summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/backend/jvm/analysis/NullnessAnalyzer.scala
blob: 31b62f747e37174a48f423a26f32dd8898bd9077 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
package scala.tools.nsc
package backend.jvm
package analysis

import java.util

import scala.annotation.switch
import scala.tools.asm.{Type, Opcodes}
import scala.tools.asm.tree.{MethodInsnNode, LdcInsnNode, AbstractInsnNode}
import scala.tools.asm.tree.analysis.{Frame, Analyzer, Interpreter, Value}
import scala.tools.nsc.backend.jvm.opt.BytecodeUtils
import BytecodeUtils._

/**
 * Some notes on the ASM analyzer framework.
 *
 * Value
 *  - Abstract, needs to be implemented for each analysis.
 *  - Represents the desired information about local variables and stack values, for example:
 *    - Is this value known to be null / not null?
 *    - What are the instructions that could potentially have produced this value?
 *
 * Interpreter
 *  - Abstract, needs to be implemented for each analysis. Sometimes one can subclass an existing
 *    interpreter, e.g., SourceInterpreter or BasicInterpreter.
 *  - Multiple abstract methods that receive an instruction and the instruction's input values, and
 *    return a value representing the result of that instruction.
 *    - Note: due to control flow, the interpreter can be invoked multiple times for the same
 *      instruction, until reaching a fixed point.
 *  - Abstract `merge` function that computes the least upper bound of two values. Used by
 *    Frame.merge (see below).
 *
 * Frame
 *  - Can be used directly for many analyses, no subclass required.
 *  - Every frame has an array of values: one for each local variable and for each stack slot.
 *    - A `top` index stores the index of the current stack top
 *    - NOTE: for a size-2 local variable at index i, the local variable at i+1 is set to an empty
 *      value. However, for a size-2 value at index i on the stack, the value at i+1 holds the next
 *      stack value.
 *  - Defines the `execute(instruction)` method.
 *    - executing mutates the state of the frame according to the effect of the instruction
 *      - pop consumed values from the stack
 *      - pass them to the interpreter together with the instruction
 *      - if applicable, push the resulting value on the stack
 *  - Defines the `merge(otherFrame)` method
 *    - called by the analyzer when multiple control flow paths lead to an instruction
 *      - the frame at the branching instruction is merged into the current frame of the
 *        instruction (held by the analyzer)
 *      - mutates the values of the current frame, merges all values using interpreter.merge.
 *
 * Analyzer
 *   - Stores a frame for each instruction
 *   - `merge` function takes an instruction and a frame, merges the existing frame for that instr
 *     (from the frames array) with the new frame passed as argument.
 *     if the frame changed, puts the instruction on the work queue (fixpiont).
 *   - initial frame: initialized for first instr by calling interpreter.new[...]Value
 *     for each slot (locals and params), stored in frames[firstInstr] by calling `merge`
 *   - work queue of instructions (`queue` array, `top` index for next instruction to analyze)
 *   - analyze(method): simulate control flow. while work queue non-empty:
 *     - copy the state of `frames[instr]` into a local frame `current`
 *     - call `current.execute(instr, interpreter)`, mutating the `current` frame
 *     - if it's a branching instruction
 *       - for all potential destination instructions
 *         - merge the destination instruction frame with the `current` frame
 *           (this enqueues the destination instr if its frame changed)
 *       - invoke `newControlFlowEdge` (see below)
 *   - the analyzer also tracks active exception handlers at each instruction
 *   - the empty method `newControlFlowEdge` can be overridden to track control flow if required
 *
 *
 * Some notes on nullness analysis.
 *
 * For an instance method, `this` is non-null at entry. So we have to return a NotNull value when
 * the analyzer is initializing the first frame of a method (see above). This required a change of
 * the analyzer: before it would simply call `interpreter.newValue`, where we don't have the
 * required context. See https://github.com/scala/scala-asm/commit/8133d75032.
 *
 * After some operations we know that a certain value is not null (e.g. the receiver of an instance
 * call). However, the receiver is an value on the stack and consumed while interpreting the
 * instruction - so we can only gain some knowledge if we know that the receiver was an alias of
 * some other local variable or stack slot. Therefore we use the AliasingFrame class.
 *
 * TODO:
 * Finally, we'd also like to exploit the knowledge gained from `if (x == null)` tests: x is known
 * to be null in one branch, not null in the other. This will make use of alias tracking as well.
 * We still have to figure out how to do this exactly in the analyzer framework.
 */

/**
 * Type to represent nullness of values.
 */
sealed trait Nullness {
  final def merge(other: Nullness) = if (this == other) this else Unknown
}
case object NotNull extends Nullness
case object Unknown extends Nullness
case object Null    extends Nullness

/**
 * Represents the nullness state for a local variable or stack value.
 *
 * Note that nullness of primitive values is not tracked, it will be always [[Unknown]].
 */
sealed trait NullnessValue extends Value {
  /**
   * The nullness of this value.
   */
  def nullness: Nullness

  /**
   * True if this value is a long or double. The Analyzer framework needs to know
   * the size of each value when interpreting instructions, see `Frame.execute`.
   */
  def isSize2: Boolean
  /**
   * The size of the slot described by this value. Cannot be 0 because no values are allocated
   * for void-typed slots, see NullnessInterpreter.newValue.
   **/
  def getSize: Int = if (isSize2) 2 else 1

  def merge(other: NullnessValue) = NullnessValue(nullness merge other.nullness, isSize2)
}

object NullValue     extends NullnessValue { def nullness = Null;    def isSize2 = false; override def toString = "Null"     }
object UnknownValue1 extends NullnessValue { def nullness = Unknown; def isSize2 = false; override def toString = "Unknown1" }
object UnknownValue2 extends NullnessValue { def nullness = Unknown; def isSize2 = true;  override def toString = "Unknown2" }
object NotNullValue  extends NullnessValue { def nullness = NotNull; def isSize2 = false; override def toString = "NotNull"  }

object NullnessValue {
  def apply(nullness: Nullness, isSize2: Boolean): NullnessValue = {
    if      (nullness == Null)    NullValue
    else if (nullness == NotNull) NotNullValue
    else if (isSize2)             UnknownValue2
    else                          UnknownValue1
  }

  def apply(nullness: Nullness, insn: AbstractInsnNode): NullnessValue = {
    apply(nullness, isSize2 = BytecodeUtils.instructionResultSize(insn) == 2)
  }
}

final class NullnessInterpreter extends Interpreter[NullnessValue](Opcodes.ASM5) {
  def newValue(tp: Type): NullnessValue = {
    // ASM loves giving semantics to null. The behavior here is the same as in SourceInterpreter,
    // which is provided by the framework.
    //
    // (1) For the void type, the ASM framework expects newValue to return `null`.
    //     Also, the Frame.returnValue field is `null` for methods with return type void.
    //     Example callsite passing VOID_TYPE: in Analyzer, `newValue(Type.getReturnType(m.desc))`.
    //
    // (2) `tp` may also be `null`. When creating the initial frame, the analyzer invokes
    //     `newValue(null)` for each local variable. We have to return a value of size 1.
    if (tp == Type.VOID_TYPE) null // (1)
    else NullnessValue(Unknown, isSize2 = tp != null /*(2)*/ && tp.getSize == 2 )
  }

  override def newParameterValue(isInstanceMethod: Boolean, local: Int, tp: Type): NullnessValue = {
    // For instance methods, the `this` parameter is known to be not null.
    if (isInstanceMethod && local == 0) NullnessValue(NotNull, isSize2 = false)
    else super.newParameterValue(isInstanceMethod, local, tp)
  }

  def newOperation(insn: AbstractInsnNode): NullnessValue = {
    val nullness = (insn.getOpcode: @switch) match {
      case Opcodes.ACONST_NULL => Null

      case Opcodes.LDC => insn.asInstanceOf[LdcInsnNode].cst match {
        case _: String | _: Type => NotNull
        case _ => Unknown
      }

      case _ => Unknown
    }

    // for Opcodes.NEW, we use Unknown. The value will become NotNull after the constructor call.
    NullnessValue(nullness, insn)
  }

  def copyOperation(insn: AbstractInsnNode, value: NullnessValue): NullnessValue = value

  def unaryOperation(insn: AbstractInsnNode, value: NullnessValue): NullnessValue = (insn.getOpcode: @switch) match {
    case Opcodes.CHECKCAST => value

    case Opcodes.NEWARRAY |
         Opcodes.ANEWARRAY => NullnessValue(NotNull, isSize2 = false)

    case _ => NullnessValue(Unknown, insn)
  }

  def binaryOperation(insn: AbstractInsnNode, value1: NullnessValue, value2: NullnessValue): NullnessValue = {
    NullnessValue(Unknown, insn)
  }

  def ternaryOperation(insn: AbstractInsnNode, value1: NullnessValue, value2: NullnessValue, value3: NullnessValue): NullnessValue = {
    NullnessValue(Unknown, isSize2 = false)
  }

  def naryOperation(insn: AbstractInsnNode, values: util.List[_ <: NullnessValue]): NullnessValue = (insn.getOpcode: @switch) match {
    case Opcodes.MULTIANEWARRAY =>
      NullnessValue(NotNull, isSize2 = false)

    case _ =>
      // TODO: use a list of methods that are known to return non-null values
      NullnessValue(Unknown, insn)
  }

  def returnOperation(insn: AbstractInsnNode, value: NullnessValue, expected: NullnessValue): Unit = ()

  def merge(a: NullnessValue, b: NullnessValue): NullnessValue = a merge b
}

class NullnessFrame(nLocals: Int, nStack: Int) extends AliasingFrame[NullnessValue](nLocals, nStack) {
  // Auxiliary constructor required for implementing `NullnessAnalyzer.newFrame`
  def this(src: Frame[_ <: NullnessValue]) {
    this(src.getLocals, src.getMaxStackSize)
    init(src)
  }

  override def execute(insn: AbstractInsnNode, interpreter: Interpreter[NullnessValue]): Unit = {
    import Opcodes._

    // get the object id of the object that is known to be not-null after this operation
    val nullCheckedAliasId: Long = (insn.getOpcode: @switch) match {
      case IALOAD |
           LALOAD |
           FALOAD |
           DALOAD |
           AALOAD |
           BALOAD |
           CALOAD |
           SALOAD =>
        aliasId(this.stackTop - 1)

      case IASTORE |
           FASTORE |
           AASTORE |
           BASTORE |
           CASTORE |
           SASTORE |
           LASTORE |
           DASTORE =>
        aliasId(this.stackTop - 2)

      case GETFIELD =>
        aliasId(this.stackTop)

      case PUTFIELD =>
        aliasId(this.stackTop - 1)

      case INVOKEVIRTUAL |
           INVOKESPECIAL |
           INVOKEINTERFACE =>
        val desc = insn.asInstanceOf[MethodInsnNode].desc
        val numArgs = Type.getArgumentTypes(desc).length
        aliasId(this.stackTop - numArgs)

      case ARRAYLENGTH |
           MONITORENTER |
           MONITOREXIT =>
        aliasId(this.stackTop)

      case _ =>
        -1
    }

    super.execute(insn, interpreter)

    if (nullCheckedAliasId != -1) {
      for (i <- valuesWithAliasId(nullCheckedAliasId))
        this.setValue(i, NotNullValue)
    }
  }
}

/**
 * This class is required to override the `newFrame` methods, which makes makes sure the analyzer
 * uses NullnessFrames.
 */
class NullnessAnalyzer extends Analyzer[NullnessValue](new NullnessInterpreter) {
  override def newFrame(nLocals: Int, nStack: Int): NullnessFrame = new NullnessFrame(nLocals, nStack)
  override def newFrame(src: Frame[_ <: NullnessValue]): NullnessFrame = new NullnessFrame(src)
}