summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/backend/icode/GenICode.scala
blob: 5ddf6b052dd52993febae50ce83ca8d1c01eafb3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
/* NSC -- new Scala compiler
 * Copyright 2005-2007 LAMP/EPFL
 * @author  Martin Odersky
 */

// $Id$

package scala.tools.nsc.backend.icode

import scala.collection.mutable.{Map, HashMap, ListBuffer, Buffer, HashSet}
import scala.tools.nsc.symtab._


/** This class ...
 *
 *  @author  Iulian Dragos
 *  @version 1.0
 */
// TODO:
// - switches with alternatives
abstract class GenICode extends SubComponent  {
  import global._
  import icodes._
  import icodes.opcodes._

  val phaseName = "icode"

  override def newPhase(prev: Phase) = new ICodePhase(prev)

  class ICodePhase(prev: Phase) extends StdPhase(prev) {

    override def description = "Generate ICode from the AST"

    var unit: CompilationUnit = _

    // We assume definitions are alread initialized
    val STRING = REFERENCE(definitions.StringClass)

    // this depends on the backend! should be changed.
    val ANY_REF_CLASS = REFERENCE(definitions.ObjectClass)

    val SCALA_ALL    = REFERENCE(definitions.AllClass)
    val SCALA_ALLREF = REFERENCE(definitions.AllRefClass)
    val THROWABLE    = REFERENCE(definitions.ThrowableClass)

    val BoxedCharacterClass = if (forMSIL) null else definitions.getClass("java.lang.Character")
    val Comparator_equals = definitions.getMember(definitions.getModule("scala.runtime.Comparator"),
                                                 nme.equals_)

    /** Tree transformer that makes fresh label defs. */
    val duplicator = new DuplicateLabels

    ///////////////////////////////////////////////////////////

    override def run: Unit = {
      scalaPrimitives.init
      classes.clear
      super.run
    }

    override def apply(unit: CompilationUnit): Unit = {
      this.unit = unit
      unit.icode.clear
      log("Generating icode for " + unit)
      gen(unit.body)
      this.unit = null
    }

    def gen(tree: Tree): Context = gen(tree, new Context())

    def gen(trees: List[Tree], ctx: Context): Context = {
      var ctx1 = ctx
      for (t <- trees) ctx1 = gen(t, ctx1)
      ctx1
    }

    /////////////////// Code generation ///////////////////////

    def gen(tree: Tree, ctx: Context): Context = tree match {
      case EmptyTree => ctx

      case PackageDef(name, stats) =>
        gen(stats, ctx setPackage name)

      case ClassDef(mods, name, _, impl) =>
        log("Generating class: " + tree.symbol.fullNameString)
        ctx setClass (new IClass(tree.symbol) setCompilationUnit unit)
        addClassFields(ctx, tree.symbol);
        classes += tree.symbol -> ctx.clazz
        unit.icode += ctx.clazz
        gen(impl, ctx)
        ctx setClass null

      // !! modules should be eliminated by refcheck... or not?
      case ModuleDef(mods, name, impl) =>
        abort("Modules should not reach backend!")

      case ValDef(mods, name, tpt, rhs) =>
        ctx // we use the symbol to add fields

      case DefDef(mods, name, tparams, vparamss, tpt, rhs) =>
        if (settings.debug.value)
          log("Entering method " + name)
        val m = new IMethod(tree.symbol)
        m.sourceFile = unit.source.toString()
        m.returnType = if (tree.symbol.isConstructor) UNIT
                       else toTypeKind(tree.symbol.info.resultType)
        ctx.clazz.addMethod(m)

        var ctx1 = ctx.enterMethod(m, tree.asInstanceOf[DefDef])
        addMethodParams(ctx1, vparamss)

        if (!m.isDeferred) {
          ctx1 = genLoad(rhs, ctx1, m.returnType);

          // reverse the order of the local variables, to match the source-order
          m.locals = m.locals.reverse

          rhs match {
            case Block(_, Return(_)) => ()
            case Return(_) => ()
            case EmptyTree =>
              error("Concrete method has no definition: " + tree)
            case _ => if (ctx1.bb.isEmpty)
              ctx1.bb.emit(RETURN(m.returnType), rhs.pos)
            else
              ctx1.bb.emit(RETURN(m.returnType))
          }
          ctx1.bb.close
          prune(ctx1.method)
        } else
          ctx1.method.setCode(null)
        ctx1

      case Template(_, _, body) =>
        gen(body, ctx)

      case _ =>
        abort("Illegal tree in gen: " + tree)
    }

    private def genStat(trees: List[Tree], ctx: Context): Context = {
      var currentCtx = ctx

      for (t <- trees)
        currentCtx = genStat(t, currentCtx)

      currentCtx
    }

    /**
     * Generate code for the given tree. The trees should contain statements
     * and not produce any value. Use genLoad for expressions which leave
     * a value on top of the stack.
     *
     * @param tree ...
     * @param ctx  ...
     * @return a new context. This is necessary for control flow instructions
     *         which may change the current basic block.
     */
    private def genStat(tree: Tree, ctx: Context): Context = {

      tree match {
        case Assign(lhs @ Select(_, _), rhs) =>
          if (isStaticSymbol(lhs.symbol)) {
            val ctx1 = genLoad(rhs, ctx, toTypeKind(lhs.symbol.info))
            ctx1.bb.emit(STORE_FIELD(lhs.symbol, true), tree.pos)
            ctx1
          } else {
            var ctx1 = genLoadQualifier(lhs, ctx)
            ctx1 = genLoad(rhs, ctx1, toTypeKind(lhs.symbol.info))
            ctx1.bb.emit(STORE_FIELD(lhs.symbol, false), tree.pos)
            ctx1
          }

        case Assign(lhs, rhs) =>
          val ctx1 = genLoad(rhs, ctx, toTypeKind(lhs.symbol.info))
          val Some(l) = ctx.method.lookupLocal(lhs.symbol)
          ctx1.bb.emit(STORE_LOCAL(l), tree.pos)
          ctx1

        case _ =>
          genLoad(tree, ctx, UNIT)
      }
    }

    /**
     * Generate code for trees that produce values on the stack
     *
     * @param tree The tree to be translated
     * @param ctx  The current context
     * @param expectedType The type of the value to be generated on top of the
     *                     stack.
     * @return The new context. The only thing that may change is the current
     *         basic block (as the labels map is mutable).
     */
    private def genLoad(tree: Tree, ctx: Context, expectedType: TypeKind): Context = {
      var generatedType = expectedType
      if (settings.debug.value)
        log("at line: " + (tree.pos).line.map(.toString).get(tree.pos.toString))

      /**
       * Generate code for primitive arithmetic operations.
       */
      def genArithmeticOp(tree: Tree, ctx: Context, code: Int): Context = {
        val Apply(fun @ Select(larg, _), args) = tree
        var ctx1 = ctx
        var resKind = toTypeKind(larg.tpe)

        assert(args.length <= 1,
               "Too many arguments for primitive function: " + fun.symbol)
        assert(resKind.isNumericType | resKind == BOOL,
               resKind.toString() + " is not a numeric or boolean type " +
               "[operation: " + fun.symbol + "]")

        args match {
          // unary operation
          case Nil =>
            ctx1 = genLoad(larg, ctx1, resKind)
            code match {
              case scalaPrimitives.POS =>
                () // nothing
              case scalaPrimitives.NEG =>
                ctx1.bb.emit(CALL_PRIMITIVE(Negation(resKind)), larg.pos)
              case scalaPrimitives.NOT =>
                ctx1.bb.emit(CALL_PRIMITIVE(Arithmetic(NOT, resKind)), larg.pos)
              case _ =>
                abort("Unknown unary operation: " + fun.symbol.fullNameString +
                      " code: " + code)
            }
            generatedType = resKind

          // binary operation
          case rarg :: Nil =>
            resKind = getMaxType(larg.tpe :: rarg.tpe :: Nil);
            if (scalaPrimitives.isShiftOp(code) || scalaPrimitives.isBitwiseOp(code))
              assert(resKind.isIntType | resKind == BOOL,
                   resKind.toString() + " incompatible with arithmetic modulo operation: " + ctx1);

            ctx1 = genLoad(larg, ctx1, resKind);
            ctx1 = genLoad(rarg,
                           ctx1,  // check .NET size of shift arguments!
                           if (scalaPrimitives.isShiftOp(code)) INT else resKind)

            generatedType = resKind
            code match {
              case scalaPrimitives.ADD =>
                ctx1.bb.emit(CALL_PRIMITIVE(Arithmetic(ADD, resKind)), tree.pos)
              case scalaPrimitives.SUB =>
                ctx1.bb.emit(CALL_PRIMITIVE(Arithmetic(SUB, resKind)), tree.pos)
              case scalaPrimitives.MUL =>
                ctx1.bb.emit(CALL_PRIMITIVE(Arithmetic(MUL, resKind)), tree.pos)
              case scalaPrimitives.DIV =>
                ctx1.bb.emit(CALL_PRIMITIVE(Arithmetic(DIV, resKind)), tree.pos)
              case scalaPrimitives.MOD =>
                ctx1.bb.emit(CALL_PRIMITIVE(Arithmetic(REM, resKind)), tree.pos)
              case scalaPrimitives.OR  =>
                ctx1.bb.emit(CALL_PRIMITIVE(Logical(OR, resKind)), tree.pos)
              case scalaPrimitives.XOR =>
                ctx1.bb.emit(CALL_PRIMITIVE(Logical(XOR, resKind)), tree.pos)
              case scalaPrimitives.AND =>
                ctx1.bb.emit(CALL_PRIMITIVE(Logical(AND, resKind)), tree.pos)
              case scalaPrimitives.LSL =>
                ctx1.bb.emit(CALL_PRIMITIVE(Shift(LSL, resKind)), tree.pos)
                generatedType = resKind
              case scalaPrimitives.LSR =>
                ctx1.bb.emit(CALL_PRIMITIVE(Shift(LSR, resKind)), tree.pos)
                generatedType = resKind
              case scalaPrimitives.ASR =>
                ctx1.bb.emit(CALL_PRIMITIVE(Shift(ASR, resKind)), tree.pos)
                generatedType = resKind
              case _ =>
                abort("Unknown primitive: " + fun.symbol + "[" + code + "]")
            }

          case _ =>
            abort("Too many arguments for primitive function: " + tree)
        }
        ctx1
      }

      /** Generate primitive array operations.
       *
       *  @param tree ...
       *  @param ctx  ...
       *  @param code ...
       *  @return     ...
       */
      def genArrayOp(tree: Tree, ctx: Context, code: Int): Context = {
        import scalaPrimitives._
        val Apply(Select(arrayObj, _), args) = tree
        val k = toTypeKind(arrayObj.tpe)
        val ARRAY(elem) = k
        var ctx1 = genLoad(arrayObj, ctx, k)

        if (scalaPrimitives.isArrayGet(code)) {
          // load argument on stack
          assert(args.length == 1,
                 "Too many arguments for array get operation: " + tree);
          ctx1 = genLoad(args.head, ctx1, INT)
          generatedType = elem
        } else if (scalaPrimitives.isArraySet(code)) {
          assert(args.length == 2,
                 "Too many arguments for array set operation: " + tree);
          ctx1 = genLoad(args.head, ctx1, INT)
          ctx1 = genLoad(args.tail.head, ctx1, toTypeKind(args.tail.head.tpe))
          // the following line should really be here, but because of bugs in erasure
          // we pretend we generate whatever type is expected from us.
          //generatedType = UNIT
        } else
          generatedType = INT

        code match {
          case ZARRAY_LENGTH =>
            ctx1.bb.emit(CALL_PRIMITIVE(ArrayLength(BOOL)), tree.pos)
          case BARRAY_LENGTH =>
            ctx1.bb.emit(CALL_PRIMITIVE(ArrayLength(BYTE)), tree.pos)
          case SARRAY_LENGTH =>
            ctx1.bb.emit(CALL_PRIMITIVE(ArrayLength(SHORT)), tree.pos)
          case CARRAY_LENGTH =>
            ctx1.bb.emit(CALL_PRIMITIVE(ArrayLength(CHAR)), tree.pos)
          case IARRAY_LENGTH =>
            ctx1.bb.emit(CALL_PRIMITIVE(ArrayLength(INT)), tree.pos)
          case LARRAY_LENGTH =>
            ctx1.bb.emit(CALL_PRIMITIVE(ArrayLength(LONG)), tree.pos)
          case FARRAY_LENGTH =>
            ctx1.bb.emit(CALL_PRIMITIVE(ArrayLength(FLOAT)), tree.pos)
          case DARRAY_LENGTH =>
            ctx1.bb.emit(CALL_PRIMITIVE(ArrayLength(DOUBLE)), tree.pos)
          case OARRAY_LENGTH =>
            ctx1.bb.emit(CALL_PRIMITIVE(ArrayLength(ANY_REF_CLASS)), tree.pos)

          case ZARRAY_GET =>
            ctx1.bb.emit(LOAD_ARRAY_ITEM(BOOL), tree.pos)
          case BARRAY_GET =>
            ctx1.bb.emit(LOAD_ARRAY_ITEM(BYTE), tree.pos)
          case SARRAY_GET =>
            ctx1.bb.emit(LOAD_ARRAY_ITEM(SHORT), tree.pos)
          case CARRAY_GET =>
            ctx1.bb.emit(LOAD_ARRAY_ITEM(CHAR), tree.pos)
          case IARRAY_GET =>
            ctx1.bb.emit(LOAD_ARRAY_ITEM(INT), tree.pos)
          case LARRAY_GET =>
            ctx1.bb.emit(LOAD_ARRAY_ITEM(LONG), tree.pos)
          case FARRAY_GET =>
            ctx1.bb.emit(LOAD_ARRAY_ITEM(FLOAT), tree.pos)
          case DARRAY_GET =>
            ctx1.bb.emit(LOAD_ARRAY_ITEM(DOUBLE), tree.pos)
          case OARRAY_GET =>
            ctx1.bb.emit(LOAD_ARRAY_ITEM(ANY_REF_CLASS), tree.pos)

          case ZARRAY_SET =>
            ctx1.bb.emit(STORE_ARRAY_ITEM(BOOL), tree.pos)
          case BARRAY_SET =>
            ctx1.bb.emit(STORE_ARRAY_ITEM(BYTE), tree.pos)
          case SARRAY_SET =>
            ctx1.bb.emit(STORE_ARRAY_ITEM(SHORT), tree.pos)
          case CARRAY_SET =>
            ctx1.bb.emit(STORE_ARRAY_ITEM(CHAR), tree.pos)
          case IARRAY_SET =>
            ctx1.bb.emit(STORE_ARRAY_ITEM(INT), tree.pos)
          case LARRAY_SET =>
            ctx1.bb.emit(STORE_ARRAY_ITEM(LONG), tree.pos)
          case FARRAY_SET =>
            ctx1.bb.emit(STORE_ARRAY_ITEM(FLOAT), tree.pos)
          case DARRAY_SET =>
            ctx1.bb.emit(STORE_ARRAY_ITEM(DOUBLE), tree.pos)
          case OARRAY_SET =>
            ctx1.bb.emit(STORE_ARRAY_ITEM(ANY_REF_CLASS), tree.pos)

          case _ =>
            abort("Unknown operation on arrays: " + tree + " code: " + code)
        }
        ctx1
      }

      // genLoad
      val resCtx: Context = tree match {
        case LabelDef(name, params, rhs) =>
          val ctx1 = ctx.newBlock
          if (isLoopHeaderLabel(name))
            ctx1.bb.loopHeader = true;

          ctx1.labels.get(tree.symbol) match {
            case Some(label) =>
              label.anchor(ctx1.bb)
              label.patch(ctx.method.code)

            case None =>
              ctx1.labels += tree.symbol -> (new Label(tree.symbol) anchor ctx1.bb setParams (params map (.symbol)));
              ctx.method.addLocals(params map (p => new Local(p.symbol, toTypeKind(p.symbol.info), false)));
              if (settings.debug.value)
                log("Adding label " + tree.symbol);
          }

          ctx.bb.emit(JUMP(ctx1.bb), tree.pos)
          ctx.bb.close
          genLoad(rhs, ctx1, expectedType /*toTypeKind(tree.symbol.info.resultType)*/)

        case ValDef(_, _, _, rhs) =>
          val sym = tree.symbol
          val local = ctx.method.addLocal(new Local(sym, toTypeKind(sym.info), false))
          ctx.scope.add(local)
          ctx.bb.emit(SCOPE_ENTER(local))

          if (rhs == EmptyTree) {
            if (settings.debug.value)
              log("Uninitialized variable " + tree + " at: " + (tree.pos));
            ctx.bb.emit(getZeroOf(local.kind))
          }

          var ctx1 = ctx
          if (rhs != EmptyTree)
            ctx1 = genLoad(rhs, ctx, local.kind);

          ctx1.bb.emit(STORE_LOCAL(local), tree.pos)
          generatedType = UNIT
          ctx1

        case If(cond, thenp, elsep) =>
          var thenCtx = ctx.newBlock
          var elseCtx = ctx.newBlock
          val contCtx = ctx.newBlock
          genCond(cond, ctx, thenCtx, elseCtx)
          val ifKind = toTypeKind(tree.tpe)

          val thenKind = toTypeKind(thenp.tpe)
          val elseKind = if (elsep == EmptyTree) UNIT else toTypeKind(elsep.tpe)

          generatedType = ifKind

          // we need to drop unneeded results, if one branch gives
          // unit and the other gives something on the stack, because
          // the type of 'if' is scala.Any, and its erasure would be Object.
          // But unboxed units are not Objects...
          if (thenKind == UNIT || elseKind == UNIT) {
            if (settings.debug.value)
              log("Will drop result from an if branch");
            thenCtx = genLoad(thenp, thenCtx, UNIT)
            elseCtx = genLoad(elsep, elseCtx, UNIT)
            assert(expectedType == UNIT,
                   "I produce UNIT in a context where " +
                   expectedType + " is expected!")
            generatedType = UNIT
          } else {
            thenCtx = genLoad(thenp, thenCtx, ifKind)
            elseCtx = genLoad(elsep, elseCtx, ifKind)
          }

          thenCtx.bb.emit(JUMP(contCtx.bb))
          thenCtx.bb.close
          elseCtx.bb.emit(JUMP(contCtx.bb))
          elseCtx.bb.close

          contCtx

        case Return(expr) =>
          val returnedKind = toTypeKind(expr.tpe)
          var ctx1 = genLoad(expr, ctx, returnedKind)
          val oldcleanups = ctx1.cleanups
          for (op <- ctx1.cleanups) op match {
            case MonitorRelease(m) =>
              if (settings.debug.value) log("removing " + m + " from cleanups: " + ctx1.cleanups)
              ctx1.bb.emit(LOAD_LOCAL(m))
              ctx1.bb.emit(MONITOR_EXIT())
              ctx1.exitSynchronized(m)
            case Finalizer(f) =>
              if (settings.debug.value) log("removing " + f + " from cleanups: " + ctx1.cleanups)
              // we have to run this without the same finalizer in
              // the list, otherwise infinite recursion happens for
              // finalizers that contain 'return'
              ctx1 = genLoad(f, ctx1.removeFinalizer(f), UNIT)
          }
          ctx1.cleanups = oldcleanups

          ctx1.bb.emit(RETURN(returnedKind), tree.pos)
          ctx1.bb.enterIgnoreMode
          generatedType = expectedType
          ctx1

        case Try(block, catches, finalizer) =>
          val kind = toTypeKind(tree.tpe)
          var handlers = for (CaseDef(pat, _, body) <- catches.reverse)
            yield pat match {
              case Typed(Ident(nme.WILDCARD), tpt) => (tpt.tpe.symbol, kind, {
                ctx: Context =>
                  ctx.bb.emit(DROP(REFERENCE(tpt.tpe.symbol)));
                  val ctx1 = genLoad(body, ctx, kind);
                  genLoad(finalizer, ctx1, UNIT);
                })

              case Ident(nme.WILDCARD) => (definitions.ThrowableClass, kind, {
                ctx: Context =>
                  ctx.bb.emit(DROP(REFERENCE(definitions.ThrowableClass)))
                  val ctx1 = genLoad(body, ctx, kind)
                  genLoad(finalizer, ctx1, UNIT)
                })

              case Bind(name, _) =>
                val exception = ctx.method.addLocal(new Local(pat.symbol, toTypeKind(pat.symbol.tpe), false))

                (pat.symbol.tpe.symbol, kind, {
                  ctx: Context =>
                    if (settings.Xdce.value)
                      ctx.bb.emit(LOAD_EXCEPTION(), pat.pos)
                    ctx.bb.emit(STORE_LOCAL(exception), pat.pos);
                    val ctx1 = genLoad(body, ctx, kind);
                    genLoad(finalizer, ctx1, UNIT);
                })
            }

          if (finalizer != EmptyTree)
            handlers = (NoSymbol, kind, {
              ctx: Context =>
                val exception = ctx.method.addLocal(new Local(ctx.method.symbol
                                          .newVariable(finalizer.pos, unit.fresh.newName("exc"))
                                          .setFlag(Flags.SYNTHETIC)
                                          .setInfo(definitions.ThrowableClass.tpe),
                                          REFERENCE(definitions.ThrowableClass), false));
              if (settings.Xdce.value)
                ctx.bb.emit(LOAD_EXCEPTION())
              ctx.bb.emit(STORE_LOCAL(exception));
              val ctx1 = genLoad(finalizer, ctx, UNIT);
              ctx1.bb.emit(LOAD_LOCAL(exception));
              ctx1.bb.emit(THROW());
              ctx1.bb.enterIgnoreMode;
              ctx1
            }) :: handlers;

          val duppedFinalizer = duplicator(ctx, finalizer)
          if (settings.debug.value)
            log("Duplicated finalizer: " + duppedFinalizer)
          ctx.Try(
            bodyCtx => {
              generatedType = kind; //toTypeKind(block.tpe);
              val ctx1 = genLoad(block, bodyCtx, generatedType);
              if (kind != UNIT && mayCleanStack(finalizer)) {
                val tmp = ctx1.method.addLocal(
                    new Local(ctx.method.symbol.newVariable(tree.pos, unit.fresh.newName("tmp")).setInfo(tree.tpe).setFlag(Flags.SYNTHETIC),
                              kind, false))
                if (settings.Xdce.value)
                  ctx.bb.emit(LOAD_EXCEPTION())
                ctx1.bb.emit(STORE_LOCAL(tmp))
                val ctx2 = genLoad(duppedFinalizer, ctx1, UNIT)
                ctx2.bb.emit(LOAD_LOCAL(tmp))
                ctx2
              } else
                genLoad(duppedFinalizer, ctx1, UNIT)
            },
            handlers,
            finalizer)

        case Throw(expr) =>
          val ctx1 = genLoad(expr, ctx, THROWABLE)
          ctx1.bb.emit(THROW(), tree.pos)
          ctx1.bb.enterIgnoreMode
          generatedType = SCALA_ALL
          ctx1

        case New(tpt) =>
          abort("Unexpected New")

        case Apply(TypeApply(fun, targs), _) =>
          val sym = fun.symbol
          var ctx1 = ctx
          var cast = false

          if (sym == definitions.Object_isInstanceOf)
            cast = false
          else if (sym == definitions.Object_asInstanceOf)
            cast = true
          else
            abort("Unexpected type application " + fun + "[sym: " + sym.fullNameString + "]" + " in: " + tree)

          val Select(obj, _) = fun
          val l = toTypeKind(obj.tpe)
          val r = toTypeKind(targs.head.tpe)

          ctx1 = genLoadQualifier(fun, ctx)

          if (l.isValueType && r.isValueType)
            genConversion(l, r, ctx1, cast)
          else if (l.isValueType) {
            ctx1.bb.emit(DROP(l), fun.pos)
            if (cast) {
              ctx1.bb.emit(NEW(REFERENCE(definitions.getClass("ClassCastException"))))
              ctx1.bb.emit(DUP(ANY_REF_CLASS))
              ctx1.bb.emit(THROW())
            } else
              ctx1.bb.emit(CONSTANT(Constant(false)))
          }
          else if (r.isValueType && cast) {
            assert(false) /* Erasure should have added an unboxing operation to prevent that. */
          }
          else if (r.isValueType)
            ctx.bb.emit(IS_INSTANCE(REFERENCE(definitions.boxedClass(r.toType.symbol))))
          else
            genCast(l, r, ctx1, cast);

          generatedType = if (cast) r else BOOL;
          ctx1

        // 'super' call: Note: since constructors are supposed to
        // return an instance of what they construct, we have to take
        // special care. On JVM they are 'void', and Scala forbids (syntactically)
        // to call super constructors explicitly and/or use their 'returned' value.
        // therefore, we can ignore this fact, and generate code that leaves nothing
        // on the stack (contrary to what the type in the AST says).
        case Apply(fun @ Select(Super(_, mix), _), args) =>
          if (settings.debug.value)
            log("Call to super: " + tree);
          val invokeStyle = SuperCall(mix)
//            if (fun.symbol.isConstructor) Static(true) else SuperCall(mix);

          ctx.bb.emit(THIS(ctx.clazz.symbol), tree.pos)
          val ctx1 = genLoadArguments(args, fun.symbol.info.paramTypes, ctx)

          ctx1.bb.emit(CALL_METHOD(fun.symbol, invokeStyle), tree.pos)
          generatedType =
            if (fun.symbol.isConstructor) UNIT
            else toTypeKind(fun.symbol.info.resultType)
          ctx1

        // 'new' constructor call: Note: since constructors are
        // thought to return an instance of what they construct,
        // we have to 'simulate' it by DUPlicating the freshly created
        // instance (on JVM, <init> methods return VOID).
        case Apply(fun @ Select(New(tpt), nme.CONSTRUCTOR), args) =>
          val ctor = fun.symbol
          assert(ctor.isClassConstructor,
                 "'new' call to non-constructor: " + ctor.name)

          generatedType = toTypeKind(tpt.tpe)
          assert(generatedType.isReferenceType || generatedType.isArrayType,
                 "Non reference type cannot be instantiated: " + generatedType)

          var ctx1 = ctx

          generatedType match {
            case ARRAY(elem) =>
              ctx1 = genLoadArguments(args, ctor.info.paramTypes, ctx)
              ctx1.bb.emit(CREATE_ARRAY(elem), tree.pos)

            case rt @ REFERENCE(cls) =>
              assert(ctor.owner == cls,
                     "Symbol " + ctor.owner.fullNameString + " is different than " + tpt)
              val nw = NEW(rt)
              ctx1.bb.emit(nw, tree.pos)
              ctx1.bb.emit(DUP(generatedType))
              ctx1 = genLoadArguments(args, ctor.info.paramTypes, ctx)

              val init = CALL_METHOD(ctor, Static(true))
              nw.init = init
              ctx1.bb.emit(init, tree.pos)

            case _ =>
              abort("Cannot instantiate " + tpt + "of kind: " + generatedType)
          }
          ctx1

        case Apply(fun @ _, List(expr)) if (definitions.isBox(fun.symbol)) =>
          if (settings.debug.value)
            log("BOX : " + fun.symbol.fullNameString);
          val ctx1 = genLoad(expr, ctx, toTypeKind(expr.tpe))
          val nativeKind = toTypeKind(expr.tpe)
          ctx1.bb.emit(BOX(nativeKind), expr.pos)
          generatedType = toTypeKind(fun.symbol.tpe.resultType)
          ctx1

        case Apply(fun @ _, List(expr)) if (definitions.isUnbox(fun.symbol)) =>
          if (settings.debug.value)
            log("UNBOX : " + fun.symbol.fullNameString)
          val ctx1 = genLoad(expr, ctx, toTypeKind(expr.tpe))
          assert(expectedType.isValueType)
          generatedType = expectedType
          ctx1.bb.emit(UNBOX(expectedType), expr.pos)
          ctx1

        case Apply(fun, args) =>
          val sym = fun.symbol

          if (sym.isLabel) {  // jump to a label
            val label = ctx.labels.get(sym) match {
              case Some(l) => l

              // it is a forward jump, scan for labels
              case None =>
                log("Performing scan for label because of forward jump.")
                scanForLabels(ctx.defdef, ctx)
                ctx.labels.get(sym) match {
                  case Some(l) =>
                    log("Found label: " + l)
                    l
                  case _       =>
                    abort("Unknown label target: " + sym +
                          " at: " + (fun.pos) + ": ctx: " + ctx)
                }
            }
            val ctx1 = genLoadLabelArguments(args, label, ctx)
            if (label.anchored)
              ctx1.bb.emit(JUMP(label.block), tree.pos)
            else
              ctx1.bb.emit(PJUMP(label), tree.pos)

            ctx1.bb.close
            ctx1.newBlock
          } else if (isPrimitive(sym)) { // primitive method call
            val Select(receiver, _) = fun

            val code = scalaPrimitives.getPrimitive(sym, receiver.tpe)
            var ctx1 = ctx

            if (scalaPrimitives.isArithmeticOp(code)) {
              ctx1 = genArithmeticOp(tree, ctx1, code)
            } else if (code == scalaPrimitives.CONCAT) {
              ctx1 = genStringConcat(tree, ctx1)
              generatedType = STRING
            } else if (scalaPrimitives.isArrayOp(code)) {
              ctx1 = genArrayOp(tree, ctx1, code)
            } else if (scalaPrimitives.isLogicalOp(code) ||
                       scalaPrimitives.isComparisonOp(code)) {

              val trueCtx = ctx1.newBlock
              val falseCtx = ctx1.newBlock
              val afterCtx = ctx1.newBlock
              genCond(tree, ctx1, trueCtx, falseCtx)
              trueCtx.bb.emit(CONSTANT(Constant(true)), tree.pos)
              trueCtx.bb.emit(JUMP(afterCtx.bb))
              trueCtx.bb.close
              falseCtx.bb.emit(CONSTANT(Constant(false)), tree.pos)
              falseCtx.bb.emit(JUMP(afterCtx.bb))
              falseCtx.bb.close
              generatedType = BOOL
              ctx1 = afterCtx
            } else if (code == scalaPrimitives.SYNCHRONIZED) {
              var monitor = new Local(ctx.method.symbol.newVariable(
                tree.pos,
                unit.fresh.newName("monitor"))
                  .setInfo(definitions.ObjectClass.tpe)
                  .setFlag(Flags.SYNTHETIC),
                ANY_REF_CLASS, false)
              monitor = ctx.method.addLocal(monitor)

              ctx1 = genLoadQualifier(fun, ctx1)
              ctx1.bb.emit(DUP(ANY_REF_CLASS))
              ctx1.bb.emit(STORE_LOCAL(monitor))
              ctx1.bb.emit(MONITOR_ENTER(), tree.pos)
              ctx1.enterSynchronized(monitor)

              if (settings.debug.value)
                log("synchronized block start");

              ctx1 = ctx1.Try(
                bodyCtx => {
                  val ctx1 = genLoad(args.head, bodyCtx, expectedType /* toTypeKind(tree.tpe.resultType) */)
                  ctx1.bb.emit(LOAD_LOCAL(monitor))
                  ctx1.bb.emit(MONITOR_EXIT(), tree.pos)
                  ctx1
                }, List(
		  // tree.tpe / fun.tpe is object, which is no longer true after this transformation
                  (NoSymbol, expectedType, exhCtx => {
                  exhCtx.bb.emit(LOAD_LOCAL(monitor))
                  exhCtx.bb.emit(MONITOR_EXIT(), tree.pos)
                  exhCtx.bb.emit(THROW())
                  exhCtx.bb.enterIgnoreMode
                  exhCtx
                })), EmptyTree);
              if (settings.debug.value)
                log("synchronized block end with block " + ctx1.bb +
                    " closed=" + ctx1.bb.isClosed);
              ctx1.exitSynchronized(monitor)
            } else if (scalaPrimitives.isCoercion(code)) {
              ctx1 = genLoad(receiver, ctx1, toTypeKind(receiver.tpe))
              genCoercion(tree, ctx1, code)
              generatedType = scalaPrimitives.generatedKind(code)
            } else
              abort("Primitive operation not handled yet: " + sym.fullNameString + "(" +
                    fun.symbol.simpleName + ") " + " at: " + (tree.pos));
            ctx1
          } else {  // normal method call
            if (settings.debug.value)
              log("Gen CALL_METHOD with sym: " + sym + " isStaticSymbol: " + isStaticSymbol(sym));
            var invokeStyle =
              if (isStaticSymbol(sym))
                Static(false)
              else if (sym.hasFlag(Flags.PRIVATE) || sym.isClassConstructor)
                Static(true)
              else
                Dynamic

            var ctx1 =
              if (invokeStyle.hasInstance) genLoadQualifier(fun, ctx)
              else ctx

            ctx1 = genLoadArguments(args, sym.info.paramTypes, ctx1)

            val hostClass = fun match {
              case Select(qualifier, _)
              if (qualifier.tpe.symbol != definitions.ArrayClass) =>
                qualifier.tpe.symbol
              case _ => sym.owner
            }
            if (settings.debug.value && hostClass != sym.owner)
              log("Set more precise host class for " + sym.fullNameString + " host: " + hostClass);
            ctx1.bb.emit(CALL_METHOD(sym, invokeStyle) setHostClass hostClass, tree.pos)
            if (sym == ctx1.method.symbol) {
              ctx1.method.recursive = true
            }
            generatedType =
              if (sym.isClassConstructor) UNIT
              else toTypeKind(sym.info.resultType);
            ctx1
          }

        case This(qual) =>
          assert(tree.symbol == ctx.clazz.symbol || tree.symbol.isModuleClass,
                 "Trying to access the this of another class: " +
                 "tree.symbol = " + tree.symbol + ", ctx.clazz.symbol = " + ctx.clazz.symbol + " compilation unit:"+unit)
          if (tree.symbol.isModuleClass && tree.symbol != ctx.clazz.symbol) {
            if (settings.debug.value)
              log("LOAD_MODULE from 'This': " + tree.symbol);
            ctx.bb.emit(LOAD_MODULE(tree.symbol), tree.pos)
            generatedType = REFERENCE(tree.symbol)
          } else {
            ctx.bb.emit(THIS(ctx.clazz.symbol), tree.pos)
            if (tree.symbol == definitions.ArrayClass)
              generatedType = REFERENCE(definitions.BoxedAnyArrayClass)
            else
              generatedType = REFERENCE(ctx.clazz.symbol)
          }
          ctx

        case Select(Ident(nme.EMPTY_PACKAGE_NAME), module) =>
          assert(tree.symbol.isModule,
                 "Selection of non-module from empty package: " + tree.toString() +
                 " sym: " + tree.symbol +
                 " at: " + (tree.pos))
          if (settings.debug.value)
            log("LOAD_MODULE from Select(<emptypackage>): " + tree.symbol);
          ctx.bb.emit(LOAD_MODULE(tree.symbol), tree.pos)
          ctx

        case Select(qualifier, selector) =>
          val sym = tree.symbol
          generatedType = toTypeKind(sym.info)

          if (sym.isModule) {
            if (settings.debug.value)
              log("LOAD_MODULE from Select(qualifier, selector): " + sym);
            ctx.bb.emit(LOAD_MODULE(sym), tree.pos);
            ctx
          } else if (isStaticSymbol(sym)) {
            ctx.bb.emit(LOAD_FIELD(sym, true), tree.pos)
            ctx
          } else {
            val ctx1 = genLoadQualifier(tree, ctx)
            ctx1.bb.emit(LOAD_FIELD(sym, false), tree.pos)
            ctx1
          }

        case Ident(name) =>
          if (!tree.symbol.isPackage) {
            if (tree.symbol.isModule) {
              if (settings.debug.value)
                log("LOAD_MODULE from Ident(name): " + tree.symbol);
              ctx.bb.emit(LOAD_MODULE(tree.symbol), tree.pos)
              generatedType = toTypeKind(tree.symbol.info)
            } else {
              try {
                val Some(l) = ctx.method.lookupLocal(tree.symbol)
                ctx.bb.emit(LOAD_LOCAL(l), tree.pos)
                generatedType = l.kind
              } catch {
                case ex: MatchError =>
                  throw new Error("symbol " + tree.symbol +
                                  " does not exist in " + ctx.method)
              }
            }
          }
          ctx

        case Literal(value) =>
          if (value.tag != UnitTag)
            ctx.bb.emit(CONSTANT(value), tree.pos);
          generatedType = toTypeKind(value.tpe)
          ctx

        case Block(stats, expr) =>
//          assert(!(ctx.method eq null), "Block outside method")
          ctx.enterScope
          var ctx1 = genStat(stats, ctx)
          ctx1 = genLoad(expr, ctx1, expectedType)
          ctx1.exitScope
          ctx1

        case Typed(expr, _) =>
          genLoad(expr, ctx, expectedType)

        case Assign(_, _) =>
          generatedType = UNIT
          genStat(tree, ctx)

        case ArrayValue(tpt @ TypeTree(), elems) =>
          var ctx1 = ctx
          val elmKind = toTypeKind(tpt.tpe)
          generatedType = ARRAY(elmKind)

          ctx1.bb.emit(CONSTANT(new Constant(elems.length)), tree.pos)
          ctx1.bb.emit(CREATE_ARRAY(elmKind))
          // inline array literals
          var i = 0
          while (i < elems.length) {
            ctx1.bb.emit(DUP(generatedType), tree.pos)
            ctx1.bb.emit(CONSTANT(new Constant(i)))
            ctx1 = genLoad(elems(i), ctx1, elmKind)
            ctx1.bb.emit(STORE_ARRAY_ITEM(elmKind))
            i = i + 1
          }
          ctx1

        case Match(selector, cases) =>
          if (settings.debug.value)
            log("Generating SWITCH statement.");
          var ctx1 = genLoad(selector, ctx, INT)
          val afterCtx = ctx1.newBlock
          var caseCtx: Context  = null
          val kind = toTypeKind(tree.tpe)

          var targets: List[BasicBlock] = Nil
          var tags: List[Int] = Nil
          var default: BasicBlock = afterCtx.bb

          for (caze <- cases) caze match {
            case CaseDef(Literal(value), EmptyTree, body) =>
              tags = value.intValue :: tags
              val tmpCtx = ctx1.newBlock
              targets = tmpCtx.bb :: targets

              caseCtx = genLoad(body, tmpCtx , kind)
              caseCtx.bb.emit(JUMP(afterCtx.bb), caze.pos)
              caseCtx.bb.close

            case CaseDef(Ident(nme.WILDCARD), EmptyTree, body) =>
              val tmpCtx = ctx1.newBlock
              default = tmpCtx.bb

              caseCtx = genLoad(body, tmpCtx , kind)
              caseCtx.bb.emit(JUMP(afterCtx.bb), caze.pos)
              caseCtx.bb.close

            case _ =>
              abort("Invalid case statement in switch-like pattern match: " +
                    tree + " at: " + (tree.pos))
          }
          ctx1.bb.emit(SWITCH(tags.reverse map (x => List(x)),
                             (default :: targets).reverse), tree.pos)
          ctx1.bb.close
          afterCtx

        case EmptyTree =>
          ctx.bb.emit(getZeroOf(expectedType))
          ctx

        case _ =>
          abort("Unexpected tree in genLoad: " + tree + " at: " +
                (tree.pos))
      }

      // emit conversion
      if (generatedType != expectedType)
        adapt(generatedType, expectedType, resCtx, tree);

      resCtx
    }

    private def adapt(from: TypeKind, to: TypeKind, ctx: Context, tree: Tree): Unit = {
      if (!(from <:< to) && !(from == SCALA_ALLREF && to == SCALA_ALL)) {
        to match {
          case UNIT =>
            ctx.bb.emit(DROP(from), tree.pos)
            if (settings.debug.value)
              log("Dropped an " + from);

          case _ =>
            assert(from != UNIT, "Can't convert from UNIT to " + to +
                 tree + " at: " + (tree.pos));
            ctx.bb.emit(CALL_PRIMITIVE(Conversion(from, to)), tree.pos);
        }
      } else if (from == SCALA_ALL) {
        ctx.bb.emit(DROP(from))
        ctx.bb.emit(getZeroOf(ctx.method.returnType))
        ctx.bb.emit(RETURN(ctx.method.returnType))
        ctx.bb.enterIgnoreMode
      } else if (from == SCALA_ALLREF) {
        ctx.bb.emit(DROP(from))
        ctx.bb.emit(CONSTANT(Constant(null)))
      }
    }

    /** Load the qualifier of `tree' on top of the stack. */
    private def genLoadQualifier(tree: Tree, ctx: Context): Context =
      tree match {
        case Select(qualifier, _) =>
          genLoad(qualifier, ctx, ANY_REF_CLASS) // !!
        case _ =>
          abort("Unknown qualifier " + tree)
      }

    /** Is this symbol static in the Java sense? */
    def isStaticSymbol(s: Symbol): Boolean =
      s.hasFlag(Flags.STATIC) || s.hasFlag(Flags.STATICMEMBER) || s.owner.isImplClass

    /**
     * Generate code that loads args into label parameters.
     */
    private def genLoadLabelArguments(args: List[Tree], label: Label, ctx: Context): Context = {
      assert(args.length == label.params.length,
             "Wrong number of arguments in call to label " + label.symbol)
      var ctx1 = ctx
      var arg = args
      var param = label.params

      // store arguments in reverse order on the stack
      while (arg != Nil) {
        val Some(l) = ctx.method.lookupLocal(param.head)
        ctx1 = genLoad(arg.head, ctx1, l.kind)
        arg = arg.tail
        param = param.tail
      }

      // store arguments in the right variables
      arg = args.reverse; param = label.params.reverse;
      while (arg != Nil) {
        val Some(l) = ctx.method.lookupLocal(param.head)
        ctx1.bb.emit(STORE_LOCAL(l), arg.head.pos)
        arg = arg.tail
        param = param.tail
      }

      ctx1
    }

    private def genLoadArguments(args: List[Tree], tpes: List[Type], ctx: Context): Context = {
      assert(args.length == tpes.length, "Wrong number of arguments in call " + ctx);

      var ctx1 = ctx
      var arg = args
      var tpe = tpes
      while (arg != Nil) {
        ctx1 = genLoad(arg.head, ctx1, toTypeKind(tpe.head))
        arg = arg.tail
        tpe = tpe.tail
      }
      ctx1
    }

    def genConversion(from: TypeKind, to: TypeKind, ctx: Context, cast: Boolean) = {
      if (cast)
        ctx.bb.emit(CALL_PRIMITIVE(Conversion(from, to)))
      else {
        ctx.bb.emit(DROP(from))
        ctx.bb.emit(CONSTANT(Constant(from == to)))
      }
    }

    def genCast(from: TypeKind, to: TypeKind, ctx: Context, cast: Boolean) =
      ctx.bb.emit(if (cast) CHECK_CAST(to) else IS_INSTANCE(to))

    def zeroOf(k: TypeKind): Tree = k match {
      case UNIT            => Literal(())
      case BOOL            => Literal(false)
      case BYTE            => Literal(0: Byte)
      case SHORT           => Literal(0: Short)
      case CHAR            => Literal(0: Char)
      case INT             => Literal(0: Int)
      case LONG            => Literal(0: Long)
      case FLOAT           => Literal(0.0f)
      case DOUBLE          => Literal(0.0d)
      case REFERENCE(cls)  => Literal(null: Any)
      case ARRAY(elem)     => Literal(null: Any)
      case BOXED(_)        => Literal(null: Any)
      case ConcatClass     => abort("no zero of ConcatClass")
    }

    def getZeroOf(k: TypeKind): Instruction = k match {
      case UNIT            => CONSTANT(Constant(()))
      case BOOL            => CONSTANT(Constant(false))
      case BYTE            => CONSTANT(Constant(0: Byte))
      case SHORT           => CONSTANT(Constant(0: Short))
      case CHAR            => CONSTANT(Constant(0: Char))
      case INT             => CONSTANT(Constant(0: Int))
      case LONG            => CONSTANT(Constant(0: Long))
      case FLOAT           => CONSTANT(Constant(0.0f))
      case DOUBLE          => CONSTANT(Constant(0.0d))
      case REFERENCE(cls)  => CONSTANT(Constant(null: Any))
      case ARRAY(elem)     => CONSTANT(Constant(null: Any))
      case BOXED(_)        => CONSTANT(Constant(null: Any))
      case ConcatClass     => abort("no zero of ConcatClass")
    }


    /** Is the given symbol a primitive operation? */
    def isPrimitive(fun: Symbol): Boolean = scalaPrimitives.isPrimitive(fun)

    /** Generate coercion denoted by "code"
     */
    def genCoercion(tree: Tree, ctx: Context, code: Int) = {
      import scalaPrimitives._
      code match {
        case B2B => ()
        case B2C => ctx.bb.emit(CALL_PRIMITIVE(Conversion(BYTE, CHAR)), tree.pos)
        case B2S => ctx.bb.emit(CALL_PRIMITIVE(Conversion(BYTE, SHORT)), tree.pos)
        case B2I => ctx.bb.emit(CALL_PRIMITIVE(Conversion(BYTE, INT)), tree.pos)
        case B2L => ctx.bb.emit(CALL_PRIMITIVE(Conversion(BYTE, LONG)), tree.pos)
        case B2F => ctx.bb.emit(CALL_PRIMITIVE(Conversion(BYTE, FLOAT)), tree.pos)
        case B2D => ctx.bb.emit(CALL_PRIMITIVE(Conversion(BYTE, DOUBLE)), tree.pos)

        case S2B => ctx.bb.emit(CALL_PRIMITIVE(Conversion(SHORT, BYTE)), tree.pos)
        case S2S => ()
        case S2C => ctx.bb.emit(CALL_PRIMITIVE(Conversion(SHORT, CHAR)), tree.pos)
        case S2I => ctx.bb.emit(CALL_PRIMITIVE(Conversion(SHORT, INT)), tree.pos)
        case S2L => ctx.bb.emit(CALL_PRIMITIVE(Conversion(SHORT, LONG)), tree.pos)
        case S2F => ctx.bb.emit(CALL_PRIMITIVE(Conversion(SHORT, FLOAT)), tree.pos)
        case S2D => ctx.bb.emit(CALL_PRIMITIVE(Conversion(SHORT, DOUBLE)), tree.pos)

        case C2B => ctx.bb.emit(CALL_PRIMITIVE(Conversion(CHAR, BYTE)), tree.pos)
        case C2S => ctx.bb.emit(CALL_PRIMITIVE(Conversion(CHAR, SHORT)), tree.pos)
        case C2C => ()
        case C2I => ctx.bb.emit(CALL_PRIMITIVE(Conversion(CHAR, INT)), tree.pos)
        case C2L => ctx.bb.emit(CALL_PRIMITIVE(Conversion(CHAR, LONG)), tree.pos)
        case C2F => ctx.bb.emit(CALL_PRIMITIVE(Conversion(CHAR, FLOAT)), tree.pos)
        case C2D => ctx.bb.emit(CALL_PRIMITIVE(Conversion(CHAR, DOUBLE)), tree.pos)

        case I2B => ctx.bb.emit(CALL_PRIMITIVE(Conversion(INT, BYTE)), tree.pos)
        case I2S => ctx.bb.emit(CALL_PRIMITIVE(Conversion(INT, SHORT)), tree.pos)
        case I2C => ctx.bb.emit(CALL_PRIMITIVE(Conversion(INT, CHAR)), tree.pos)
        case I2I => ()
        case I2L => ctx.bb.emit(CALL_PRIMITIVE(Conversion(INT, LONG)), tree.pos)
        case I2F => ctx.bb.emit(CALL_PRIMITIVE(Conversion(INT, FLOAT)), tree.pos)
        case I2D => ctx.bb.emit(CALL_PRIMITIVE(Conversion(INT, DOUBLE)), tree.pos)

        case L2B => ctx.bb.emit(CALL_PRIMITIVE(Conversion(LONG, BYTE)), tree.pos)
        case L2S => ctx.bb.emit(CALL_PRIMITIVE(Conversion(LONG, SHORT)), tree.pos)
        case L2C => ctx.bb.emit(CALL_PRIMITIVE(Conversion(LONG, CHAR)), tree.pos)
        case L2I => ctx.bb.emit(CALL_PRIMITIVE(Conversion(LONG, INT)), tree.pos)
        case L2L => ()
        case L2F => ctx.bb.emit(CALL_PRIMITIVE(Conversion(LONG, FLOAT)), tree.pos)
        case L2D => ctx.bb.emit(CALL_PRIMITIVE(Conversion(LONG, DOUBLE)), tree.pos)

        case F2B => ctx.bb.emit(CALL_PRIMITIVE(Conversion(FLOAT, BYTE)), tree.pos)
        case F2S => ctx.bb.emit(CALL_PRIMITIVE(Conversion(FLOAT, SHORT)), tree.pos)
        case F2C => ctx.bb.emit(CALL_PRIMITIVE(Conversion(FLOAT, CHAR)), tree.pos)
        case F2I => ctx.bb.emit(CALL_PRIMITIVE(Conversion(FLOAT, INT)), tree.pos)
        case F2L => ctx.bb.emit(CALL_PRIMITIVE(Conversion(FLOAT, LONG)), tree.pos)
        case F2F => ()
        case F2D => ctx.bb.emit(CALL_PRIMITIVE(Conversion(FLOAT, DOUBLE)), tree.pos)

        case D2B => ctx.bb.emit(CALL_PRIMITIVE(Conversion(DOUBLE, BYTE)), tree.pos)
        case D2S => ctx.bb.emit(CALL_PRIMITIVE(Conversion(DOUBLE, SHORT)), tree.pos)
        case D2C => ctx.bb.emit(CALL_PRIMITIVE(Conversion(DOUBLE, CHAR)), tree.pos)
        case D2I => ctx.bb.emit(CALL_PRIMITIVE(Conversion(DOUBLE, INT)), tree.pos)
        case D2L => ctx.bb.emit(CALL_PRIMITIVE(Conversion(DOUBLE, LONG)), tree.pos)
        case D2F => ctx.bb.emit(CALL_PRIMITIVE(Conversion(DOUBLE, FLOAT)), tree.pos)
        case D2D => ()

        case _ => abort("Unknown coercion primitive: " + code)
      }
    }

    /** Generate string concatenation.
     *
     *  @param tree ...
     *  @param ctx  ...
     *  @return     ...
     */
    def genStringConcat(tree: Tree, ctx: Context): Context = {
      val Apply(Select(larg, _), rarg) = tree
      var ctx1 = ctx

      assert(rarg.length == 1,
             "Too many parameters for string concatenation")

      val concatenations = liftStringConcat(tree)
      if (settings.debug.value)
        log("Lifted string concatenations for " + tree + "\n to: " + concatenations);

      ctx1.bb.emit(CALL_PRIMITIVE(StartConcat), tree.pos);
      for (elem <- concatenations) {
        val kind = toTypeKind(elem.tpe)
        ctx1 = genLoad(elem, ctx1, kind)
        ctx1.bb.emit(CALL_PRIMITIVE(StringConcat(kind)), elem.pos)
      }
      ctx1.bb.emit(CALL_PRIMITIVE(EndConcat), tree.pos)

      ctx1
    }

    /**
     * Returns a list of trees that each should be concatenated, from
     * left to right. It turns a chained call like "a".+("b").+("c") into
     * a list of arguments.
     */
    def liftStringConcat(tree: Tree): List[Tree] = tree match {
      case Apply(fun @ Select(larg, method), rarg) =>
        if (isPrimitive(fun.symbol) &&
            scalaPrimitives.getPrimitive(fun.symbol) == scalaPrimitives.CONCAT)
          liftStringConcat(larg) ::: rarg
        else
          List(tree)
      case _ =>
        List(tree)
    }


    /**
     * Traverse the tree and store label stubs in the context. This is
     * necessary to handle forward jumps, because at a label application
     * with arguments, the symbols of the corresponding LabelDef parameters
     * are not yet known.
     *
     * Since it is expensive to traverse each method twice, this method is called
     * only when forward jumps really happen, and then it re-traverses the whole
     * method, scanning for LabelDefs.
     *
     * TODO: restrict the scanning to smaller subtrees than the whole method.
     *  It is sufficient to scan the trees of the innermost enclosing block.
     */
    private def scanForLabels(tree: Tree, ctx: Context): Unit =
      new Traverser() {
        override def traverse(tree: Tree): Unit = tree match {

          case LabelDef(name, params, rhs) =>
            if (!ctx.labels.contains(tree.symbol)) {
              ctx.labels += tree.symbol -> (new Label(tree.symbol) setParams(params map (.symbol)));
              ctx.method.addLocals(params map (p => new Local(p.symbol, toTypeKind(p.symbol.info), false)));
            }
            super.traverse(rhs)

          case _ =>
            super.traverse(tree)
        }
      } traverse(tree);

    /**
     * Generate code for conditional expressions. The two basic blocks
     * represent the continuation in case of success/failure of the
     * test.
     */
    private def genCond(tree: Tree,
                        ctx: Context,
                        thenCtx: Context,
                        elseCtx: Context): Unit =
    {
      def genComparisonOp(l: Tree, r: Tree, code: Int): Unit = {
        // special-case reference (in)equality test for null
        if (code == scalaPrimitives.ID || code == scalaPrimitives.NI) {
          val expr: Tree = (l, r) match {
            case (Literal(Constant(null)), expr) => expr
            case (expr, Literal(Constant(null))) => expr
            case _ => null
          }
          if (expr ne null) {
            val ctx1 = genLoad(expr, ctx, ANY_REF_CLASS)
            if (code == scalaPrimitives.ID)
              ctx1.bb.emit(CZJUMP(thenCtx.bb, elseCtx.bb, EQ, ANY_REF_CLASS))
            else
              ctx1.bb.emit(CZJUMP(elseCtx.bb, thenCtx.bb, EQ, ANY_REF_CLASS))
            ctx1.bb.close
            return
          }
        }

        val op: TestOp = code match {
          case scalaPrimitives.LT => LT
          case scalaPrimitives.LE => LE
          case scalaPrimitives.GT => GT
          case scalaPrimitives.GE => GE
          case scalaPrimitives.ID | scalaPrimitives.EQ => EQ
          case scalaPrimitives.NI | scalaPrimitives.NE => NE

          case _ => abort("Unknown comparison primitive: " + code)
        }

        val kind = getMaxType(l.tpe :: r.tpe :: Nil)
        var ctx1 = genLoad(l, ctx, kind);
        ctx1 = genLoad(r, ctx1, kind);
        ctx1.bb.emit(CJUMP(thenCtx.bb, elseCtx.bb, op, kind), r.pos)
        ctx1.bb.close
      }

      if (settings.debug.value)
        log("Entering genCond with tree: " + tree);

      tree match {
        case Apply(fun, args)
          if isPrimitive(fun.symbol) =>
            assert(args.length <= 1,
                   "Too many arguments for primitive function: " + fun.symbol)
            val code = scalaPrimitives.getPrimitive(fun.symbol)

            if (code == scalaPrimitives.ZNOT) {
              val Select(leftArg, _) = fun
              genCond(leftArg, ctx, elseCtx, thenCtx)
            }
            else if ((code == scalaPrimitives.EQ || code == scalaPrimitives.NE)) {
              val Select(leftArg, _) = fun;
              if (toTypeKind(leftArg.tpe).isReferenceType) {
                if (code == scalaPrimitives.EQ)
                  genEqEqPrimitive(leftArg, args.head, ctx, thenCtx, elseCtx)
                else
                  genEqEqPrimitive(leftArg, args.head, ctx, elseCtx, thenCtx)
              }
              else
                genComparisonOp(leftArg, args.head, code);
            }
            else if (scalaPrimitives.isComparisonOp(code)) {
              val Select(leftArg, _) = fun
              genComparisonOp(leftArg, args.head, code)
            }
            else {
              code match {
                case scalaPrimitives.ZAND =>
                  val Select(leftArg, _) = fun

                  val ctxInterm = ctx.newBlock
                  genCond(leftArg, ctx, ctxInterm, elseCtx)
                  genCond(args.head, ctxInterm, thenCtx, elseCtx)

                case scalaPrimitives.ZOR =>
                  val Select(leftArg, _) = fun

                  val ctxInterm = ctx.newBlock
                  genCond(leftArg, ctx, thenCtx, ctxInterm)
                  genCond(args.head, ctxInterm, thenCtx, elseCtx)

                case _ =>
                  // TODO (maybe): deal with the equals case here
                  // Current semantics: rich equals (from runtime.Comparator) only when == is used
                  // See genEqEqPrimitive for implementation
                  var ctx1 = genLoad(tree, ctx, BOOL)
                  ctx1.bb.emit(CZJUMP(thenCtx.bb, elseCtx.bb, NE, BOOL), tree.pos)
                  ctx1.bb.close
              }
            }

        case _ =>
          var ctx1 = genLoad(tree, ctx, BOOL)
          ctx1.bb.emit(CZJUMP(thenCtx.bb, elseCtx.bb, NE, BOOL), tree.pos)
          ctx1.bb.close
      }
    }

    /**
     * Generate the "==" code for object references. It is equivalent of
     * if (l eq null) r eq null else l.equals(r);
     *
     * @param l       left-hand side of the '=='
     * @param r       right-hand side of the '=='
     * @param ctx     current context
     * @param thenCtx target context if the comparison yields true
     * @param elseCtx target context if the comparison yields false
     */
    def genEqEqPrimitive(l: Tree, r: Tree, ctx: Context,
                         thenCtx: Context, elseCtx: Context): Unit =
    {

      def eqEqTempName: Name = "eqEqTemp$"

      def getTempLocal: Local = ctx.method.lookupLocal(eqEqTempName) match {
        case Some(local) => local
        case None =>
          val eqEqTempVar =
            ctx.method.symbol.newVariable(l.pos, eqEqTempName).setFlag(Flags.SYNTHETIC)
          eqEqTempVar.setInfo(definitions.AnyRefClass.typeConstructor)
          val local = ctx.method.addLocal(new Local(eqEqTempVar, REFERENCE(definitions.AnyRefClass), false))
          local.start = (l.pos).line.get
          local.end   = (r.pos).line.get
          local
      }

      /** True if the equality comparison is between values that require the use of the rich equality
        * comparator (scala.runtime.Comparator.equals). This is the case when either side of the
        * comparison might have a run-time type subtype of java.lang.Number or java.lang.Character.
        * When it is statically known that both sides are equal and subtypes of Number of Character,
        * not using the rich equality is possible (their own equals method will do ok.)*/
      def mustUseAnyComparator: Boolean = {
        val lsym = l.tpe.symbol
        val rsym = r.tpe.symbol
        (lsym == definitions.ObjectClass) ||
        (rsym == definitions.ObjectClass) ||
        (lsym != rsym) && (
          (lsym isNonBottomSubClass definitions.BoxedNumberClass) ||
          (!forMSIL && (lsym isNonBottomSubClass BoxedCharacterClass)) ||
          (rsym isNonBottomSubClass definitions.BoxedNumberClass) ||
          (!forMSIL && (rsym isNonBottomSubClass BoxedCharacterClass))
        )
      }

      if (mustUseAnyComparator) {

        val ctx1 = genLoad(l, ctx, ANY_REF_CLASS)
        val ctx2 = genLoad(r, ctx1, ANY_REF_CLASS)
        ctx2.bb.emit(CALL_METHOD(Comparator_equals, Static(false)))
        ctx2.bb.emit(CZJUMP(thenCtx.bb, elseCtx.bb, NE, BOOL))
        ctx2.bb.close

      }
      else {

        (l, r) match {
          // null == expr -> expr eq null
          case (Literal(Constant(null)), expr) =>
            val ctx1 = genLoad(expr, ctx, ANY_REF_CLASS)
            ctx1.bb.emit(CZJUMP(thenCtx.bb, elseCtx.bb, EQ, ANY_REF_CLASS))
            ctx1.bb.close

          // expr == null -> if(expr eq null) true else expr.equals(null)
          case (expr, Literal(Constant(null))) =>
            val eqEqTempLocal = getTempLocal
            var ctx1 = genLoad(expr, ctx, ANY_REF_CLASS)
            ctx1.bb.emit(DUP(ANY_REF_CLASS))
            ctx1.bb.emit(STORE_LOCAL(eqEqTempLocal), l.pos)
            val nonNullCtx = ctx1.newBlock
            ctx1.bb.emit(CZJUMP(thenCtx.bb, nonNullCtx.bb, EQ, ANY_REF_CLASS))
            ctx1.bb.close

            nonNullCtx.bb.emit(LOAD_LOCAL(eqEqTempLocal), l.pos)
            nonNullCtx.bb.emit(CONSTANT(Constant(null)), r.pos)
            nonNullCtx.bb.emit(CALL_METHOD(definitions.Object_equals, Dynamic))
            nonNullCtx.bb.emit(CZJUMP(thenCtx.bb, elseCtx.bb, NE, BOOL))
            nonNullCtx.bb.close

          // l == r -> if (l eq null) r eq null else l.equals(r)
          case _ =>
            val eqEqTempLocal = getTempLocal
            var ctx1 = genLoad(l, ctx, ANY_REF_CLASS)
            ctx1 = genLoad(r, ctx1, ANY_REF_CLASS)
            val nullCtx = ctx1.newBlock
            val nonNullCtx = ctx1.newBlock
            ctx1.bb.emit(STORE_LOCAL(eqEqTempLocal), l.pos)
            ctx1.bb.emit(DUP(ANY_REF_CLASS))
            ctx1.bb.emit(CZJUMP(nullCtx.bb, nonNullCtx.bb, EQ, ANY_REF_CLASS))
            ctx1.bb.close

            nullCtx.bb.emit(DROP(ANY_REF_CLASS), l.pos) // type of AnyRef
            nullCtx.bb.emit(LOAD_LOCAL(eqEqTempLocal))
            nullCtx.bb.emit(CZJUMP(thenCtx.bb, elseCtx.bb, EQ, ANY_REF_CLASS))
            nullCtx.bb.close

            nonNullCtx.bb.emit(LOAD_LOCAL(eqEqTempLocal), l.pos)
            nonNullCtx.bb.emit(CALL_METHOD(definitions.Object_equals, Dynamic))
            nonNullCtx.bb.emit(CZJUMP(thenCtx.bb, elseCtx.bb, NE, BOOL))
            nonNullCtx.bb.close
        }

      }

    }

    /**
     * Add all fields of the given class symbol to the current ICode
     * class.
     */
    private def addClassFields(ctx: Context, cls: Symbol): Unit = {
      assert(ctx.clazz.symbol eq cls,
             "Classes are not the same: " + ctx.clazz.symbol + ", " + cls)

      for (f <- cls.info.decls.elements)
        if (!f.isMethod && f.isTerm)
          ctx.clazz.addField(new IField(f));
    }

    /**
     * Add parameters to the current ICode method. It is assumed the methods
     * have been uncurried, so the list of lists contains just one list.
     */
    private def addMethodParams(ctx: Context, vparamss: List[List[ValDef]]): Unit =
      vparamss match {
        case Nil => ()

        case vparams :: Nil =>
          for (p <- vparams) {
            val lv = new Local(p.symbol, toTypeKind(p.symbol.info), true)
            ctx.method.addParam(lv)
            ctx.scope.add(lv)
            ctx.bb.varsInScope += lv
          }
          ctx.method.params = ctx.method.params.reverse

        case _ =>
          abort("Malformed parameter list: " + vparamss)
      }

    /** Does this tree have a try-catch block? */
    def mayCleanStack(tree: Tree): Boolean = {
      var hasTry = false
      new Traverser() {
        override def traverse(t: Tree) = t match {
          case Try(_, _, _) => hasTry = true
          case _ => super.traverse(t)
        }
      }.traverse(tree);
      hasTry
    }

    /**
     *  If the block consists of a single unconditional jump, prune
     *  it by replacing the instructions in the predecessor to jump
     *  directly to the JUMP target of the block.
     *
     *  @param method ...
     */
    def prune(method: IMethod) = {
      var changed = false
      var n = 0

      def prune0(block: BasicBlock): Unit = {
        val optCont = block.lastInstruction match {
          case JUMP(b) if (b != block) => Some(b);
          case _ => None
        }
        if (block.size == 1 && optCont != None) {
          val Some(cont) = optCont;
          val pred = block.predecessors;
          log("Preds: " + pred + " of " + block + " (" + optCont + ")");
          pred foreach { p =>
            p.lastInstruction match {
              case CJUMP(succ, fail, cond, kind) =>
                if (settings.debug.value)
                  log("Pruning empty if branch.");
                changed = true
                p.replaceInstruction(p.lastInstruction,
                                     if (block == succ)
                                       if (block == fail)
                                         CJUMP(cont, cont, cond, kind)
                                       else
                                         CJUMP(cont, fail, cond, kind)
                                     else if (block == fail)
                                       CJUMP(succ, cont, cond, kind)
                                     else
                                       abort("Could not find block in preds"))

              case CZJUMP(succ, fail, cond, kind) =>
                if (settings.debug.value)
                  log("Pruning empty ifz branch.");
                changed = true
                p.replaceInstruction(p.lastInstruction,
                                     if (block == succ)
                                       if (block == fail)
                                         CZJUMP(cont, cont, cond, kind)
                                       else
                                         CZJUMP(cont, fail, cond, kind)
                                     else if (block == fail)
                                       CZJUMP(succ, cont, cond, kind)
                                     else
                                       abort("Could not find block in preds"))

              case JUMP(b) =>
                if (settings.debug.value)
                  log("Pruning empty JMP branch.");
                changed = true
                assert(p.replaceInstruction(p.lastInstruction, JUMP(cont)),
                       "Didn't find p.lastInstruction")

              case SWITCH(tags, labels) =>
                if (settings.debug.value)
                  log("Pruning empty SWITCH branch.");
                changed = true
                p.replaceInstruction(p.lastInstruction,
                                     SWITCH(tags, labels map (l => if (l == block) cont else l)))
            }
          }
          if (changed) {
            log("Removing block: " + block)
            method.code.removeBlock(block)
            for (e <- method.exh) {
              e.covered = e.covered filter (.!=(block))
              e.blocks  = e.blocks filter (.!=(block))
              if (e.startBlock eq block)
                e setStartBlock cont;
            }
          }
        }
      }

      do {
        changed = false
        n = n + 1
        method.code traverse prune0
      } while (changed)

      if (settings.debug.value)
        log("Prune fixpoint reached in " + n + " iterations.");
    }

    def getMaxType(ts: List[Type]): TypeKind = {
      def maxType(a: TypeKind, b: TypeKind): TypeKind =
        a maxType b;

      val kinds = ts map toTypeKind
      kinds reduceLeft maxType
    }

    def isLoopHeaderLabel(name: Name): Boolean =
      name.startsWith("while$") || name.startsWith("doWhile$")

    /** Tree transformer that duplicates code and at the same time creates
     *  fresh symbols for existing labels. Since labels may be used before
     *  they are defined (forward jumps), all labels found are mapped to fresh
     *  symbols. References to the same label (use or definition) will remain
     *  consistent after this transformation (both the use and the definition of
     *  some label l will be mapped to the same label l').
     *
     *  Note: If the tree fragment passed to the duplicator contains unbound
     *  label names, the bind to the outer labeldef will be lost! That's because
     *  a use of an unbound label l will be transformed to l', and the corresponding
     *  label def, being outside the scope of this transformation, will not be updated.
     *
     *  All LabelDefs are entered into the context label map, since it makes no sense
     *  to delay it any more: they will be used at some point.
     */
    class DuplicateLabels extends Transformer {
      val labels: Map[Symbol, Symbol] = new HashMap
      var method: Symbol = _
      var ctx: Context = _

      def apply(ctx: Context, t: Tree) = {
        this.method = ctx.method.symbol
        this.ctx = ctx
        transform(t)
      }

      override def transform(t: Tree): Tree = {
        t match {
          case t @ Apply(fun, args) if t.symbol.isLabel =>
            if (!labels.isDefinedAt(t.symbol)) {
              val oldLabel = t.symbol
              val sym = method.newLabel(oldLabel.pos, unit.fresh.newName(oldLabel.name.toString))
              sym.setInfo(oldLabel.tpe)
              labels(oldLabel) = sym
            }
            val tree = copy.Apply(t, transform(fun), transformTrees(args))
            tree.symbol = labels(t.symbol)
            tree

          case t @ LabelDef(name, params, rhs) =>
            val name1 = unit.fresh.newName(name.toString)
            if (!labels.isDefinedAt(t.symbol)) {
              val oldLabel = t.symbol
              val sym = method.newLabel(oldLabel.pos, name1)
              sym.setInfo(oldLabel.tpe)
              labels(oldLabel) = sym
            }
            val tree = copy.LabelDef(t, name1, params, transform(rhs))
            tree.symbol = labels(t.symbol)

            ctx.labels += tree.symbol -> (new Label(tree.symbol) setParams(params map (.symbol)));
            ctx.method.addLocals(params map (p => new Local(p.symbol, toTypeKind(p.symbol.info), false)));

            tree

          case _ => super.transform(t)
        }
      }
    }

    /////////////////////// Context ////////////////////////////////

    abstract class Cleanup;
    case class MonitorRelease(m: Local) extends Cleanup {
      override def equals(other: Any) = m == other;
    }
    case class Finalizer(f: Tree) extends Cleanup {
      override def equals(other: Any) = f == other;
    }


    /**
     * The Context class keeps information relative to the current state
     * in code generation
     */
    class Context {

      /** The current package. */
      var packg: Name = _

      /** The current class. */
      var clazz: IClass = _

      /** The current method. */
      var method: IMethod = _

      /** The current basic block. */
      var bb: BasicBlock = _

      /** Map from label symbols to label objects. */
      var labels: HashMap[Symbol, Label] = new HashMap()

      /** Current method definition. */
      var defdef: DefDef = _

      /** current exception handlers */
      var handlers: List[ExceptionHandler] = Nil

      /** The current monitors or finalizers, to be cleaned up upon `return'. */
      var cleanups: List[Cleanup] = Nil

      /** The current exception handler, when we generate code for one. */
      var currentExceptionHandler: Option[ExceptionHandler] = None

      /** The current local variable scope. */
      var scope: Scope = EmptyScope

      var handlerCount = 0

      override def toString(): String = {
        val buf = new StringBuilder()
        buf.append("\tpackage: ").append(packg).append('\n')
        buf.append("\tclazz: ").append(clazz).append('\n')
        buf.append("\tmethod: ").append(method).append('\n')
        buf.append("\tbb: ").append(bb).append('\n')
        buf.append("\tlabels: ").append(labels).append('\n')
        buf.append("\texception handlers: ").append(handlers).append('\n')
        buf.append("\tcleanups: ").append(cleanups).append('\n')
        buf.append("\tscope: ").append(scope).append('\n')
        buf.toString()
      }

      def this(other: Context) = {
        this()
        this.packg = other.packg
        this.clazz = other.clazz
        this.method = other.method
        this.bb = other.bb
        this.labels = other.labels
        this.defdef = other.defdef
        this.handlers = other.handlers
        this.handlerCount = other.handlerCount
        this.cleanups = other.cleanups
        this.currentExceptionHandler = other.currentExceptionHandler
        this.scope = other.scope
      }

      def setPackage(p: Name): this.type = {
        this.packg = p
        this
      }

      def setClass(c: IClass): this.type = {
        this.clazz = c
        this
      }

      def setMethod(m: IMethod): this.type = {
        this.method = m
        this
      }

      def setBasicBlock(b: BasicBlock): this.type = {
        this.bb = b
        this
      }

      def enterSynchronized(monitor: Local): this.type = {
        cleanups = MonitorRelease(monitor) :: cleanups
        this
      }

      def exitSynchronized(monitor: Local): this.type = {
        assert(cleanups.head == monitor,
               "Bad nesting of cleanup operations: " + cleanups + " trying to exit from monitor: " + monitor)
        cleanups = cleanups.tail
        this
      }

      def addFinalizer(f: Tree): this.type = {
        cleanups = Finalizer(f) :: cleanups;
        this
      }

      def removeFinalizer(f: Tree): this.type = {
        assert(cleanups.head == f,
               "Illegal nesting of cleanup operations: " + cleanups + " while exiting finalizer " + f);
        cleanups = cleanups.tail
        this
      }

      /** Prepare a new context upon entry into a method.
       *
       *  @param m ...
       *  @param d ...
       *  @return  ...
       */
      def enterMethod(m: IMethod, d: DefDef): Context = {
        val ctx1 = new Context(this) setMethod(m)
        ctx1.labels = new HashMap()
        ctx1.method.code = new Code(m.symbol.simpleName.toString(), m)
        ctx1.bb = ctx1.method.code.startBlock
        ctx1.defdef = d
        ctx1.scope = EmptyScope
        ctx1.enterScope
        ctx1
      }

      /** Return a new context for a new basic block. */
      def newBlock: Context = {
        val block = method.code.newBlock
        handlers foreach (h => h addCoveredBlock block)
        currentExceptionHandler match {
          case Some(e) => e.addBlock(block)
          case None    => ()
        }
        block.varsInScope = new HashSet()
        block.varsInScope ++= scope.varsInScope
        new Context(this) setBasicBlock block
      }

      def enterScope = {
        scope = new Scope(scope)
      }

      def exitScope = {
        if (bb.size > 0) {
          scope.locals foreach { lv => bb.emit(SCOPE_EXIT(lv)) }
        }
        scope = scope.outer
      }

      /** Create a new exception handler and adds it in the list
       * of current exception handlers. All new blocks will be
       * 'covered' by this exception handler (in addition to the
       * previously active handlers).
       */
      def newHandler(cls: Symbol, resultKind: TypeKind): ExceptionHandler = {
        handlerCount += 1
        val exh = new ExceptionHandler(method, "" + handlerCount, cls)
	exh.resultKind = resultKind
        method.addHandler(exh)
        handlers = exh :: handlers
        if (settings.debug.value)
          log("added handler: " + exh);

        exh
      }

      /** Return a new context for generating code for the given
       * exception handler.
       */
      def enterHandler(exh: ExceptionHandler): Context = {
        currentExceptionHandler = Some(exh)
        val ctx = newBlock
        exh.setStartBlock(ctx.bb)
        ctx
      }

      /** Remove the given handler from the list of active exception handlers. */
      def removeHandler(exh: ExceptionHandler): Unit = {
        assert(handlerCount > 0 && handlers.head == exh,
               "Wrong nesting of exception handlers." + this + " for " + exh)
        handlerCount = handlerCount - 1
        handlers = handlers.tail
        if (settings.debug.value)
          log("removed handler: " + exh);

      }

      /** Clone the current context */
      def dup: Context = new Context(this)

      /**
       * Generate exception handlers for the body. Body is evaluated
       * with a context where all the handlers are active. Handlers are
       * evaluated in the 'outer' context.
       *
       * It returns the resulting context, with the same active handlers as
       * before the call. Use it like:
       *
       * <code> ctx.Try( ctx => {
       *   ctx.bb.emit(...) // protected block
       * }, (definitions.ThrowableClass,
       *   ctx => {
       *     ctx.bb.emit(...); // exception handler
       *   }), (AnotherExceptionClass,
       *   ctx => {...
       *   } ))</code>
       */
      def Try(body: Context => Context,
              handlers: List[(Symbol, TypeKind, (Context => Context))],
              finalizer: Tree) = {
        val outerCtx = this.dup
        val afterCtx = outerCtx.newBlock

        val exhs = handlers.map { handler =>
            val exh = this.newHandler(handler._1, handler._2)
            val ctx1 = handler._3(outerCtx.enterHandler(exh))
            ctx1.bb.emit(JUMP(afterCtx.bb))
            ctx1.bb.close
            exh
          }
        val bodyCtx = this.newBlock
        if (finalizer != EmptyTree)
          bodyCtx.addFinalizer(finalizer)

        val finalCtx = body(bodyCtx)

        outerCtx.bb.emit(JUMP(bodyCtx.bb))
        outerCtx.bb.close

        exhs.reverse foreach finalCtx.removeHandler
        if (finalizer != EmptyTree)
          finalCtx.removeFinalizer(finalizer)

        finalCtx.bb.emit(JUMP(afterCtx.bb))
        finalCtx.bb.close

        afterCtx
      }
    }
  }

    /**
     * Represent a label in the current method code. In order
     * to support forward jumps, labels can be created without
     * having a deisgnated target block. They can later be attached
     * by calling `anchor'.
     */
    class Label(val symbol: Symbol) {
      var anchored = false
      var block: BasicBlock = _
      var params: List[Symbol] = _

      private var toPatch: List[Instruction] = Nil

      /** Fix this label to the given basic block. */
      def anchor(b: BasicBlock): Label = {
        assert(!anchored, "Cannot anchor an already anchored label!")
        anchored = true
        this.block = b
        this
      }

      def setParams(p: List[Symbol]): Label = {
        assert(params eq null, "Cannot set label parameters twice!")
        params = p
        this
      }

      /** Add an instruction that refers to this label. */
      def addCallingInstruction(i: Instruction) =
        toPatch = i :: toPatch;

      /**
       * Patch the code by replacing pseudo call instructions with
       * jumps to the given basic block.
       */
      def patch(code: Code) {
        def substMap: Map[Instruction, Instruction] = {
          val map = new HashMap[Instruction, Instruction]()

          toPatch foreach (i => map += i -> patch(i))
          map
        }

        val map = substMap
        code traverse (.subst(map))
      }

      /**
       * Return the patched instruction. If the given instruction
       * jumps to this label, replace it with the basic block. Otherwise,
       * return the same instruction. Conditional jumps have more than one
       * label, so they are replaced only if all labels are anchored.
       */
      def patch(instr: Instruction): Instruction = {
        assert(anchored, "Cannot patch until this label is anchored: " + this)

        instr match {
          case PJUMP(self)
          if (self == this) => JUMP(block)

          case PCJUMP(self, failure, cond, kind)
          if (self == this && failure.anchored) =>
            CJUMP(block, failure.block, cond, kind)

          case PCJUMP(success, self, cond, kind)
          if (self == this && success.anchored) =>
            CJUMP(success.block, block, cond, kind)

          case PCZJUMP(self, failure, cond, kind)
          if (self == this && failure.anchored) =>
            CZJUMP(block, failure.block, cond, kind)

          case PCZJUMP(success, self, cond, kind)
          if (self == this && success.anchored) =>
            CZJUMP(success.block, block, cond, kind)

          case _ => instr
        }
      }

      override def toString() = symbol.toString()
    }

    ///////////////// Fake instructions //////////////////////////

    /**
     * Pseudo jump: it takes a Label instead of a basick block.
     * It is used temporarily during code generation. It is replaced
     * by a real JUMP instruction when all labels are resolved.
     */
    abstract class PseudoJUMP(label: Label) extends Instruction {
      override def toString(): String = "PJUMP " + label.symbol.simpleName

      override def consumed = 0
      override def produced = 0

      // register with the given label
      if (!label.anchored)
        label.addCallingInstruction(this);
    }

    case class PJUMP(where: Label) extends PseudoJUMP(where)

    case class PCJUMP(success: Label, failure: Label, cond: TestOp, kind: TypeKind)
    extends PseudoJUMP(success) {
      override def toString(): String =
        "PCJUMP (" + kind + ") " + success.symbol.simpleName +
        " : " + failure.symbol.simpleName

      if (!failure.anchored)
        failure.addCallingInstruction(this)
    }

    case class PCZJUMP(success: Label, failure: Label, cond: TestOp, kind: TypeKind)
    extends PseudoJUMP(success) {
      override def toString(): String =
        "PCZJUMP (" + kind + ") " + success.symbol.simpleName +
        " : " + failure.symbol.simpleName

      if (!failure.anchored)
        failure.addCallingInstruction(this)
    }

  /** Local variable scopes. Keep track of line numbers for debugging info. */
  class Scope(val outer: Scope) {
    val locals: ListBuffer[Local] = new ListBuffer

    def add(l: Local) =
      locals += l

    def remove(l: Local) =
      locals -= l

    /** Return all locals that are in scope. */
    def varsInScope: Buffer[Local] = outer.varsInScope ++ locals

    override def toString() =
      outer.toString() + locals.mkString("[", ", ", "]")
  }

  object EmptyScope extends Scope(null) {
    override def toString() = "[]"
    override def varsInScope: Buffer[Local] = new ListBuffer
  }

}