(tree).println().end();//debug
			error(tree.pos, tree.symbol() + " is not a value");
		    }
		}
	    }
	}

	if (!(tree.type instanceof Type.PolyType))
	    tree.type = checkType(tree.pos, tree.type, pt);

	return tree;
    }
    //where
	boolean isNullaryMethod(Symbol sym) {
	    switch (sym.type()) {
	    case PolyType(_, Type restpe):
		return !(restpe instanceof Type.MethodType);
	    default:
		return false;
	    }
	}

	Type dropVarArgs(Type tp) {
	    switch (tp) {
	    case TypeRef(Type pre, Symbol sym, Type[] targs):
		Type[] targs1 = targs;
		for (int i = 0; i < targs.length; i++) {
		    Type targ = targs[i];
		    Type targ1 = targ.dropVariance();
		    if (targ != targ1 && targs1 == targs) {
			targs1 = new Type[targs.length];
			System.arraycopy(targs, 0, targs1, 0, i);
		    }
		    targs1[i] = targ1;
		}
		if (targs1 == targs) return tp;
		else return Type.TypeRef(pre, sym, targs1);
	    default:
		return tp;
	    }
	}

	Type seqConstructorType(Type paramtp, Type resulttp) {
	    Symbol constr = resulttp.symbol().constructor();
	    Symbol param = new TermSymbol(
		Position.NOPOS, Names.WILDCARD, constr, PARAM | REPEATED).setInfo(
		    paramtp);
	    return Type.MethodType(new Symbol[]{param}, resulttp);
	}

    /** Transform expression or type with a given mode.
     */
    public Tree transform(Tree tree, int mode) {
	if ((mode & TYPEmode) == 0)
	    return transform(tree, mode, Type.AnyType);

	int savedMode = this.mode;
	this.mode = mode;
	Tree tree1 = transform(tree);
	this.mode = savedMode;

	Symbol sym = tree1.symbol();
	if ((mode & FUNmode) == 0 && sym != null && sym.typeParams().length != 0)
	    return error(tree.pos, sym + " takes type parameters.");
	else
	    return tree1;
    }

    Tree[] transform(Tree[] trees, int mode) {
	for (int i = 0; i < trees.length; i++)
	    trees[i] = transform(trees[i], mode);
	return trees;
    }

    /** The main attribution function
     */
    public Tree transform(Tree tree) {
	Symbol sym = tree.symbol();
	if (sym != null && !sym.isInitialized()) sym.initialize();
	if (global.debug && TreeInfo.isDefinition(tree)) global.log("transforming " + sym);
	try {
	    switch (tree) {

	    case Bad():
		return tree.setSymbol(Symbol.ERROR).setType(Type.ErrorType);

	    case Empty:
		tree.type = Type.NoType;
		return tree;

	    case PackageDef(Tree pkg, Tree.Template templ):
		switch (templ) {
		case Template(Tree[] parents, Tree[] body):
		    Symbol pkgSym = pkg.symbol();
		    if (pkgSym != null && pkgSym.isPackage()) {
			pushContext(templ, pkgSym, pkgSym.members());
			Tree[] body1 = transform(body);
			popContext();
			Tree.Template templ1 = copy.Template(templ, parents, body1);
			templ1.setType(Type.NoType).setSymbol(Symbol.NONE);
			return copy.PackageDef(tree, pkg, templ1)
			    .setType(definitions.UNIT_TYPE);
		    }
		}
		return tree.setType(Type.ErrorType);

	    case ClassDef(int mods, Name name, Tree.TypeDef[] tparams, Tree.ValDef[][] vparams, Tree tpe, Tree.Template templ):
		pushContext(tree, sym.constructor(), new Scope(context.scope));
		reenterParams(tparams);
		Tree.TypeDef[] tparams1 = transform(tparams);
		reenterParams(vparams);
		Tree.ValDef[][] vparams1 = transform(vparams);
		Tree tpe1 = transform(tpe);
		Tree.Template templ1 = transformTemplate(templ, sym);

		if ((sym.flags & ABSTRACTCLASS) == 0 &&
		    !sym.type().isSubType(sym.typeOfThis()))
		    error(sym.pos, sym +
			  " needs to be abstract; it does not conform to its self-type " +
			  sym.typeOfThis());
		popContext();
		return copy.ClassDef(tree, mods, name, tparams1, vparams1, tpe1, templ1)
		    .setType(definitions.UNIT_TYPE);

	    case ModuleDef(int mods, Name name, Tree tpe, Tree.Template templ):
		Tree tpe1 = transform(tpe, TYPEmode);
		Tree.Template templ1 = transformTemplate(templ, sym.moduleClass());
		return copy.ModuleDef(tree, mods, name, tpe1, templ1)
		    .setType(definitions.UNIT_TYPE);

	    case ValDef(int mods, Name name, Tree tpe, Tree rhs):
		Tree tpe1 = transform(tpe, TYPEmode);
		Tree rhs1 = rhs;
		if (tpe1 == Tree.Empty) {
		    tpe1 = gen.mkType(rhs.pos, rhs.type);
		    // rhs already attributed by defineSym in this case
		} else if (rhs != Tree.Empty) {
		    if ((mods & CASEACCESSOR) != 0) {
			//rhs was already attribute
		    } else {
			pushContext(tree, sym, context.scope);
			rhs1 = transform(rhs, EXPRmode, sym.type());
			popContext();
		    }
		}
		return copy.ValDef(tree, mods, name, tpe1, rhs1)
		    .setType(definitions.UNIT_TYPE);

	    case DefDef(int mods, Name name, Tree.TypeDef[] tparams, Tree.ValDef[][] vparams, Tree tpe, Tree rhs):
		pushContext(tree, sym, new Scope(context.scope));
		reenterParams(tparams);
		Tree.TypeDef[] tparams1 = transform(tparams);
		reenterParams(vparams);
		Tree.ValDef[][] vparams1 = transform(vparams);
		Tree tpe1 = transform(tpe, TYPEmode);
		Tree rhs1 = rhs;
		if (tpe1 == Tree.Empty) {
		    tpe1 = gen.mkType(rhs1.pos, rhs1.type);
		    //System.out.println("infer " + sym + ":" + rhs.type);//DEBUG
		    //rhs already attributed by defineSym in this case
		} else if (rhs != Tree.Empty) {
		    rhs1 = transform(rhs, EXPRmode,
			tpe1.type == Type.NoType ? Type.AnyType : tpe1.type);
		}
		popContext();
		return copy.DefDef(tree, mods, name, tparams1, vparams1, tpe1, rhs1)
		    .setType(definitions.UNIT_TYPE);

	    case TypeDef(int mods, Name name, Tree rhs):
		pushContext(tree, sym, new Scope(context.scope));
		int mode = TYPEmode;
		if (sym.kind == ALIAS) mode |= FUNmode;
		Tree rhs1 = transform(rhs, mode);
		popContext();
		return copy.TypeDef(tree, mods, name, rhs1)
		    .setType(definitions.UNIT_TYPE);

	    case Import(Tree expr, Name[] selectors):
		context.imports = new ImportList(tree, context.scope, context.imports);
		return Tree.Empty;

	    case Block(Tree[] stats):
		pushContext(tree, context.owner, new Scope(context.scope));
		int lastmode = mode & ~FUNmode;
		Tree[] stats1 = desugarize.Statements(stats, true);
		enterSyms(stats1);
		context.imports = context.outer.imports;
		for (int i = 0; i < stats1.length - 1; i++)
		    stats1[i] = transform(stats1[i], EXPRmode);
		Type tp;
		if (stats1.length > 0) {
		    stats1[stats1.length - 1] =
			transform(stats1[stats1.length - 1], lastmode, pt);
		    tp = checkNoEscape(tree.pos, stats1[stats1.length - 1].type);
		} else {
		    tp = definitions.UNIT_TYPE;
		}
		popContext();
		return copy.Block(tree, stats1)
		    .setType(tp);

	    case Visitor(Tree.CaseDef[] cases):
		if (pt.symbol().isSubClass(definitions.PARTIALFUNCTION_CLASS)) {
		    Type pft = pt.baseType(definitions.PARTIALFUNCTION_CLASS);
		    Type[] pftargs = pft.typeArgs();
		    if (pft.typeArgs().length == 2 && infer.isFullyDefined(pftargs[0])) {
			Type pattpe = pftargs[0];
			Type restpe = pftargs[1];
			Tree tree1 = transformVisitor(tree, pattpe, restpe);
			if (!infer.isFullyDefined(restpe)) restpe = tree1.type;
			return transform(
			    desugarize.partialFunction(
				tree, pattpe, restpe.dropVariance()));
		    } else {
			return error(tree.pos, "expected pattern type of cases could not be determined");
		    }
		} else {
		    return transform(desugarize.Visitor(tree));
		}

	    case Assign(Apply(Tree funarray, Tree[] vparam), Tree rhs):
		return transform(desugarize.Update(tree));

	    case Assign(Tree lhs, Tree rhs):
		Tree lhs1 = transform(lhs, EXPRmode);
		Symbol varsym = lhs1.symbol();
		if (varsym != null && (varsym.flags & ACCESSOR) != 0) {
		    return transform(desugarize.Assign(tree.pos, lhs, rhs));
		} else if (varsym == null || (varsym.flags & MUTABLE) == 0) {
		    return error(tree.pos, "assignment to non-variable");
		} else {
		    Tree rhs1 = transform(rhs, EXPRmode, lhs1.type);
		    return copy.Assign(tree, lhs1, rhs1)
			.setType(definitions.UNIT_TYPE);
		}

	    case If(Tree cond, Tree thenp, Tree elsep):
		Tree cond1 = transform(cond, EXPRmode, definitions.BOOLEAN_TYPE);
		if (elsep == Tree.Empty) {
		    Tree thenp1 =
			transform(thenp, EXPRmode, definitions.UNIT_TYPE);
		    Tree elsep1 = make.Block(tree.pos, Tree.EMPTY_ARRAY)
			.setType(definitions.UNIT_TYPE);
		    return copy.If(tree, cond1, thenp1, elsep1)
			.setType(definitions.UNIT_TYPE);
		} else {
		    Tree thenp1 = transform(thenp, EXPRmode, pt);
		    Tree elsep1 = transform(elsep, EXPRmode, pt);
		    return copy.If(tree, cond1, thenp1, elsep1)
			.setType(Type.lub(new Type[]{thenp1.type, elsep1.type}));
		}

	    case New(Tree.Template templ):
		switch (templ) {
	        case Template(Tree[] parents, Tree[] body):
		    if (parents.length == 1 && body.length == 0) {
			Tree parent1 = transform(parents[0], CONSTRmode, pt);
			Tree.Template templ1 = (Tree.Template)
			    copy.Template(templ, new Tree[]{parent1}, body)
			    .setType(parent1.type).setSymbol(Symbol.NONE);
			Type owntype = parent1.type;
			if ((owntype.symbol().constructor().flags & ABSTRACTCLASS) != 0)
			    checkInstantiatable(tree.pos, owntype);
			return copy.New(tree, templ1)
			    .setType(owntype.instanceType());
		    } else {
			pushContext(tree, context.owner, new Scope(context.scope));
			Tree cd = make.ClassDef(
			    templ.pos,
			    0,
			    Names.ANON_CLASS_NAME.toTypeName(),
			    Tree.ExtTypeDef.EMPTY_ARRAY,
			    new ValDef[][]{Tree.ExtValDef.EMPTY_ARRAY},
			    Tree.Empty,
			    templ);
			//new TextTreePrinter().print(cd).println().end();//DEBUG
			enterSym(cd);
			cd = transform(cd);
			Symbol clazz = cd.symbol();
			if (clazz.kind != CLASS) return errorTree(tree.pos);

			// compute template's type with new refinement scope.
			Type[] parentTypes = clazz.info().parents();
			Scope refinement = new Scope();
			Type base = Type.compoundType(parentTypes, Scope.EMPTY);
			Type tp = Type.compoundType(
			    parentTypes, refinement, clazz);
			Scope.SymbolIterator it = clazz.members().iterator();
			while (it.hasNext()) {
			    Symbol sym1 = it.next();
			    Symbol basesym1 = base.lookupNonPrivate(sym1.name);
			    if (basesym1.kind != NONE &&
				!base.symbol().thisType().memberType(basesym1)
				    .isSameAs(sym1.type()))
				refinement.enter(sym1);
			}
			if (refinement.elems == Scope.Entry.NONE &&
			    parentTypes.length == 1)
			    tp = parentTypes[0];
			else
			    tp = checkNoEscape(tree.pos, tp);

			Tree alloc =
			    gen.Typed(
				gen.New(
				    gen.Apply(
					gen.mkRef(tree.pos,
						  Type.localThisType, clazz.constructor()),
					Tree.EMPTY_ARRAY)),
				tp);
			popContext();
			return make.Block(tree.pos, new Tree[]{cd, alloc})
			    .setType(tp);
		    }
		default:
		    throw new ApplicationError();
		}

	    case Typed(Tree expr, Tree tpe):
		Tree tpe1 = transform(tpe, TYPEmode);
		Tree expr1 = transform(expr, mode, tpe1.type);
		return copy.Typed(tree, expr1, tpe1)
		    .setType(tpe1.type);

	    case Function(Tree.ValDef[] vparams, Tree body):
		pushContext(tree, context.owner, new Scope(context.scope));
		Type restype = desugarize.preFunction(vparams, pt);
		enterParams(vparams);
		Tree body1 = transform(body, EXPRmode, restype);
		if (!infer.isFullyDefined(restype)) restype = body1.type;
		popContext();
		Tree tree1 = copy.Function(tree, vparams, body1);
		Tree tree2 = transform(desugarize.Function(tree1, restype));
		return desugarize.postFunction(tree2);

	    case TypeApply(Tree fn, Tree[] args):
		Tree fn1 = transform(fn, EXPRmode | FUNmode, Type.AnyType);
		Tree[] args1 = transform(args, TYPEmode);
		Type[] argtypes = Tree.typeOf(args1);

		// resolve overloading
		switch (fn1.type) {
		case OverloadedType(Symbol[] alts, Type[] alttypes):
		    try {
			infer.polyAlternative(fn1, alts, alttypes, args.length);
		    } catch (Type.Error ex) {
			error(tree.pos, ex.msg);
		    }
		}

		// match against arguments
		switch (fn1.type) {
		case PolyType(Symbol[] tparams, Type restp):
		    if (tparams.length == argtypes.length) {
			int i = 0;
			while (i < tparams.length &&
			       (context.delayArgs ||
				argtypes[i].isSubType(
				    tparams[i].info().subst(tparams, argtypes))))
			    i++;
			if (i == tparams.length) {
			    return copy.TypeApply(tree, fn1, args1)
				.setType(restp.subst(tparams, argtypes));
			}
		    }
		    break;
		case ErrorType:
		    return tree.setType(Type.ErrorType);
		}
		return error(tree.pos,
		    infer.toString(fn1.symbol(), fn1.type) +
		    " cannot be applied to " +
		    ArrayApply.toString(argtypes, "[", ",", "]"));

	    case Apply(Tree fn, Tree[] args):
		return transformApply(tree, fn, args);

	    case Super(Tree tpe):
		Symbol enclClazz = context.enclClass.owner;
		if (enclClazz != null) {
                    // we are in a class or module
		    Tree tpe1 = transform(tpe, TYPEmode); // ignored for now.
		    switch (enclClazz.info()) {
		    case CompoundType(Type[] parents, _):
			return copy.Super(tree, tpe1)
			    .setType(Type.compoundType(parents, Scope.EMPTY));
		    case ErrorType:
			return tree.setType(Type.ErrorType);
		    default:
			throw new ApplicationError();
		    }
		} else {
		    return error(tree.pos,
                        "super can be used only in a class, module, or template");
		}

	    case This(Tree qual):
		Symbol clazz;
		Tree tree1;
		if (qual == Tree.Empty) {
		    clazz = context.enclClass.owner;
		    if (clazz != null) {
			tree1 = gen.mkStableId(tree.pos, clazz.thisType());
		    } else {
			return error(
			    tree.pos, tree +
			    " can be used only in a class, module, or template");
		    }
		} else {
		    Tree qual1 = transform(qual, TYPEmode | FUNmode);
		    clazz = qual1.symbol();
		    if (clazz.kind == CLASS) {
			Context clazzContext = context.outerContext(clazz);
			if (clazzContext != Context.NONE) {
			    if (!(qual1 instanceof Tree.Ident))
				qual1 = gen.Ident(tree.pos, qual1.symbol());
			    tree1 = copy.This(tree, qual1);
			} else {
			    return error(qual.pos,
				clazz.name + " is not an enclosing class");
			}
		    } else {
			return error(qual.pos, "class identifier expected");
		    }
		}
		return tree1.setType(
		    (pt != null && pt.isStable() || (mode & QUALmode) != 0)
		    ? clazz.thisType() : clazz.typeOfThis());

	    case Select(Tree qual, Name name):
		int qualmode = EXPRmode | POLYmode | QUALmode;
		Tree qual1 = transform(qual, qualmode);
		if (name.isTypeName()) qual1 = checkStable(qual1);
		return transformSelect(
		    tree, adapt(qual1, qualmode, Type.AnyType), name);

	    case Ident(Name name):
		if (mode  == PATTERNmode && name.isVariable()) {
		    //System.out.println("pat var " + name + ":" + pt);//DEBUG
		    Symbol vble = new TermSymbol(
			tree.pos, name, context.owner, 0).setType(pt);
		    if (name != Names.WILDCARD) enterInScope(vble);
		    return tree.setSymbol(vble).setType(pt);
		} else {
		    return transformIdent(tree, name);
		}

	    case Literal(Object value):
		return tree.setType(definitions.getType(value2TypeName(value)));

	    case TypeTerm():
		return tree;

	    case SingletonType(Tree ref):
		Tree ref1 = transform(ref, EXPRmode | QUALmode, Type.AnyType);
		return make.TypeTerm(tree.pos)
		    .setType(checkObjectType(tree.pos, ref1.type.resultType()));

	    case SelectFromType(Tree qual, Name name):
		Tree qual1 = transform(qual, TYPEmode);
		return transformSelect(tree, qual1, name);

	    case CompoundType(Tree[] parents, Tree[] refinements):
		Tree[] parents1 = transform(parents, TYPEmode);
		Type[] ptypes = Tree.typeOf(parents);
		Scope members = new Scope();
		Type self = Type.compoundType(ptypes, members);
		Symbol clazz = self.symbol();
		validateBaseTypes(clazz);
		pushContext(tree, clazz, members);
		for (int i = 0; i < refinements.length; i++) {
		    enterSym(refinements[i]).flags |= OVERRIDE;
		}
		Tree[] refinements1 = transformStatSeq(refinements, Symbol.NONE);
		checkAllOverrides(clazz);
		popContext();
		return make.TypeTerm(tree.pos)
		    .setType(self);

	    case AppliedType(Tree tpe, Tree[] args):
		Tree tpe1 = transform(tpe, TYPEmode | FUNmode);
		Tree[] args1 = transform(args, TYPEmode);
		Type[] argtypes = Tree.typeOf(args);
		//todo: this needs to be refined.
		Symbol[] tparams =
		    (Type.isSameAs(tpe1.type.typeArgs(), Symbol.type(tpe1.type.typeParams())))
		    ? tpe1.type.typeParams()
		    : Symbol.EMPTY_ARRAY;
		Type owntype = Type.ErrorType;
		if (tpe1.type != Type.ErrorType) {
		    if (tparams.length == args.length) {
			try {
			    if (!context.delayArgs)
				infer.checkBounds(tparams, argtypes, "");
			    owntype = Type.appliedType(tpe1.type, argtypes);
			} catch (Type.Error ex) {
			    error(tree.pos, ex.msg);
			}
		    } else {
			if (tparams.length == 0)
			    error(tree.pos, tpe1.type +
				  " does not take type parameters");
			else
			    error(tree.pos,
				  "wrong number of type arguments for " +
				  tpe1.type);
		    }
		}
		return make.TypeTerm(tree.pos).setType(owntype);

	    case CovariantType(Tree tpe):
		Tree tpe1 = transform(tpe, TYPEmode);
		return make.TypeTerm(tree.pos)
		    .setType(Type.covarType(tpe1.type));

	    case FunType(_, _):
		return transform(desugarize.FunType(tree));

	    default:
		throw new ApplicationError("illegal tree: " + tree);
	    }
	} catch (Type.Error ex) {
	    reportTypeError(tree.pos, ex);
	    tree.type = Type.ErrorType;
            if (tree.hasSymbol()) tree.setSymbol(Symbol.ERROR);
	    return tree;
	}
    }

// Contexts -------------------------------------------------------------------

    /** Push new context associated with given tree, owner, and scope on stack.
     *  Fields `imports' and, possibly, `enclClass' are inherited from parent.
     */
    void pushContext(Tree tree, Symbol owner, Scope scope) {
	context = new Context(tree, owner, scope, context);
    }

    /** Pop context from stack.
     */
    void popContext() {
	context = context.outer;
    }

// Lazy Types ------------------------------------------------------------------

    /** A lazy type which, when forced returns the type of a symbol defined
     *  in `tree'.
     */
    class LazyTreeType extends Type.LazyType {
	Tree tree;
        Unit u;
        Infer i;
	Context c;

	LazyTreeType(Tree tree) {
	    this.tree = tree;
            this.u = unit;
            this.i = infer;
	    this.c = context;
	}
	public void complete(Symbol sym) {
	    //System.out.println("completing " + sym);//DEBUG
	    //if (sym.isConstructor()) sym.constructorClass().initialize();
	    //else if (sym.isModule()) sym.moduleClass().initialize();
	    defineSym(tree, u, i, c);
	}
    }

    /** A lazy type for case constructor methods (whose name is a term name)
     *  which sets the method's type to the class constructor type.
     */
    class LazyConstrMethodType extends LazyTreeType {
	LazyConstrMethodType(Tree tree) {
	    super(tree);
	}
	public void complete(Symbol sym) {
	    sym.setInfo(tree.symbol().constructor().type().instanceType());
	}
    }
}