summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/backend/jvm/opt/Inliner.scala
blob: 6b2786c1a339f7ea6a2dcea9a01693caa4c7feb0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
/* NSC -- new Scala compiler
 * Copyright 2005-2014 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.tools.nsc
package backend.jvm
package opt

import scala.annotation.tailrec
import scala.tools.asm
import asm.Handle
import asm.Opcodes._
import asm.tree._
import scala.collection.convert.decorateAsScala._
import scala.collection.convert.decorateAsJava._
import AsmUtils._
import BytecodeUtils._
import collection.mutable
import scala.tools.asm.tree.analysis.SourceInterpreter
import BackendReporting._
import scala.tools.nsc.backend.jvm.BTypes.InternalName

class Inliner[BT <: BTypes](val btypes: BT) {
  import btypes._
  import callGraph._

  def eliminateUnreachableCodeAndUpdateCallGraph(methodNode: MethodNode, definingClass: InternalName): Unit = {
    localOpt.minimalRemoveUnreachableCode(methodNode, definingClass) foreach {
      case invocation: MethodInsnNode  => callGraph.callsites.remove(invocation)
      case indy: InvokeDynamicInsnNode => callGraph.closureInstantiations.remove(indy)
      case _ =>
    }
  }

  def runInliner(): Unit = {
    rewriteFinalTraitMethodInvocations()

    for (request <- collectAndOrderInlineRequests) {
      val Right(callee) = request.callee // collectAndOrderInlineRequests returns callsites with a known callee

      // Inlining a method can create unreachable code. Example:
      //   def f = throw e
      //   def g = f; println() // println is unreachable after inlining f
      // If we have an inline request for a call to g, and f has been already inlined into g, we
      // need to run DCE before inlining g.
      eliminateUnreachableCodeAndUpdateCallGraph(callee.callee, callee.calleeDeclarationClass.internalName)

      // DCE above removes unreachable callsites from the call graph. If the inlining request denotes
      // such an eliminated callsite, do nothing.
      if (callGraph.callsites contains request.callsiteInstruction) {
        val r = inline(request.callsiteInstruction, request.callsiteStackHeight, request.callsiteMethod, request.callsiteClass,
          callee.callee, callee.calleeDeclarationClass,
          request.receiverKnownNotNull, keepLineNumbers = false)

        for (warning <- r) {
          if ((callee.annotatedInline && btypes.compilerSettings.YoptWarningEmitAtInlineFailed) || warning.emitWarning(compilerSettings)) {
            val annotWarn = if (callee.annotatedInline) " is annotated @inline but" else ""
            val msg = s"${BackendReporting.methodSignature(callee.calleeDeclarationClass.internalName, callee.callee)}$annotWarn could not be inlined:\n$warning"
            backendReporting.inlinerWarning(request.callsitePosition, msg)
          }
        }
      }
    }
  }

  /**
   * Ordering for inline requests. Required to make the inliner deterministic:
   *   - Always remove the same request when breaking inlining cycles
   *   - Perform inlinings in a consistent order
   */
  object callsiteOrdering extends Ordering[Callsite] {
    override def compare(x: Callsite, y: Callsite): Int = {
      val cls = x.callsiteClass.internalName compareTo y.callsiteClass.internalName
      if (cls != 0) return cls

      val name = x.callsiteMethod.name compareTo y.callsiteMethod.name
      if (name != 0) return name

      val desc = x.callsiteMethod.desc compareTo y.callsiteMethod.desc
      if (desc != 0) return desc

      def pos(c: Callsite) = c.callsiteMethod.instructions.indexOf(c.callsiteInstruction)
      pos(x) - pos(y)
    }
  }

  /**
   * Select callsites from the call graph that should be inlined. The resulting list of inlining
   * requests is allowed to have cycles, and the callsites can appear in any order.
   */
  def selectCallsitesForInlining: List[Callsite] = {
    callsites.valuesIterator.filter({
      case callsite @ Callsite(_, _, _, Right(Callee(callee, calleeDeclClass, safeToInline, _, annotatedInline, _, warning)), _, _, _, pos) =>
        val res = doInlineCallsite(callsite)

        if (!res) {
          if (annotatedInline && btypes.compilerSettings.YoptWarningEmitAtInlineFailed) {
            // if the callsite is annotated @inline, we report an inline warning even if the underlying
            // reason is, for example, mixed compilation (which has a separate -Yopt-warning flag).
            def initMsg = s"${BackendReporting.methodSignature(calleeDeclClass.internalName, callee)} is annotated @inline but cannot be inlined"
            def warnMsg = warning.map(" Possible reason:\n" + _).getOrElse("")
            if (doRewriteTraitCallsite(callsite))
              backendReporting.inlinerWarning(pos, s"$initMsg: the trait method call could not be rewritten to the static implementation method." + warnMsg)
            else if (!safeToInline)
              backendReporting.inlinerWarning(pos, s"$initMsg: the method is not final and may be overridden." + warnMsg)
            else
              backendReporting.inlinerWarning(pos, s"$initMsg." + warnMsg)
          } else if (warning.isDefined && warning.get.emitWarning(compilerSettings)) {
            // when annotatedInline is false, and there is some warning, the callsite metadata is possibly incomplete.
            backendReporting.inlinerWarning(pos, s"there was a problem determining if method ${callee.name} can be inlined: \n"+ warning.get)
          }
        }

        res

      case Callsite(ins, _, _, Left(warning), _, _, _, pos) =>
        if (warning.emitWarning(compilerSettings))
          backendReporting.inlinerWarning(pos, s"failed to determine if ${ins.name} should be inlined:\n$warning")
        false
    }).toList
  }

  /**
   * The current inlining heuristics are simple: inline calls to methods annotated @inline.
   */
  def doInlineCallsite(callsite: Callsite): Boolean = callsite match {
    case Callsite(_, _, _, Right(Callee(callee, calleeDeclClass, safeToInline, _, annotatedInline, _, warning)), _, _, _, pos) =>
      if (compilerSettings.YoptInlineHeuristics.value == "everything") safeToInline
      else annotatedInline && safeToInline

    case _ => false
  }

  def rewriteFinalTraitMethodInvocations(): Unit = {
    // Rewriting final trait method callsites to the implementation class enables inlining.
    // We cannot just iterate over the values of the `callsites` map because the rewrite changes the
    // map. Therefore we first copy the values to a list.
    callsites.values.toList.foreach(rewriteFinalTraitMethodInvocation)
  }

  /**
   * True for statically resolved trait callsites that should be rewritten to the static implementation method.
   */
  def doRewriteTraitCallsite(callsite: Callsite) = callsite.callee match {
    case Right(Callee(callee, calleeDeclarationClass, safeToInline, true, annotatedInline, annotatedNoInline, infoWarning)) => true
    case _ => false
  }

  /**
   * Rewrite the INVOKEINTERFACE callsite of a final trait method invocation to INVOKESTATIC of the
   * corresponding method in the implementation class. This enables inlining final trait methods.
   *
   * In a final trait method callsite, the callee is safeToInline and the callee method is abstract
   * (the receiver type is the interface, so the method is abstract).
   */
  def rewriteFinalTraitMethodInvocation(callsite: Callsite): Unit = {
    if (doRewriteTraitCallsite(callsite)) {
      val Right(Callee(callee, calleeDeclarationClass, _, _, annotatedInline, annotatedNoInline, infoWarning)) = callsite.callee

      val traitMethodArgumentTypes = asm.Type.getArgumentTypes(callee.desc)

      val implClassInternalName = calleeDeclarationClass.internalName + "$class"

      val selfParamTypeV: Either[OptimizerWarning, ClassBType] = calleeDeclarationClass.info.map(_.inlineInfo.traitImplClassSelfType match {
        case Some(internalName) => classBTypeFromParsedClassfile(internalName)
        case None               => calleeDeclarationClass
      })

      def implClassMethodV(implMethodDescriptor: String): Either[OptimizerWarning, MethodNode] = {
        byteCodeRepository.methodNode(implClassInternalName, callee.name, implMethodDescriptor).map(_._1)
      }

      // The rewrite reading the implementation class and the implementation method from the bytecode
      // repository. If either of the two fails, the rewrite is not performed.
      val res = for {
        selfParamType        <- selfParamTypeV
        implMethodDescriptor =  asm.Type.getMethodDescriptor(asm.Type.getReturnType(callee.desc), selfParamType.toASMType +: traitMethodArgumentTypes: _*)
        implClassMethod      <- implClassMethodV(implMethodDescriptor)
        implClassBType       =  classBTypeFromParsedClassfile(implClassInternalName)
        selfTypeOk           <- calleeDeclarationClass.isSubtypeOf(selfParamType)
      } yield {

        // The self parameter type may be incompatible with the trait type.
        //   trait T { self: S => def foo = 1 }
        // The $self parameter type of T$class.foo is S, which may be unrelated to T. If we re-write
        // a call to T.foo to T$class.foo, we need to cast the receiver to S, otherwise we get a
        // VerifyError. We run a `SourceInterpreter` to find all producer instructions of the
        // receiver value and add a cast to the self type after each.
        if (!selfTypeOk) {
          // there's no need to run eliminateUnreachableCode here. building the call graph does that
          // already, no code can become unreachable in the meantime.
          val analyzer = new AsmAnalyzer(callsite.callsiteMethod, callsite.callsiteClass.internalName, new SourceInterpreter)
          val receiverValue = analyzer.frameAt(callsite.callsiteInstruction).peekStack(traitMethodArgumentTypes.length)
          for (i <- receiverValue.insns.asScala) {
            val cast = new TypeInsnNode(CHECKCAST, selfParamType.internalName)
            callsite.callsiteMethod.instructions.insert(i, cast)
          }
        }

        val newCallsiteInstruction = new MethodInsnNode(INVOKESTATIC, implClassInternalName, callee.name, implMethodDescriptor, false)
        callsite.callsiteMethod.instructions.insert(callsite.callsiteInstruction, newCallsiteInstruction)
        callsite.callsiteMethod.instructions.remove(callsite.callsiteInstruction)

        callGraph.callsites.remove(callsite.callsiteInstruction)
        val staticCallsite = Callsite(
          callsiteInstruction = newCallsiteInstruction,
          callsiteMethod      = callsite.callsiteMethod,
          callsiteClass       = callsite.callsiteClass,
          callee              = Right(Callee(
            callee                 = implClassMethod,
            calleeDeclarationClass = implClassBType,
            safeToInline           = true,
            safeToRewrite          = false,
            annotatedInline        = annotatedInline,
            annotatedNoInline      = annotatedNoInline,
            calleeInfoWarning      = infoWarning)),
          argInfos            = Nil,
          callsiteStackHeight = callsite.callsiteStackHeight,
          receiverKnownNotNull = callsite.receiverKnownNotNull,
          callsitePosition = callsite.callsitePosition
        )
        callGraph.callsites(newCallsiteInstruction) = staticCallsite
      }

      for (warning <- res.left) {
        val Right(callee) = callsite.callee
        val newCallee = callee.copy(calleeInfoWarning = Some(RewriteTraitCallToStaticImplMethodFailed(calleeDeclarationClass.internalName, callee.callee.name, callee.callee.desc, warning)))
        callGraph.callsites(callsite.callsiteInstruction) = callsite.copy(callee = Right(newCallee))
      }
    }
  }

  /**
   * Returns the callsites that can be inlined. Ensures that the returned inline request graph does
   * not contain cycles.
   *
   * The resulting list is sorted such that the leaves of the inline request graph are on the left.
   * Once these leaves are inlined, the successive elements will be leaves, etc.
   */
  private def collectAndOrderInlineRequests: List[Callsite] = {
    val requests = selectCallsitesForInlining

    // This map is an index to look up the inlining requests for a method. The value sets are mutable
    // to allow removing elided requests (to break inlining cycles). The map itself is mutable to
    // allow efficient building: requests.groupBy would build values as List[Callsite] that need to
    // be transformed to mutable sets.
    val inlineRequestsForMethod: mutable.Map[MethodNode, mutable.Set[Callsite]] = mutable.HashMap.empty.withDefaultValue(mutable.HashSet.empty)
    for (r <- requests) inlineRequestsForMethod.getOrElseUpdate(r.callsiteMethod, mutable.HashSet.empty) += r

    /**
     * Break cycles in the inline request graph by removing callsites.
     *
     * The list `requests` is traversed left-to-right, removing those callsites that are part of a
     * cycle. Elided callsites are also removed from the `inlineRequestsForMethod` map.
     */
    def breakInlineCycles(requests: List[Callsite]): List[Callsite] = {
      // is there a path of inline requests from start to goal?
      def isReachable(start: MethodNode, goal: MethodNode): Boolean = {
        @tailrec def reachableImpl(check: List[MethodNode], visited: Set[MethodNode]): Boolean = check match {
          case x :: xs =>
            if (x == goal) true
            else if (visited(x)) reachableImpl(xs, visited)
            else {
              val callees = inlineRequestsForMethod(x).map(_.callee.get.callee)
              reachableImpl(xs ::: callees.toList, visited + x)
            }

          case Nil =>
            false
        }
        reachableImpl(List(start), Set.empty)
      }

      val result = new mutable.ListBuffer[Callsite]()
      // sort the inline requests to ensure that removing requests is deterministic
      for (r <- requests.sorted(callsiteOrdering)) {
        // is there a chain of inlining requests that would inline the callsite method into the callee?
        if (isReachable(r.callee.get.callee, r.callsiteMethod))
          inlineRequestsForMethod(r.callsiteMethod) -= r
        else
          result += r
      }
      result.toList
    }

    // sort the remaining inline requests such that the leaves appear first, then those requests
    // that become leaves, etc.
    def leavesFirst(requests: List[Callsite], visited: Set[Callsite] = Set.empty): List[Callsite] = {
      if (requests.isEmpty) Nil
      else {
        val (leaves, others) = requests.partition(r => {
          val inlineRequestsForCallee = inlineRequestsForMethod(r.callee.get.callee)
          inlineRequestsForCallee.forall(visited)
        })
        assert(leaves.nonEmpty, requests)
        leaves ::: leavesFirst(others, visited ++ leaves)
      }
    }

    leavesFirst(breakInlineCycles(requests))
  }


  /**
   * Copy and adapt the instructions of a method to a callsite.
   *
   * Preconditions:
   *   - The maxLocals and maxStack values of the callsite method are correctly computed
   *   - The callsite method contains no unreachable basic blocks, i.e., running an [[Analyzer]]
   *     does not produce any `null` frames
   *
   * @param callsiteInstruction     The invocation instruction
   * @param callsiteStackHeight     The stack height at the callsite
   * @param callsiteMethod          The method in which the invocation occurs
   * @param callsiteClass           The class in which the callsite method is defined
   * @param callee                  The invoked method
   * @param calleeDeclarationClass  The class in which the invoked method is defined
   * @param receiverKnownNotNull    `true` if the receiver is known to be non-null
   * @param keepLineNumbers         `true` if LineNumberNodes should be copied to the call site
   * @return                        `Some(message)` if inlining cannot be performed, `None` otherwise
   */
  def inline(callsiteInstruction: MethodInsnNode, callsiteStackHeight: Int, callsiteMethod: MethodNode, callsiteClass: ClassBType,
             callee: MethodNode, calleeDeclarationClass: ClassBType,
             receiverKnownNotNull: Boolean, keepLineNumbers: Boolean): Option[CannotInlineWarning] = {
    canInline(callsiteInstruction, callsiteStackHeight, callsiteMethod, callsiteClass, callee, calleeDeclarationClass) orElse {
      // New labels for the cloned instructions
      val labelsMap = cloneLabels(callee)
      val (clonedInstructions, instructionMap) = cloneInstructions(callee, labelsMap)
      if (!keepLineNumbers) {
        removeLineNumberNodes(clonedInstructions)
      }

      // local vars in the callee are shifted by the number of locals at the callsite
      val localVarShift = callsiteMethod.maxLocals
      clonedInstructions.iterator.asScala foreach {
        case varInstruction: VarInsnNode => varInstruction.`var` += localVarShift
        case iinc: IincInsnNode          => iinc.`var` += localVarShift
        case _ => ()
      }

      // add a STORE instruction for each expected argument, including for THIS instance if any
      val argStores = new InsnList
      var nextLocalIndex = callsiteMethod.maxLocals
      if (!isStaticMethod(callee)) {
        if (!receiverKnownNotNull) {
          argStores.add(new InsnNode(DUP))
          val nonNullLabel = newLabelNode
          argStores.add(new JumpInsnNode(IFNONNULL, nonNullLabel))
          argStores.add(new InsnNode(ACONST_NULL))
          argStores.add(new InsnNode(ATHROW))
          argStores.add(nonNullLabel)
        }
        argStores.add(new VarInsnNode(ASTORE, nextLocalIndex))
        nextLocalIndex += 1
      }

      // We just use an asm.Type here, no need to create the MethodBType.
      val calleAsmType = asm.Type.getMethodType(callee.desc)

      for(argTp <- calleAsmType.getArgumentTypes) {
        val opc = argTp.getOpcode(ISTORE) // returns the correct xSTORE instruction for argTp
        argStores.insert(new VarInsnNode(opc, nextLocalIndex)) // "insert" is "prepend" - the last argument is on the top of the stack
        nextLocalIndex += argTp.getSize
      }

      clonedInstructions.insert(argStores)

      // label for the exit of the inlined functions. xRETURNs are replaced by GOTOs to this label.
      val postCallLabel = newLabelNode
      clonedInstructions.add(postCallLabel)

      // replace xRETURNs:
      //   - store the return value (if any)
      //   - clear the stack of the inlined method (insert DROPs)
      //   - load the return value
      //   - GOTO postCallLabel

      val returnType = calleAsmType.getReturnType
      val hasReturnValue = returnType.getSort != asm.Type.VOID
      val returnValueIndex = callsiteMethod.maxLocals + callee.maxLocals
      nextLocalIndex += returnType.getSize

      def returnValueStore(returnInstruction: AbstractInsnNode) = {
        val opc = returnInstruction.getOpcode match {
          case IRETURN => ISTORE
          case LRETURN => LSTORE
          case FRETURN => FSTORE
          case DRETURN => DSTORE
          case ARETURN => ASTORE
        }
        new VarInsnNode(opc, returnValueIndex)
      }

      // We run an interpreter to know the stack height at each xRETURN instruction and the sizes
      // of the values on the stack.
      val analyzer = new AsmAnalyzer(callee, calleeDeclarationClass.internalName)

      for (originalReturn <- callee.instructions.iterator().asScala if isReturn(originalReturn)) {
        val frame = analyzer.frameAt(originalReturn)
        var stackHeight = frame.getStackSize

        val inlinedReturn = instructionMap(originalReturn)
        val returnReplacement = new InsnList

        def drop(slot: Int) = returnReplacement add getPop(frame.peekStack(slot).getSize)

        // for non-void methods, store the stack top into the return local variable
        if (hasReturnValue) {
          returnReplacement add returnValueStore(originalReturn)
          stackHeight -= 1
        }

        // drop the rest of the stack
        for (i <- 0 until stackHeight) drop(i)

        returnReplacement add new JumpInsnNode(GOTO, postCallLabel)
        clonedInstructions.insert(inlinedReturn, returnReplacement)
        clonedInstructions.remove(inlinedReturn)
      }

      // Load instruction for the return value
      if (hasReturnValue) {
        val retVarLoad = {
          val opc = returnType.getOpcode(ILOAD)
          new VarInsnNode(opc, returnValueIndex)
        }
        clonedInstructions.insert(postCallLabel, retVarLoad)
      }

      callsiteMethod.instructions.insert(callsiteInstruction, clonedInstructions)
      callsiteMethod.instructions.remove(callsiteInstruction)

      callsiteMethod.localVariables.addAll(cloneLocalVariableNodes(callee, labelsMap, callee.name + "_").asJava)
      callsiteMethod.tryCatchBlocks.addAll(cloneTryCatchBlockNodes(callee, labelsMap).asJava)

      // Add all invocation instructions and closure instantiations that were inlined to the call graph
      callee.instructions.iterator().asScala foreach {
        case originalCallsiteIns: MethodInsnNode =>
          callGraph.callsites.get(originalCallsiteIns) match {
            case Some(originalCallsite) =>
              val newCallsiteIns = instructionMap(originalCallsiteIns).asInstanceOf[MethodInsnNode]
              callGraph.callsites(newCallsiteIns) = Callsite(
                callsiteInstruction = newCallsiteIns,
                callsiteMethod = callsiteMethod,
                callsiteClass = callsiteClass,
                callee = originalCallsite.callee,
                argInfos = Nil, // TODO: re-compute argInfos for new destination (once we actually compute them)
                callsiteStackHeight = callsiteStackHeight + originalCallsite.callsiteStackHeight,
                receiverKnownNotNull = originalCallsite.receiverKnownNotNull,
                callsitePosition = originalCallsite.callsitePosition
              )

            case None =>
          }

        case indy: InvokeDynamicInsnNode =>
          callGraph.closureInstantiations.get(indy) match {
            case Some(closureInit) =>
              val newIndy = instructionMap(indy).asInstanceOf[InvokeDynamicInsnNode]
              callGraph.closureInstantiations(newIndy) = ClosureInstantiation(closureInit.lambdaMetaFactoryCall.copy(indy = newIndy), callsiteMethod, callsiteClass)

            case None =>
          }

        case _ =>
      }
      // Remove the elided invocation from the call graph
      callGraph.callsites.remove(callsiteInstruction)

      // Inlining a method body can render some code unreachable, see example above (in runInliner).
      unreachableCodeEliminated -= callsiteMethod

      callsiteMethod.maxLocals += returnType.getSize + callee.maxLocals
      callsiteMethod.maxStack = math.max(callsiteMethod.maxStack, callee.maxStack + callsiteStackHeight)

      None
    }
  }

  /**
   * Check whether an inling can be performed. Parmeters are described in method [[inline]].
   * @return `Some(message)` if inlining cannot be performed, `None` otherwise
   */
  def canInline(callsiteInstruction: MethodInsnNode, callsiteStackHeight: Int, callsiteMethod: MethodNode, callsiteClass: ClassBType,
                callee: MethodNode, calleeDeclarationClass: ClassBType): Option[CannotInlineWarning] = {

    def calleeDesc = s"${callee.name} of type ${callee.desc} in ${calleeDeclarationClass.internalName}"
    def methodMismatch = s"Wrong method node for inlining ${textify(callsiteInstruction)}: $calleeDesc"
    assert(callsiteInstruction.name == callee.name, methodMismatch)
    assert(callsiteInstruction.desc == callee.desc, methodMismatch)
    assert(!isConstructor(callee), s"Constructors cannot be inlined: $calleeDesc")
    assert(!BytecodeUtils.isAbstractMethod(callee), s"Callee is abstract: $calleeDesc")
    assert(callsiteMethod.instructions.contains(callsiteInstruction), s"Callsite ${textify(callsiteInstruction)} is not an instruction of $calleeDesc")

    // When an exception is thrown, the stack is cleared before jumping to the handler. When
    // inlining a method that catches an exception, all values that were on the stack before the
    // call (in addition to the arguments) would be cleared (SI-6157). So we don't inline methods
    // with handlers in case there are values on the stack.
    // Alternatively, we could save all stack values below the method arguments into locals, but
    // that would be inefficient: we'd need to pop all parameters, save the values, and push the
    // parameters back for the (inlined) invocation. Similarly for the result after the call.
    def stackHasNonParameters: Boolean = {
      val expectedArgs = asm.Type.getArgumentTypes(callsiteInstruction.desc).length + (callsiteInstruction.getOpcode match {
        case INVOKEVIRTUAL | INVOKESPECIAL | INVOKEINTERFACE => 1
        case INVOKESTATIC => 0
        case INVOKEDYNAMIC =>
          assertionError(s"Unexpected opcode, cannot inline ${textify(callsiteInstruction)}")
      })
      callsiteStackHeight > expectedArgs
    }

    if (codeSizeOKForInlining(callsiteMethod, callee)) {
      Some(ResultingMethodTooLarge(
        calleeDeclarationClass.internalName, callee.name, callee.desc,
        callsiteClass.internalName, callsiteMethod.name, callsiteMethod.desc))
    } else if (isSynchronizedMethod(callee)) {
      // Could be done by locking on the receiver, wrapping the inlined code in a try and unlocking
      // in finally. But it's probably not worth the effort, scala never emits synchronized methods.
      Some(SynchronizedMethod(calleeDeclarationClass.internalName, callee.name, callee.desc))
    } else if (isStrictfpMethod(callsiteMethod) != isStrictfpMethod(callee)) {
      Some(StrictfpMismatch(
        calleeDeclarationClass.internalName, callee.name, callee.desc,
        callsiteClass.internalName, callsiteMethod.name, callsiteMethod.desc))
    } else if (!callee.tryCatchBlocks.isEmpty && stackHasNonParameters) {
      Some(MethodWithHandlerCalledOnNonEmptyStack(
        calleeDeclarationClass.internalName, callee.name, callee.desc,
        callsiteClass.internalName, callsiteMethod.name, callsiteMethod.desc))
    } else findIllegalAccess(callee.instructions, calleeDeclarationClass, callsiteClass) map {
      case (illegalAccessIns, None) =>
        IllegalAccessInstruction(
          calleeDeclarationClass.internalName, callee.name, callee.desc,
          callsiteClass.internalName, illegalAccessIns)

      case (illegalAccessIns, Some(warning)) =>
        IllegalAccessCheckFailed(
          calleeDeclarationClass.internalName, callee.name, callee.desc,
          callsiteClass.internalName, illegalAccessIns, warning)
    }
  }

  /**
   * Check if a type is accessible to some class, as defined in JVMS 5.4.4.
   *  (A1) C is public
   *  (A2) C and D are members of the same run-time package
   */
  def classIsAccessible(accessed: BType, from: ClassBType): Either[OptimizerWarning, Boolean] = (accessed: @unchecked) match {
    // TODO: A2 requires "same run-time package", which seems to be package + classloader (JMVS 5.3.). is the below ok?
    case c: ClassBType     => c.isPublic.map(_ || c.packageInternalName == from.packageInternalName)
    case a: ArrayBType     => classIsAccessible(a.elementType, from)
    case _: PrimitiveBType => Right(true)
  }

  /**
   * Check if a member reference is accessible from the [[destinationClass]], as defined in the
   * JVMS 5.4.4. Note that the class name in a field / method reference is not necessarily the
   * class in which the member is declared:
   *
   *   class A { def f = 0 }; class B extends A { f }
   *
   * The INVOKEVIRTUAL instruction uses a method reference "B.f ()I". Therefore this method has
   * two parameters:
   *
   * @param memberDeclClass The class in which the member is declared (A)
   * @param memberRefClass  The class used in the member reference (B)
   *
   * (B0) JVMS 5.4.3.2 / 5.4.3.3: when resolving a member of class C in D, the class C is resolved
   * first. According to 5.4.3.1, this requires C to be accessible in D.
   *
   * JVMS 5.4.4 summary: A field or method R is accessible to a class D (destinationClass) iff
   *  (B1) R is public
   *  (B2) R is protected, declared in C (memberDeclClass) and D is a subclass of C.
   *       If R is not static, R must contain a symbolic reference to a class T (memberRefClass),
   *       such that T is either a subclass of D, a superclass of D, or D itself.
   *       Also (P) needs to be satisfied.
   *  (B3) R is either protected or has default access and declared by a class in the same
   *       run-time package as D.
   *       If R is protected, also (P) needs to be satisfied.
   *  (B4) R is private and is declared in D.
   *
   *  (P) When accessing a protected instance member, the target object on the stack (the receiver)
   *      has to be a subtype of D (destinationClass). This is enforced by classfile verification
   *      (https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.10.1.8).
   *
   * TODO: we cannot currently implement (P) because we don't have the necessary information
   * available. Once we have a type propagation analysis implemented, we can extract the receiver
   * type from there (https://github.com/scala-opt/scala/issues/13).
   */
  def memberIsAccessible(memberFlags: Int, memberDeclClass: ClassBType, memberRefClass: ClassBType, from: ClassBType): Either[OptimizerWarning, Boolean] = {
    // TODO: B3 requires "same run-time package", which seems to be package + classloader (JMVS 5.3.). is the below ok?
    def samePackageAsDestination = memberDeclClass.packageInternalName == from.packageInternalName
    def targetObjectConformsToDestinationClass = false // needs type propagation analysis, see above

    def memberIsAccessibleImpl = {
      val key = (ACC_PUBLIC | ACC_PROTECTED | ACC_PRIVATE) & memberFlags
      key match {
        case ACC_PUBLIC => // B1
          Right(true)

        case ACC_PROTECTED => // B2
          val isStatic = (ACC_STATIC & memberFlags) != 0
          tryEither {
            val condB2 = from.isSubtypeOf(memberDeclClass).orThrow && {
              isStatic || memberRefClass.isSubtypeOf(from).orThrow || from.isSubtypeOf(memberRefClass).orThrow
            }
            Right(
              (condB2 || samePackageAsDestination /* B3 (protected) */) &&
              (isStatic || targetObjectConformsToDestinationClass) // (P)
            )
          }

        case 0 => // B3 (default access)
          Right(samePackageAsDestination)

        case ACC_PRIVATE => // B4
          Right(memberDeclClass == from)
      }
    }

    classIsAccessible(memberDeclClass, from) match { // B0
      case Right(true) => memberIsAccessibleImpl
      case r => r
    }
  }

  /**
   * Returns the first instruction in the `instructions` list that would cause a
   * [[java.lang.IllegalAccessError]] when inlined into the `destinationClass`.
   *
   * If validity of some instruction could not be checked because an error occurred, the instruction
   * is returned together with a warning message that describes the problem.
   */
  def findIllegalAccess(instructions: InsnList, calleeDeclarationClass: ClassBType, destinationClass: ClassBType): Option[(AbstractInsnNode, Option[OptimizerWarning])] = {
    /**
     * Check if `instruction` can be transplanted to `destinationClass`.
     *
     * If the instruction references a class, method or field that cannot be found in the
     * byteCodeRepository, it is considered as not legal. This is known to happen in mixed
     * compilation: for Java classes there is no classfile that could be parsed, nor does the
     * compiler generate any bytecode.
     *
     * Returns a warning message describing the problem if checking the legality for the instruction
     * failed.
     */
    def isLegal(instruction: AbstractInsnNode): Either[OptimizerWarning, Boolean] = instruction match {
      case ti: TypeInsnNode  =>
        // NEW, ANEWARRAY, CHECKCAST or INSTANCEOF. For these instructions, the reference
        // "must be a symbolic reference to a class, array, or interface type" (JVMS 6), so
        // it can be an internal name, or a full array descriptor.
        classIsAccessible(bTypeForDescriptorOrInternalNameFromClassfile(ti.desc), destinationClass)

      case ma: MultiANewArrayInsnNode =>
        // "a symbolic reference to a class, array, or interface type"
        classIsAccessible(bTypeForDescriptorOrInternalNameFromClassfile(ma.desc), destinationClass)

      case fi: FieldInsnNode =>
        val fieldRefClass = classBTypeFromParsedClassfile(fi.owner)
        for {
          (fieldNode, fieldDeclClassNode) <- byteCodeRepository.fieldNode(fieldRefClass.internalName, fi.name, fi.desc): Either[OptimizerWarning, (FieldNode, InternalName)]
          fieldDeclClass                  =  classBTypeFromParsedClassfile(fieldDeclClassNode)
          res                             <- memberIsAccessible(fieldNode.access, fieldDeclClass, fieldRefClass, destinationClass)
        } yield {
          res
        }

      case mi: MethodInsnNode =>
        if (mi.owner.charAt(0) == '[') Right(true) // array methods are accessible
        else {
          def canInlineCall(opcode: Int, methodFlags: Int, methodDeclClass: ClassBType, methodRefClass: ClassBType): Either[OptimizerWarning, Boolean] = {
            opcode match {
              case INVOKESPECIAL if mi.name != GenBCode.INSTANCE_CONSTRUCTOR_NAME =>
                // invokespecial is used for private method calls, super calls and instance constructor calls.
                // private method and super calls can only be inlined into the same class.
                Right(destinationClass == calleeDeclarationClass)

              case _ => // INVOKEVIRTUAL, INVOKESTATIC, INVOKEINTERFACE and INVOKESPECIAL of constructors
                memberIsAccessible(methodFlags, methodDeclClass, methodRefClass, destinationClass)
            }
          }

          val methodRefClass = classBTypeFromParsedClassfile(mi.owner)
          for {
            (methodNode, methodDeclClassNode) <- byteCodeRepository.methodNode(methodRefClass.internalName, mi.name, mi.desc): Either[OptimizerWarning, (MethodNode, InternalName)]
            methodDeclClass                   =  classBTypeFromParsedClassfile(methodDeclClassNode)
            res                               <- canInlineCall(mi.getOpcode, methodNode.access, methodDeclClass, methodRefClass)
          } yield {
            res
          }
        }

      case _: InvokeDynamicInsnNode if destinationClass == calleeDeclarationClass =>
        // within the same class, any indy instruction can be inlined
         Right(true)

      // does the InvokeDynamicInsnNode call LambdaMetaFactory?
      case LambdaMetaFactoryCall(_, _, implMethod, _) =>
        // an indy instr points to a "call site specifier" (CSP) [1]
        //  - a reference to a bootstrap method [2]
        //    - bootstrap method name
        //    - references to constant arguments, which can be:
        //      - constant (string, long, int, float, double)
        //      - class
        //      - method type (without name)
        //      - method handle
        //  - a method name+type
        //
        // execution [3]
        //  - resolve the CSP, yielding the bootstrap method handle, the static args and the name+type
        //    - resolution entails accessibility checking [4]
        //  - execute the `invoke` method of the bootstrap method handle (which is signature polymorphic, check its javadoc)
        //    - the descriptor for the call is made up from the actual arguments on the stack:
        //      - the first parameters are "MethodHandles.Lookup, String, MethodType", then the types of the constant arguments,
        //      - the return type is CallSite
        //    - the values for the call are
        //      - the bootstrap method handle of the CSP is the receiver
        //      - the Lookup object for the class in which the callsite occurs (obtained as through calling MethodHandles.lookup())
        //      - the method name of the CSP
        //      - the method type of the CSP
        //      - the constants of the CSP (primitives are not boxed)
        //  - the resulting `CallSite` object
        //    - has as `type` the method type of the CSP
        //    - is popped from the operand stack
        //  - the `invokeExact` method (signature polymorphic!) of the `target` method handle of the CallSite is invoked
        //    - the method descriptor is that of the CSP
        //    - the receiver is the target of the CallSite
        //    - the other argument values are those that were on the operand stack at the indy instruction (indyLambda: the captured values)
        //
        // [1] http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.4.10
        // [2] http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7.23
        // [3] http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.invokedynamic
        // [4] http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3

        // We cannot generically check if an `invokedynamic` instruction can be safely inlined into
        // a different class, that depends on the bootstrap method. The Lookup object passed to the
        // bootstrap method is a capability to access private members of the callsite class. We can
        // only move the invokedynamic to a new class if we know that the bootstrap method doesn't
        // use this capability for otherwise non-accessible members.
        // In the case of indyLambda, it depends on the visibility of the implMethod handle. If
        // the implMethod is public, lambdaMetaFactory doesn't use the Lookup object's extended
        // capability, and we can safely inline the instruction into a different class.

        val methodRefClass = classBTypeFromParsedClassfile(implMethod.getOwner)
        for {
          (methodNode, methodDeclClassNode) <- byteCodeRepository.methodNode(methodRefClass.internalName, implMethod.getName, implMethod.getDesc): Either[OptimizerWarning, (MethodNode, InternalName)]
          methodDeclClass                   =  classBTypeFromParsedClassfile(methodDeclClassNode)
          res                               <- memberIsAccessible(methodNode.access, methodDeclClass, methodRefClass, destinationClass)
        } yield {
          res
        }

      case _: InvokeDynamicInsnNode => Left(UnknownInvokeDynamicInstruction)

      case ci: LdcInsnNode => ci.cst match {
        case t: asm.Type => classIsAccessible(bTypeForDescriptorOrInternalNameFromClassfile(t.getInternalName), destinationClass)
        case _           => Right(true)
      }

      case _ => Right(true)
    }

    val it = instructions.iterator.asScala
    @tailrec def find: Option[(AbstractInsnNode, Option[OptimizerWarning])] = {
      if (!it.hasNext) None // all instructions are legal
      else {
        val i = it.next()
        isLegal(i) match {
          case Left(warning) => Some((i, Some(warning))) // checking isLegal for i failed
          case Right(false)  => Some((i, None))          // an illegal instruction was found
          case _             => find
        }
      }
    }
    find
  }
}