summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/backend/msil/GenMSIL.scala
blob: 8197e564d1db5729e608d80c77bb2df21b020bd7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
/* NSC -- new scala compiler
 * Copyright 2005-2012 LAMP/EPFL
 * @author Nikolay Mihaylov
 */


package scala.tools.nsc
package backend.msil

import java.io.{File, IOException}
import java.nio.{ByteBuffer, ByteOrder}
import scala.collection.{ mutable, immutable }
import scala.tools.nsc.symtab._

import ch.epfl.lamp.compiler.msil.{Type => MsilType, _}
import ch.epfl.lamp.compiler.msil.emit._
import ch.epfl.lamp.compiler.msil.util.PECustomMod
import scala.language.postfixOps

abstract class GenMSIL extends SubComponent {
  import global._
  import loaders.clrTypes
  import clrTypes.{types, constructors, methods, fields}
  import icodes._
  import icodes.opcodes._

  val x = loaders

  /** Create a new phase */
  override def newPhase(p: Phase) = new MsilPhase(p)

  val phaseName = "msil"
  /** MSIL code generation phase
   */
  class MsilPhase(prev: Phase) extends GlobalPhase(prev) {
    def name = phaseName
    override def newFlags = phaseNewFlags

    override def erasedTypes = true

    override def run() {
      if (settings.debug.value) inform("[running phase " + name + " on icode]")

      val codeGenerator = new BytecodeGenerator

      //classes is ICodes.classes, a HashMap[Symbol, IClass]
      classes.values foreach codeGenerator.findEntryPoint
      if( settings.Xshowcls.isSetByUser && (codeGenerator.entryPoint == null) ) { // TODO introduce dedicated setting instead
        val entryclass = settings.Xshowcls.value.toString
        warning("Couldn't find entry class " + entryclass)
      }

      codeGenerator.initAssembly

      val classesSorted = classes.values.toList.sortBy(c => c.symbol.id) // simplifies comparing cross-compiler vs. .exe output
      classesSorted foreach codeGenerator.createTypeBuilder
      classesSorted foreach codeGenerator.createClassMembers

      try {
        classesSorted foreach codeGenerator.genClass
      } finally {
        codeGenerator.writeAssembly
      }
    }

    override def apply(unit: CompilationUnit) {
      abort("MSIL works on icode classes, not on compilation units!")
    }
  }

  /**
   * MSIL bytecode generator.
   *
   */
  class BytecodeGenerator {

    val MODULE_INSTANCE_NAME = "MODULE$"

    import clrTypes.{VOID => MVOID, BOOLEAN => MBOOL, BYTE => MBYTE, SHORT => MSHORT,
                   CHAR => MCHAR, INT => MINT, LONG => MLONG, FLOAT => MFLOAT,
                   DOUBLE => MDOUBLE, OBJECT => MOBJECT, STRING => MSTRING,
                   STRING_ARRAY => MSTRING_ARRAY,
                   SYMTAB_CONSTR => SYMTAB_ATTRIBUTE_CONSTRUCTOR,
                   SYMTAB_DEFAULT_CONSTR => SYMTAB_ATTRIBUTE_EMPTY_CONSTRUCTOR}

    val EXCEPTION = clrTypes.getType("System.Exception")
    val MBYTE_ARRAY = clrTypes.mkArrayType(MBYTE)

    val ICLONEABLE = clrTypes.getType("System.ICloneable")
    val MEMBERWISE_CLONE = MOBJECT.GetMethod("MemberwiseClone", MsilType.EmptyTypes)

    val MMONITOR       = clrTypes.getType("System.Threading.Monitor")
    val MMONITOR_ENTER = MMONITOR.GetMethod("Enter", Array(MOBJECT))
    val MMONITOR_EXIT  = MMONITOR.GetMethod("Exit", Array(MOBJECT))

    val MSTRING_BUILDER = clrTypes.getType("System.Text.StringBuilder")
    val MSTRING_BUILDER_CONSTR = MSTRING_BUILDER.GetConstructor(MsilType.EmptyTypes)
    val MSTRING_BUILDER_TOSTRING = MSTRING_BUILDER.GetMethod("ToString",
                                                             MsilType.EmptyTypes)

    val TYPE_FROM_HANDLE =
      clrTypes.getType("System.Type").GetMethod("GetTypeFromHandle", Array(clrTypes.getType("System.RuntimeTypeHandle")))

    val INT_PTR = clrTypes.getType("System.IntPtr")

    val JOBJECT = definitions.ObjectClass
    val JSTRING = definitions.StringClass

    val SystemConvert = clrTypes.getType("System.Convert")

    val objParam = Array(MOBJECT)

    val toBool:   MethodInfo = SystemConvert.GetMethod("ToBoolean", objParam) // see comment in emitUnbox
    val toSByte:  MethodInfo = SystemConvert.GetMethod("ToSByte",   objParam)
    val toShort:  MethodInfo = SystemConvert.GetMethod("ToInt16",   objParam)
    val toChar:   MethodInfo = SystemConvert.GetMethod("ToChar",    objParam)
    val toInt:    MethodInfo = SystemConvert.GetMethod("ToInt32",   objParam)
    val toLong:   MethodInfo = SystemConvert.GetMethod("ToInt64",   objParam)
    val toFloat:  MethodInfo = SystemConvert.GetMethod("ToSingle",  objParam)
    val toDouble: MethodInfo = SystemConvert.GetMethod("ToDouble",  objParam)

    //val boxedUnit: FieldInfo = msilType(definitions.BoxedUnitModule.info).GetField("UNIT")
    val boxedUnit: FieldInfo = fields(definitions.BoxedUnit_UNIT)

    // Scala attributes
    // symtab.Definitions -> object (singleton..)
    val CloneableAttr    = definitions.CloneableAttr.tpe
    val TransientAtt     = definitions.TransientAttr.tpe
    // remoting: the architectures are too different, no mapping (no portable code
    // possible)

    // java instance methods that are mapped to static methods in .net
    // these will need to be called with OpCodes.Call (not Callvirt)
    val dynToStatMapped = mutable.HashSet[Symbol]()

    initMappings()

    /** Create the mappings between java and .net classes and methods */
    private def initMappings() {
      mapType(definitions.AnyClass, MOBJECT)
      mapType(definitions.AnyRefClass, MOBJECT)
      //mapType(definitions.NullClass, clrTypes.getType("scala.AllRef$"))
      //mapType(definitions.NothingClass, clrTypes.getType("scala.All$"))
      // FIXME: for some reason the upper two lines map to null
      mapType(definitions.NullClass, EXCEPTION)
      mapType(definitions.NothingClass, EXCEPTION)

      mapType(definitions.BooleanClass, MBOOL)
      mapType(definitions.ByteClass, MBYTE)
      mapType(definitions.ShortClass, MSHORT)
      mapType(definitions.CharClass, MCHAR)
      mapType(definitions.IntClass, MINT)
      mapType(definitions.LongClass, MLONG)
      mapType(definitions.FloatClass, MFLOAT)
      mapType(definitions.DoubleClass, MDOUBLE)
    }

    var clasz: IClass = _
    var method: IMethod = _

    var massembly: AssemblyBuilder = _
    var mmodule: ModuleBuilder = _
    var mcode: ILGenerator = _

    var assemName: String = _
    var firstSourceName = ""
    var outDir: File = _
    var srcPath: File = _
    var moduleName: String = _

    def initAssembly() {

      assemName = settings.assemname.value

      if (assemName == "") {
        if (entryPoint != null) {
          assemName = msilName(entryPoint.enclClass)
          // remove the $ at the end (from module-name)
          assemName = assemName.substring(0, assemName.length() - 1)
        } else {
          // assuming filename of first source file
          assert(firstSourceName.endsWith(".scala"), firstSourceName)
          assemName = firstSourceName.substring(0, firstSourceName.length() - 6)
        }
      } else {
        if (assemName.endsWith(".msil"))
          assemName = assemName.substring(0, assemName.length()-5)
        if (assemName.endsWith(".il"))
          assemName = assemName.substring(0, assemName.length()-3)
        val f: File = new File(assemName)
        assemName = f.getName()
      }

      outDir = new File(settings.outdir.value)

      srcPath = new File(settings.sourcedir.value)

      val assemblyName = new AssemblyName()
      assemblyName.Name = assemName
      massembly = AssemblyBuilderFactory.DefineDynamicAssembly(assemblyName)

      moduleName = assemName // + (if (entryPoint == null) ".dll" else ".exe")
      // filename here: .dll or .exe (in both parameters), second: give absolute-path
      mmodule = massembly.DefineDynamicModule(moduleName,
                                              new File(outDir, moduleName).getAbsolutePath())
      assert (mmodule != null)
    }


    /**
     * Form of the custom Attribute parameter (Ecma-335.pdf)
     *      - p. 163 for CustomAttrib Form,
     *      - p. 164 for FixedArg Form (Array and Element) (if array or not is known!)
     *  !! least significant byte first if values longer than one byte !!
     *
     * 1: Prolog (unsigned int16, value 0x0001) -> symtab[0] = 0x01, symtab[1] = 0x00
     * 2: FixedArgs (directly the data, get number and types from related constructor)
     *  2.1: length of the array (unsigned int32, 4 bytes, least significant first)
     *  2.2: the byte array data
     * 3: NumNamed (unsigned int16, number of named fields and properties, 0x0000)
     */
    def addSymtabAttribute(sym: Symbol, tBuilder: TypeBuilder) {
      def addMarker() {
        val markerSymtab = new Array[Byte](4)
        markerSymtab(0) = 1.toByte
        tBuilder.SetCustomAttribute(SYMTAB_ATTRIBUTE_EMPTY_CONSTRUCTOR, markerSymtab)
      }

      // both conditions are needed (why exactly..?)
      if (tBuilder.Name.endsWith("$") || sym.isModuleClass) {
        addMarker()
      } else {
        currentRun.symData.get(sym) match {
          case Some(pickle) =>
            var size = pickle.writeIndex
            val symtab = new Array[Byte](size + 8)
            symtab(0) = 1.toByte
            for (i <- 2 until 6) {
              symtab(i) = (size & 0xff).toByte
              size = size >> 8
            }
            java.lang.System.arraycopy(pickle.bytes, 0, symtab, 6, pickle.writeIndex)

            tBuilder.SetCustomAttribute(SYMTAB_ATTRIBUTE_CONSTRUCTOR, symtab)

            currentRun.symData -= sym
            currentRun.symData -= sym.companionSymbol

          case _ =>
            addMarker()
        }
      }
    }

    /**
     * Mutates `member` adding CLR attributes (if any) based on sym.annotations.
     * Please notice that CLR custom modifiers are a different beast (see customModifiers below)
     * and thus shouldn't be added by this method.
     */
    def addAttributes(member: ICustomAttributeSetter, annotations: List[AnnotationInfo]) {
      val attributes = annotations.map(_.atp.typeSymbol).collect {
        case definitions.TransientAttr => null // TODO this is just an example
      }
      return // TODO: implement at some point
    }

    /**
     * What's a CLR custom modifier? Intro available as source comments in compiler.msil.CustomModifier.
     * It's basically a marker associated with a location (think of FieldInfo, ParameterInfo, and PropertyInfo)
     * and thus that marker (be it optional or required) becomes part of the signature of that location.
     * Some annotations will become CLR attributes (see addAttributes above), others custom modifiers (this method).
     */
    def customModifiers(annotations: List[AnnotationInfo]): Array[CustomModifier] = {
      annotations.map(_.atp.typeSymbol).collect {
        case definitions.VolatileAttr  => new CustomModifier(true, CustomModifier.VolatileMarker)
      } toArray
    }



    /*
      debuglog("creating annotations: " + annotations + " for member : " + member)
      for (annot@ AnnotationInfo(typ, annArgs, nvPairs) <- annotations ;
           if annot.isConstant)
           //!typ.typeSymbol.isJavaDefined
      {
//        assert(consts.length <= 1,
//               "too many constant arguments for annotations; "+consts.toString())

        // Problem / TODO having the symbol of the annotations type would be nicer
        // (i hope that type.typeSymbol is the same as the one in types2create)
        // AND: this will crash if the annotations Type is already compiled (-> not a typeBuilder)
        // when this is solved, types2create will be the same as icodes.classes, thus superfluous
        val annType: TypeBuilder = getType(typ.typeSymbol).asInstanceOf[TypeBuilder]
//        val annType: MsilType = getType(typ.typeSymbol)

        // Problem / TODO: i have no idea which constructor is used. This
        // information should be available in AnnotationInfo.
        annType.CreateType() // else, GetConstructors can't be used
        val constr: ConstructorInfo = annType.GetConstructors()(0)
        // prevent a second call of CreateType, only needed because there's no
        // other way than GetConstructors()(0) to get the constructor, if there's
        // no constructor symbol available.

        val args: Array[Byte] =
          getAttributeArgs(
            annArgs map (_.constant.get),
            (for((n,v) <- nvPairs) yield (n, v.constant.get)))
        member.SetCustomAttribute(constr, args)
      }
    } */

/*    def getAttributeArgs(consts: List[Constant], nvPairs: List[(Name, Constant)]): Array[Byte] = {
      val buf = ByteBuffer.allocate(2048) // FIXME: this may be not enough!
      buf.order(ByteOrder.LITTLE_ENDIAN)
      buf.putShort(1.toShort) // signature

      def emitSerString(str: String) = {
          // this is wrong, it has to be the length of the UTF-8 byte array, which
          // may be longer (see clr-book on page 302)
//          val length: Int = str.length
            val strBytes: Array[Byte] = try {
              str.getBytes("UTF-8")
            } catch {
              case _: Error => abort("could not get byte-array for string: " + str)
            }
            val length: Int = strBytes.length //this length is stored big-endian
            if (length < 128)
              buf.put(length.toByte)
            else if (length < (1<<14)) {
              buf.put(((length >> 8) | 0x80).toByte) // the bits 14 and 15 of length are '0'
              buf.put((length | 0xff).toByte)
            } else if (length < (1 << 29)) {
              buf.put(((length >> 24) | 0xc0).toByte)
              buf.put(((length >> 16) & 0xff).toByte)
              buf.put(((length >>  8) & 0xff).toByte)
              buf.put(((length      ) & 0xff).toByte)
            } else
              abort("string too long for attribute parameter: " + length)
            buf.put(strBytes)
      }

      def emitConst(const: Constant): Unit = const.tag match {
        case BooleanTag => buf.put((if (const.booleanValue) 1 else 0).toByte)
        case ByteTag => buf.put(const.byteValue)
        case ShortTag => buf.putShort(const.shortValue)
        case CharTag => buf.putChar(const.charValue)
        case IntTag => buf.putInt(const.intValue)
        case LongTag => buf.putLong(const.longValue)
        case FloatTag => buf.putFloat(const.floatValue)
        case DoubleTag => buf.putDouble(const.doubleValue)
        case StringTag =>
          val str: String = const.stringValue
          if (str == null) {
            buf.put(0xff.toByte)
          } else {
            emitSerString(str)
          }
        case ArrayTag =>
          val arr: Array[Constant] = const.arrayValue
          if (arr == null) {
            buf.putInt(0xffffffff)
          } else {
            buf.putInt(arr.length)
            arr.foreach(emitConst)
          }

        // TODO: other Tags: NoTag, UnitTag, ClazzTag, EnumTag, ArrayTag ???

        case _ => abort("could not handle attribute argument: " + const)
      }

      consts foreach emitConst
      buf.putShort(nvPairs.length.toShort)
      def emitNamedArg(nvPair: (Name, Constant)) {
        // the named argument is a property of the attribute (it can't be a field, since
        //  all fields in scala are private)
        buf.put(0x54.toByte)

        def emitType(c: Constant) = c.tag match { // type of the constant, Ecma-335.pdf, page 151
          case BooleanTag => buf.put(0x02.toByte)
          case ByteTag =>    buf.put(0x05.toByte)
          case ShortTag =>   buf.put(0x06.toByte)
          case CharTag =>    buf.put(0x07.toByte)
          case IntTag =>     buf.put(0x08.toByte)
          case LongTag =>    buf.put(0x0a.toByte)
          case FloatTag =>   buf.put(0x0c.toByte)
          case DoubleTag =>  buf.put(0x0d.toByte)
          case StringTag =>  buf.put(0x0e.toByte)

          // TODO: other Tags: NoTag, UnitTag, ClazzTag, EnumTag ???

          // ArrayTag falls in here
          case _ => abort("could not handle attribute argument: " + c)
        }

        val cnst: Constant = nvPair._2
        if (cnst.tag == ArrayTag) {
          buf.put(0x1d.toByte)
          emitType(cnst.arrayValue(0)) // FIXME: will crash if array length = 0
        } else if (cnst.tag == EnumTag) {
          buf.put(0x55.toByte)
          // TODO: put a SerString (don't know what exactly, names of the enums somehow..)
              } else {
          buf.put(0x51.toByte)
          emitType(cnst)
        }

        emitSerString(nvPair._1.toString)
        emitConst(nvPair._2)
      }

      val length = buf.position()
      buf.array().slice(0, length)
    } */

    def writeAssembly() {
      if (entryPoint != null) {
        assert(entryPoint.enclClass.isModuleClass, entryPoint.enclClass)
        val mainMethod = methods(entryPoint)
        val stringArrayTypes: Array[MsilType] = Array(MSTRING_ARRAY)
        val globalMain = mmodule.DefineGlobalMethod(
          "Main", MethodAttributes.Public | MethodAttributes.Static,
          MVOID, stringArrayTypes)
        globalMain.DefineParameter(0, ParameterAttributes.None, "args")
        massembly.SetEntryPoint(globalMain)
        val code = globalMain.GetILGenerator()
        val moduleField = getModuleInstanceField(entryPoint.enclClass)
        code.Emit(OpCodes.Ldsfld, moduleField)
        code.Emit(OpCodes.Ldarg_0)
        code.Emit(OpCodes.Callvirt, mainMethod)
        code.Emit(OpCodes.Ret)
      }
      createTypes()
      var outDirName: String = null
      try {
        if (settings.Ygenjavap.isDefault) { // we reuse the JVM-sounding setting because it's conceptually similar
          outDirName = outDir.getPath()
          massembly.Save(outDirName + "\\" + assemName + ".msil") /* use SingleFileILPrinterVisitor */
        } else {
          outDirName = srcPath.getPath()
          massembly.Save(settings.Ygenjavap.value, outDirName)  /* use MultipleFilesILPrinterVisitor */
        }
      } catch {
        case e:IOException => abort("Could not write to " + outDirName + ": " + e.getMessage())
      }
    }

    private def createTypes() {
      for (sym <- classes.keys) {
        val iclass   = classes(sym)
        val tBuilder = types(sym).asInstanceOf[TypeBuilder]

        debuglog("Calling CreatType for " + sym + ", " + tBuilder.toString)

        tBuilder.CreateType()
        tBuilder.setSourceFilepath(iclass.cunit.source.file.path)
      }
    }

    private[GenMSIL] def ilasmFileName(iclass: IClass) : String = {
      // method.sourceFile contains just the filename
      iclass.cunit.source.file.toString.replace("\\", "\\\\")
    }

    private[GenMSIL] def genClass(iclass: IClass) {
      val sym = iclass.symbol
      debuglog("Generating class " + sym + " flags: " + Flags.flagsToString(sym.flags))
      clasz = iclass

      val tBuilder = getType(sym).asInstanceOf[TypeBuilder]
      if (isCloneable(sym)) {
        // FIXME: why there's no nme.clone_ ?
        // "Clone": if the code is non-portable, "Clone" is defined, not "clone"
        // TODO: improve condition (should override AnyRef.clone)
        if (iclass.methods.forall(m => {
          !((m.symbol.name.toString != "clone" || m.symbol.name.toString != "Clone") &&
            m.symbol.tpe.paramTypes.length != 0)
        })) {
          debuglog("auto-generating cloneable method for " + sym)
          val attrs: Short = (MethodAttributes.Public | MethodAttributes.Virtual |
                              MethodAttributes.HideBySig).toShort
          val cloneMethod = tBuilder.DefineMethod("Clone", attrs, MOBJECT,
                                                  MsilType.EmptyTypes)
          val clCode = cloneMethod.GetILGenerator()
          clCode.Emit(OpCodes.Ldarg_0)
          clCode.Emit(OpCodes.Call, MEMBERWISE_CLONE)
          clCode.Emit(OpCodes.Ret)
        }
      }

      val line = sym.pos.line
      tBuilder.setPosition(line, ilasmFileName(iclass))

      if (isTopLevelModule(sym)) {
        if (sym.companionClass == NoSymbol)
          generateMirrorClass(sym)
        else
          log("No mirror class for module with linked class: " +
              sym.fullName)
      }

      addSymtabAttribute(sym, tBuilder)
      addAttributes(tBuilder, sym.annotations)

      if (iclass.symbol != definitions.ArrayClass)
        iclass.methods foreach genMethod

    } //genClass


    private def genMethod(m: IMethod) {
      debuglog("Generating method " + m.symbol + " flags: " + Flags.flagsToString(m.symbol.flags) +
            " owner: " + m.symbol.owner)
      method = m
      localBuilders.clear
      computeLocalVarsIndex(m)

      if (m.symbol.isClassConstructor) {
        mcode = constructors(m.symbol).asInstanceOf[ConstructorBuilder].GetILGenerator()
      } else {
        val mBuilder = methods(m.symbol).asInstanceOf[MethodBuilder]
        if (!mBuilder.IsAbstract())
          try {
            mcode = mBuilder.GetILGenerator()
          } catch {
            case e: Exception =>
              java.lang.System.out.println("m.symbol       = " + Flags.flagsToString(m.symbol.flags) + " " + m.symbol)
              java.lang.System.out.println("m.symbol.owner = " + Flags.flagsToString(m.symbol.owner.flags) + " " + m.symbol.owner)
              java.lang.System.out.println("mBuilder       = " + mBuilder)
              java.lang.System.out.println("mBuilder.DeclaringType = " +
                                 TypeAttributes.toString(mBuilder.DeclaringType.Attributes) +
                                 "::" + mBuilder.DeclaringType)
              throw e
          }
          else
            mcode = null
      }

      if (mcode != null) {
        for (local <- m.locals ; if !(m.params contains local)) {
          debuglog("add local var: " + local + ", of kind " + local.kind)
          val t: MsilType = msilType(local.kind)
          val localBuilder = mcode.DeclareLocal(t)
          localBuilder.SetLocalSymInfo(msilName(local.sym))
          localBuilders(local) = localBuilder
        }
        genCode(m)
      }

    }

    /** Special linearizer for methods with at least one exception handler. This
     *  linearizer brings all basic blocks in the right order so that nested
     *  try-catch and try-finally blocks can be emitted.
     */
    val msilLinearizer = new MSILLinearizer()

    val labels = mutable.HashMap[BasicBlock, Label]()

    /* when emitting .line, it's enough to include the full filename just once per method, thus reducing filesize.
     * this scheme relies on the fact that the entry block is emitted first. */
    var dbFilenameSeen = false

    def genCode(m: IMethod) {

      def makeLabels(blocks: List[BasicBlock]) = {
        debuglog("Making labels for: " + method)
        for (bb <- blocks) labels(bb) = mcode.DefineLabel()
      }

      labels.clear

      var linearization = if(!m.exh.isEmpty) msilLinearizer.linearize(m)
                          else linearizer.linearize(m)

      if (!m.exh.isEmpty)
        linearization = computeExceptionMaps(linearization, m)

      makeLabels(linearization)

      // debug val blocksInM = m.code.blocks.toList.sortBy(bb => bb.label)
      // debug val blocksInL = linearization.sortBy(bb => bb.label)
      // debug val MButNotL  = (blocksInM.toSet) diff (blocksInL.toSet) // if non-empty, a jump to B fails to find a label for B (case CJUMP, case CZJUMP)
      // debug if(!MButNotL.isEmpty) { }

      dbFilenameSeen = false
      genBlocks(linearization)

      // RETURN inside exception blocks are replaced by Leave. The target of the
      // leave is a `Ret` outside any exception block (generated here).
      if (handlerReturnMethod == m) {
        mcode.MarkLabel(handlerReturnLabel)
        if (handlerReturnKind != UNIT)
          mcode.Emit(OpCodes.Ldloc, handlerReturnLocal)
        mcode.Emit(OpCodes.Ret)
      }

      beginExBlock.clear()
      beginCatchBlock.clear()
      endExBlock.clear()
      endFinallyLabels.clear()
    }

    def genBlocks(blocks: List[BasicBlock], previous: BasicBlock = null) {
      blocks match {
        case Nil => ()
        case x :: Nil => genBlock(x, prev = previous, next = null)
        case x :: y :: ys => genBlock(x, prev = previous, next = y); genBlocks(y :: ys, previous = x)
      }
    }

    // the try blocks starting at a certain BasicBlock
    val beginExBlock = mutable.HashMap[BasicBlock, List[ExceptionHandler]]()

    // the catch blocks starting / endling at a certain BasicBlock
    val beginCatchBlock = mutable.HashMap[BasicBlock, ExceptionHandler]()
    val endExBlock = mutable.HashMap[BasicBlock, List[ExceptionHandler]]()

    /** When emitting the code (genBlock), the number of currently active try / catch
     *  blocks. When seeing a `RETURN` inside a try / catch, we need to
     *   - store the result in a local (if it's not UNIT)
     *   - emit `Leave handlerReturnLabel` instead of the Return
     *   - emit code at the end: load the local and return its value
     */
    var currentHandlers = new mutable.Stack[ExceptionHandler]
    // The IMethod the Local/Label/Kind below belong to
    var handlerReturnMethod: IMethod = _
    // Stores the result when returning inside an exception block
    var handlerReturnLocal: LocalBuilder = _
    // Label for a return instruction outside any exception block
    var handlerReturnLabel: Label = _
    // The result kind.
    var handlerReturnKind: TypeKind = _
    def returnFromHandler(kind: TypeKind): (LocalBuilder, Label) = {
      if (handlerReturnMethod != method) {
        handlerReturnMethod = method
        if (kind != UNIT) {
          handlerReturnLocal = mcode.DeclareLocal(msilType(kind))
          handlerReturnLocal.SetLocalSymInfo("$handlerReturn")
        }
        handlerReturnLabel = mcode.DefineLabel()
        handlerReturnKind = kind
      }
      (handlerReturnLocal, handlerReturnLabel)
    }

    /** For try/catch nested inside a finally, we can't use `Leave OutsideFinally`, the
     *  Leave target has to be inside the finally (and it has to be the `endfinally` instruction).
     *  So for every finalizer, we have a label which marks the place of the `endfinally`,
     *  nested try/catch blocks will leave there.
     */
    val endFinallyLabels = mutable.HashMap[ExceptionHandler, Label]()

    /** Computes which blocks are the beginning / end of a try or catch block */
    private def computeExceptionMaps(blocks: List[BasicBlock], m: IMethod): List[BasicBlock] = {
      val visitedBlocks = new mutable.HashSet[BasicBlock]()

      // handlers which have not been introduced so far
      var openHandlers = m.exh


      /** Example
       *   try {
       *     try {
       *         // *1*
       *     } catch {
       *       case h1 =>
       *     }
       *   } catch {
       *     case h2 =>
       *     case h3 =>
       *       try {
       *
       *       } catch {
       *         case h4 =>  // *2*
       *         case h5 =>
       *       }
       *   }
       */

      // Stack of nested try blocks. Each bloc has a List of ExceptionHandler (multiple
      // catch statements). Example *1*: Stack(List(h2, h3), List(h1))
      val currentTryHandlers = new mutable.Stack[List[ExceptionHandler]]()

      // Stack of nested catch blocks. The head of the list is the current catch block. The
      // tail is all following catch blocks. Example *2*: Stack(List(h3), List(h4, h5))
      val currentCatchHandlers = new mutable.Stack[List[ExceptionHandler]]()

      for (b <- blocks) {

        // are we past the current catch blocks?
        def endHandlers(): List[ExceptionHandler] = {
          var res: List[ExceptionHandler] = Nil
          if (!currentCatchHandlers.isEmpty) {
            val handler = currentCatchHandlers.top.head
            if (!handler.blocks.contains(b)) {
              // all blocks of the handler are either visited, or not part of the linearization (i.e. dead)
              assert(handler.blocks.forall(b => visitedBlocks.contains(b) || !blocks.contains(b)),
                     "Bad linearization of basic blocks inside catch. Found block not part of the handler\n"+
                     b.fullString +"\nwhile in catch-part of\n"+ handler)

              val rest = currentCatchHandlers.pop.tail
              if (rest.isEmpty) {
                // all catch blocks of that exception handler are covered
                res = handler :: endHandlers()
              } else {
                // there are more catch blocks for that try (handlers covering the same)
                currentCatchHandlers.push(rest)
                beginCatchBlock(b) = rest.head
              }
            }
          }
          res
        }
        val end = endHandlers()
        if (!end.isEmpty) endExBlock(b) = end

        // are we past the current try block?
        if (!currentTryHandlers.isEmpty) {
          val handler = currentTryHandlers.top.head
          if (!handler.covers(b)) {
            // all of the covered blocks are visited, or not part of the linearization
            assert(handler.covered.forall(b => visitedBlocks.contains(b) || !blocks.contains(b)),
                   "Bad linearization of basic blocks inside try. Found non-covered block\n"+
                   b.fullString +"\nwhile in try-part of\n"+ handler)

            assert(handler.startBlock == b,
                   "Bad linearization of basic blocks. The entry block of a catch does not directly follow the try\n"+
                   b.fullString +"\n"+ handler)

            val handlers = currentTryHandlers.pop
            currentCatchHandlers.push(handlers)
            beginCatchBlock(b) = handler
          }
        }

        // are there try blocks starting at b?
        val (newHandlers, stillOpen) = openHandlers.partition(_.covers(b))
        openHandlers = stillOpen

        val newHandlersBySize = newHandlers.groupBy(_.covered.size)
        // big handlers first, smaller ones are nested inside the try of the big one
        // (checked by the assertions below)
        val sizes = newHandlersBySize.keys.toList.sortWith(_ > _)

        val beginHandlers = new mutable.ListBuffer[ExceptionHandler]
        for (s <- sizes) {
          val sHandlers = newHandlersBySize(s)
          for (h <- sHandlers) {
            assert(h.covered == sHandlers.head.covered,
                   "bad nesting of exception handlers. same size, but not covering same blocks\n"+
                   h +"\n"+ sHandlers.head)
            assert(h.resultKind == sHandlers.head.resultKind,
                   "bad nesting of exception handlers. same size, but the same resultKind\n"+
                   h +"\n"+ sHandlers.head)
          }
          for (bigger <- beginHandlers; h <- sHandlers) {
            assert(h.covered.subsetOf(bigger.covered),
                   "bad nesting of exception handlers. try blocks of smaller handler are not nested in bigger one.\n"+
                   h +"\n"+ bigger)
            assert(h.blocks.toSet.subsetOf(bigger.covered),
                   "bad nesting of exception handlers. catch blocks of smaller handler are not nested in bigger one.\n"+
                   h +"\n"+ bigger)
          }
          beginHandlers += sHandlers.head
          currentTryHandlers.push(sHandlers)
        }
        beginExBlock(b) = beginHandlers.toList
        visitedBlocks += b
      }

      // if there handlers left (i.e. handlers covering nothing, or a
      // non-existent (dead) block), remove their catch-blocks.
      val liveBlocks = if (openHandlers.isEmpty) blocks else {
        blocks.filter(b => openHandlers.forall(h => !h.blocks.contains(b)))
      }

      /** There might be open handlers, but no more blocks. happens when try/catch end
       *  with `throw` or `return`
       *     def foo() { try { .. throw } catch { _ => .. throw } }
       *
       *  In this case we need some code after the catch block for the auto-generated
       *  `leave` instruction. So we're adding a (dead) `throw new Exception`.
       */
      val rest = currentCatchHandlers.map(handlers => {
        assert(handlers.length == 1, handlers)
        handlers.head
      }).toList

      if (rest.isEmpty) {
        liveBlocks
      } else {
        val b = m.code.newBlock
        b.emit(Seq(
          NEW(REFERENCE(definitions.ThrowableClass)),
          DUP(REFERENCE(definitions.ObjectClass)),
          CALL_METHOD(definitions.ThrowableClass.primaryConstructor, Static(true)),
          THROW(definitions.ThrowableClass)
        ))
        b.close
        endExBlock(b) = rest
        liveBlocks ::: List(b)
      }
    }

    /**
     *  @param block the BasicBlock to emit code for
     *  @param next  the following BasicBlock, `null` if `block` is the last one
     */
    def genBlock(block: BasicBlock, prev: BasicBlock, next: BasicBlock) {

      def loadLocalOrAddress(local: Local, msg : String , loadAddr : Boolean) {
        debuglog(msg + " for " + local)
        val isArg = local.arg
        val i = local.index
        if (isArg)
          loadArg(mcode, loadAddr)(i)
        else
          loadLocal(i, local, mcode, loadAddr)
      }

      def loadFieldOrAddress(field: Symbol, isStatic: Boolean, msg: String, loadAddr : Boolean) {
        debuglog(msg + " with owner: " + field.owner +
              " flags: " + Flags.flagsToString(field.owner.flags))
        var fieldInfo = fields.get(field) match {
          case Some(fInfo) => fInfo
          case None =>
            val fInfo = getType(field.owner).GetField(msilName(field))
            fields(field) = fInfo
            fInfo
        }
        if (fieldInfo.IsVolatile) {
          mcode.Emit(OpCodes.Volatile)
        }
        if (!fieldInfo.IsLiteral) {
          if (loadAddr) {
            mcode.Emit(if (isStatic) OpCodes.Ldsflda else OpCodes.Ldflda, fieldInfo)
          } else {
            mcode.Emit(if (isStatic) OpCodes.Ldsfld else OpCodes.Ldfld, fieldInfo)
          }
        } else {
          assert(!loadAddr, "can't take AddressOf a literal field (not even with readonly. prefix) because no memory was allocated to such field ...")
          // TODO the above can be overcome by loading the value, boxing, and finally unboxing. An address to a copy of the raw value will be on the stack.
         /*  We perform `field inlining' as required by CLR.
          *  Emit as for a CONSTANT ICode stmt, with the twist that the constant value is available
          *  as a java.lang.Object and its .NET type allows constant initialization in CLR, i.e. that type
          *  is one of I1, I2, I4, I8, R4, R8, CHAR, BOOLEAN, STRING, or CLASS (in this last case,
          *  only accepting nullref as value). See Table 9-1 in Lidin's book on ILAsm. */
          val value = fieldInfo.getValue()
          if (value == null) {
            mcode.Emit(OpCodes.Ldnull)
          } else {
            val typ = if (fieldInfo.FieldType.IsEnum) fieldInfo.FieldType.getUnderlyingType
                      else fieldInfo.FieldType
            if (typ == clrTypes.STRING) {
              mcode.Emit(OpCodes.Ldstr, value.asInstanceOf[String])
            } else if (typ == clrTypes.BOOLEAN) {
                mcode.Emit(if (value.asInstanceOf[Boolean]) OpCodes.Ldc_I4_1
                           else OpCodes.Ldc_I4_0)
            } else if (typ == clrTypes.BYTE || typ == clrTypes.UBYTE) {
              loadI4(value.asInstanceOf[Byte], mcode)
            } else if (typ == clrTypes.SHORT || typ == clrTypes.USHORT) {
              loadI4(value.asInstanceOf[Int], mcode)
            } else if (typ == clrTypes.CHAR) {
              loadI4(value.asInstanceOf[Char], mcode)
            } else if (typ == clrTypes.INT || typ == clrTypes.UINT) {
              loadI4(value.asInstanceOf[Int], mcode)
            } else if (typ == clrTypes.LONG || typ == clrTypes.ULONG) {
              mcode.Emit(OpCodes.Ldc_I8, value.asInstanceOf[Long])
            } else if (typ == clrTypes.FLOAT) {
              mcode.Emit(OpCodes.Ldc_R4, value.asInstanceOf[Float])
            } else if (typ == clrTypes.DOUBLE) {
              mcode.Emit(OpCodes.Ldc_R8, value.asInstanceOf[Double])
            } else {
              /* TODO one more case is described in Partition II, 16.2: bytearray(...) */
              abort("Unknown type for static literal field: " + fieldInfo)
            }
          }
        }
      }

      /** Creating objects works differently on .NET. On the JVM
       *  - NEW(type) => reference on Stack
       *  - DUP, load arguments, CALL_METHOD(constructor)
       *
       * On .NET, the NEW and DUP are ignored, but we emit a special method call
       *  - load arguments
       *  - NewObj(constructor) => reference on stack
       *
       * This variable tells whether the previous instruction was a NEW,
       * we expect a DUP which is not emitted. */
      var previousWasNEW = false

      var lastLineNr: Int = 0
      var lastPos: Position = NoPosition


      // EndExceptionBlock must happen before MarkLabel because it adds the
      // Leave instruction. Otherwise, labels(block) points to the Leave
      // (inside the catch) instead of the instruction afterwards.
      for (handlers <- endExBlock.get(block); exh <- handlers) {
        currentHandlers.pop()
        for (l <- endFinallyLabels.get(exh))
          mcode.MarkLabel(l)
        mcode.EndExceptionBlock()
      }

      mcode.MarkLabel(labels(block))
      debuglog("Generating code for block: " + block)

      for (handler <- beginCatchBlock.get(block)) {
        if (!currentHandlers.isEmpty && currentHandlers.top.covered == handler.covered) {
          currentHandlers.pop()
          currentHandlers.push(handler)
        }
        if (handler.cls == NoSymbol) {
          // `finally` blocks are represented the same as `catch`, but with no catch-type
          mcode.BeginFinallyBlock()
        } else {
          val t = getType(handler.cls)
          mcode.BeginCatchBlock(t)
        }
      }
      for (handlers <- beginExBlock.get(block); exh <- handlers) {
        currentHandlers.push(exh)
        mcode.BeginExceptionBlock()
      }

      for (instr <- block) {
        try {
          val currentLineNr = instr.pos.line
          val skip = if(instr.pos.isRange) instr.pos.sameRange(lastPos) else (currentLineNr == lastLineNr);
          if(!skip || !dbFilenameSeen) {
            val fileName = if(dbFilenameSeen) "" else {dbFilenameSeen = true; ilasmFileName(clasz)};
            if(instr.pos.isRange) {
              val startLine = instr.pos.focusStart.line
              val endLine   = instr.pos.focusEnd.line
              val startCol  = instr.pos.focusStart.column
              val endCol    = instr.pos.focusEnd.column
              mcode.setPosition(startLine, endLine, startCol, endCol, fileName)
            } else {
              mcode.setPosition(instr.pos.line, fileName)
            }
            lastLineNr = currentLineNr
            lastPos = instr.pos
          }
        } catch { case _: UnsupportedOperationException => () }

        if (previousWasNEW)
          assert(instr.isInstanceOf[DUP], block)

        instr match {
          case THIS(clasz) =>
            mcode.Emit(OpCodes.Ldarg_0)

          case CONSTANT(const) =>
            const.tag match {
              case UnitTag    => ()
              case BooleanTag => mcode.Emit(if (const.booleanValue) OpCodes.Ldc_I4_1
                                            else OpCodes.Ldc_I4_0)
              case ByteTag    => loadI4(const.byteValue, mcode)
              case ShortTag   => loadI4(const.shortValue, mcode)
              case CharTag    => loadI4(const.charValue, mcode)
              case IntTag     => loadI4(const.intValue, mcode)
              case LongTag    => mcode.Emit(OpCodes.Ldc_I8, const.longValue)
              case FloatTag   => mcode.Emit(OpCodes.Ldc_R4, const.floatValue)
              case DoubleTag  => mcode.Emit(OpCodes.Ldc_R8, const.doubleValue)
              case StringTag  => mcode.Emit(OpCodes.Ldstr, const.stringValue)
              case NullTag    => mcode.Emit(OpCodes.Ldnull)
              case ClazzTag   =>
                mcode.Emit(OpCodes.Ldtoken, msilType(const.typeValue))
                mcode.Emit(OpCodes.Call, TYPE_FROM_HANDLE)
              case _          => abort("Unknown constant value: " + const)
            }

          case LOAD_ARRAY_ITEM(kind) =>
            (kind: @unchecked) match {
              case BOOL           => mcode.Emit(OpCodes.Ldelem_I1)
              case BYTE           => mcode.Emit(OpCodes.Ldelem_I1) // I1 for System.SByte, i.e. a scala.Byte
              case SHORT          => mcode.Emit(OpCodes.Ldelem_I2)
              case CHAR           => mcode.Emit(OpCodes.Ldelem_U2)
              case INT            => mcode.Emit(OpCodes.Ldelem_I4)
              case LONG           => mcode.Emit(OpCodes.Ldelem_I8)
              case FLOAT          => mcode.Emit(OpCodes.Ldelem_R4)
              case DOUBLE         => mcode.Emit(OpCodes.Ldelem_R8)
              case REFERENCE(cls) => mcode.Emit(OpCodes.Ldelem_Ref)
              case ARRAY(elem)    => mcode.Emit(OpCodes.Ldelem_Ref)

              // case UNIT is not possible: an Array[Unit] will be an
              //  Array[scala.runtime.BoxedUnit] (-> case REFERENCE)
            }

          case LOAD_LOCAL(local) => loadLocalOrAddress(local, "load_local", false)

          case CIL_LOAD_LOCAL_ADDRESS(local) => loadLocalOrAddress(local, "cil_load_local_address", true)

          case LOAD_FIELD(field, isStatic) => loadFieldOrAddress(field, isStatic, "load_field", false)

          case CIL_LOAD_FIELD_ADDRESS(field, isStatic) => loadFieldOrAddress(field, isStatic, "cil_load_field_address", true)

          case CIL_LOAD_ARRAY_ITEM_ADDRESS(kind) => mcode.Emit(OpCodes.Ldelema, msilType(kind))

          case CIL_NEWOBJ(msym) =>
            assert(msym.isClassConstructor)
            val constructorInfo: ConstructorInfo = getConstructor(msym)
            mcode.Emit(OpCodes.Newobj, constructorInfo)

          case LOAD_MODULE(module) =>
            debuglog("Generating LOAD_MODULE for: " + showsym(module))
            mcode.Emit(OpCodes.Ldsfld, getModuleInstanceField(module))

          case STORE_ARRAY_ITEM(kind) =>
            (kind: @unchecked) match {
              case BOOL           => mcode.Emit(OpCodes.Stelem_I1)
              case BYTE           => mcode.Emit(OpCodes.Stelem_I1)
              case SHORT          => mcode.Emit(OpCodes.Stelem_I2)
              case CHAR           => mcode.Emit(OpCodes.Stelem_I2)
              case INT            => mcode.Emit(OpCodes.Stelem_I4)
              case LONG           => mcode.Emit(OpCodes.Stelem_I8)
              case FLOAT          => mcode.Emit(OpCodes.Stelem_R4)
              case DOUBLE         => mcode.Emit(OpCodes.Stelem_R8)
              case REFERENCE(cls) => mcode.Emit(OpCodes.Stelem_Ref)
              case ARRAY(elem)    => mcode.Emit(OpCodes.Stelem_Ref) // @TODO: test this! (occurs when calling a Array[Object]* vararg param method)

              // case UNIT not possible (see comment at LOAD_ARRAY_ITEM)
            }

          case STORE_LOCAL(local) =>
            val isArg = local.arg
            val i = local.index
            debuglog("store_local for " + local + ", index " + i)

            // there are some locals defined by the compiler that
            // are isArg and are need to be stored.
            if (isArg) {
              if (i >= -128 && i <= 127)
                mcode.Emit(OpCodes.Starg_S, i)
              else
                mcode.Emit(OpCodes.Starg, i)
            } else {
              i match {
                case 0 => mcode.Emit(OpCodes.Stloc_0)
                case 1 => mcode.Emit(OpCodes.Stloc_1)
                case 2 => mcode.Emit(OpCodes.Stloc_2)
                case 3 => mcode.Emit(OpCodes.Stloc_3)
                case _      =>
                  if (i >= -128 && i <= 127)
                    mcode.Emit(OpCodes.Stloc_S, localBuilders(local))
                  else
                    mcode.Emit(OpCodes.Stloc, localBuilders(local))
              }
            }

          case STORE_THIS(_) =>
            // this only works for impl classes because the self parameter comes first
            // in the method signature. If that changes, this code has to be revisited.
            mcode.Emit(OpCodes.Starg_S, 0)

          case STORE_FIELD(field, isStatic) =>
            val fieldInfo = fields.get(field) match {
              case Some(fInfo) => fInfo
              case None =>
                val fInfo = getType(field.owner).GetField(msilName(field))
                fields(field) = fInfo
                fInfo
            }
            mcode.Emit(if (isStatic) OpCodes.Stsfld else OpCodes.Stfld, fieldInfo)

          case CALL_PRIMITIVE(primitive) =>
            genPrimitive(primitive, instr.pos)

          case CALL_METHOD(msym, style) =>
            if (msym.isClassConstructor) {
              val constructorInfo: ConstructorInfo = getConstructor(msym)
              (style: @unchecked) match {
                // normal constructor calls are Static..
                case Static(_) =>
                  if (method.symbol.isClassConstructor && method.symbol.owner == msym.owner)
                    // we're generating a constructor (method: IMethod is a constructor), and we're
                    // calling another constructor of the same class.

                    // @LUC TODO: this can probably break, namely when having: class A { def this() { new A() } }
                    // instead, we should instruct the CALL_METHOD with additional information, know whether it's
                    // an instance creation constructor call or not.
                    mcode.Emit(OpCodes.Call, constructorInfo)
                  else
                    mcode.Emit(OpCodes.Newobj, constructorInfo)
                case SuperCall(_) =>
                  mcode.Emit(OpCodes.Call, constructorInfo)
                  if (isStaticModule(clasz.symbol) &&
                      notInitializedModules.contains(clasz.symbol) &&
                      method.symbol.isClassConstructor)
                    {
                      notInitializedModules -= clasz.symbol
                      mcode.Emit(OpCodes.Ldarg_0)
                      mcode.Emit(OpCodes.Stsfld, getModuleInstanceField(clasz.symbol))
                    }
              }

            } else {

              var doEmit = true
              getTypeOpt(msym.owner) match {
                case Some(typ) if (typ.IsEnum) => {
                  def negBool() = {
                    mcode.Emit(OpCodes.Ldc_I4_0)
                    mcode.Emit(OpCodes.Ceq)
                  }
                  doEmit = false
                  val name = msym.name
                  if (name eq nme.EQ)       { mcode.Emit(OpCodes.Ceq) }
                  else if (name eq nme.NE)  { mcode.Emit(OpCodes.Ceq); negBool }
                  else if (name eq nme.LT)  { mcode.Emit(OpCodes.Clt) }
                  else if (name eq nme.LE)  { mcode.Emit(OpCodes.Cgt); negBool }
                  else if (name eq nme.GT)  { mcode.Emit(OpCodes.Cgt) }
                  else if (name eq nme.GE)  { mcode.Emit(OpCodes.Clt); negBool }
                  else if (name eq nme.OR)  { mcode.Emit(OpCodes.Or) }
                  else if (name eq nme.AND) { mcode.Emit(OpCodes.And) }
                  else if (name eq nme.XOR) { mcode.Emit(OpCodes.Xor) }
                  else
                    doEmit = true
                }
                case _ => ()
              }

              // method: implicit view(FunctionX[PType0, PType1, ...,PTypeN, ResType]):DelegateType
              val (isDelegateView, paramType, resType) = enteringTyper {
                msym.tpe match {
                  case MethodType(params, resultType)
                  if (params.length == 1 && msym.name == nme.view_) =>
                    val paramType = params(0).tpe
                    val isDel = definitions.isCorrespondingDelegate(resultType, paramType)
                    (isDel, paramType, resultType)
                  case _ => (false, null, null)
                }
              }
              if (doEmit && isDelegateView) {
                doEmit = false
                createDelegateCaller(paramType, resType)
              }

              if (doEmit &&
                  (msym.name == nme.PLUS || msym.name == nme.MINUS)
                  && clrTypes.isDelegateType(msilType(msym.owner.tpe)))
                {
                doEmit = false
                val methodInfo: MethodInfo = getMethod(msym)
                // call it as a static method, even if the compiler (symbol) thinks it's virtual
                mcode.Emit(OpCodes.Call, methodInfo)
                mcode.Emit(OpCodes.Castclass, msilType(msym.owner.tpe))
              }

              if (doEmit && definitions.Delegate_scalaCallers.contains(msym)) {
                doEmit = false
                val methodSym: Symbol = definitions.Delegate_scalaCallerTargets(msym)
                val delegateType: Type = msym.tpe match {
                  case MethodType(_, retType) => retType
                  case _ => abort("not a method type: " + msym.tpe)
                }
                val methodInfo: MethodInfo = getMethod(methodSym)
                val delegCtor = msilType(delegateType).GetConstructor(Array(MOBJECT, INT_PTR))
                if (methodSym.isStatic) {
                  mcode.Emit(OpCodes.Ldftn, methodInfo)
                } else {
                  mcode.Emit(OpCodes.Dup)
                  mcode.Emit(OpCodes.Ldvirtftn, methodInfo)
                }
                mcode.Emit(OpCodes.Newobj, delegCtor)
              }

              if (doEmit) {
                val methodInfo: MethodInfo = getMethod(msym)
                (style: @unchecked) match {
                  case SuperCall(_) =>
                    mcode.Emit(OpCodes.Call, methodInfo)
                  case Dynamic =>
                    // methodInfo.DeclaringType is null for global methods
                    val isValuetypeMethod = (methodInfo.DeclaringType ne null) && (methodInfo.DeclaringType.IsValueType)
                    val isValuetypeVirtualMethod = isValuetypeMethod && (methodInfo.IsVirtual)
                    if (dynToStatMapped(msym)) {
                      mcode.Emit(OpCodes.Call, methodInfo)
                    } else if (isValuetypeVirtualMethod) {
                      mcode.Emit(OpCodes.Constrained, methodInfo.DeclaringType)
                      mcode.Emit(OpCodes.Callvirt, methodInfo)
                    } else if (isValuetypeMethod) {
                      // otherwise error "Callvirt on a value type method" ensues
                      mcode.Emit(OpCodes.Call, methodInfo)
                    } else {
                      mcode.Emit(OpCodes.Callvirt, methodInfo)
                    }
                  case Static(_) =>
                    if(methodInfo.IsVirtual && !mcode.Ldarg0WasJustEmitted) {
                      mcode.Emit(OpCodes.Callvirt, methodInfo)
                    } else mcode.Emit(OpCodes.Call, methodInfo)
              }
            }
            }

          case BOX(boxType) =>
            emitBox(mcode, boxType)

          case UNBOX(boxType) =>
            emitUnbox(mcode, boxType)

          case CIL_UNBOX(boxType) =>
            mcode.Emit(OpCodes.Unbox, msilType(boxType))

          case CIL_INITOBJ(valueType) =>
            mcode.Emit(OpCodes.Initobj, msilType(valueType))

          case NEW(REFERENCE(cls)) =>
            // the next instruction must be a DUP, see comment on `var previousWasNEW`
            previousWasNEW = true

          // works also for arrays and reference-types
          case CREATE_ARRAY(elem, dims) =>
            // TODO: handle multi dimensional arrays
            assert(dims == 1, "Can't handle multi dimensional arrays")
            mcode.Emit(OpCodes.Newarr, msilType(elem))

          // works for arrays and reference-types
          case IS_INSTANCE(tpe) =>
            mcode.Emit(OpCodes.Isinst, msilType(tpe))
            mcode.Emit(OpCodes.Ldnull)
            mcode.Emit(OpCodes.Ceq)
            mcode.Emit(OpCodes.Ldc_I4_0)
            mcode.Emit(OpCodes.Ceq)

          // works for arrays and reference-types
          // part from the scala reference: "S <: T does not imply
          //  Array[S] <: Array[T] in Scala. However, it is possible
          //  to cast an array of S to an array of T if such a cast
          //  is permitted in the host environment."
          case CHECK_CAST(tpknd) =>
            val tMSIL = msilType(tpknd)
              mcode.Emit(OpCodes.Castclass, tMSIL)

          // no SWITCH is generated when there's
          //  - a default case ("case _ => ...") in the matching expr
          //  - OR is used ("case 1 | 2 => ...")
          case SWITCH(tags, branches) =>
            // tags is List[List[Int]]; a list of integers for every label.
            //    if the int on stack is 4, and 4 is in the second list => jump
            //    to second label
            // branches is List[BasicBlock]
            //    the labels to jump to (the last one is the default one)

            val switchLocal = mcode.DeclareLocal(MINT)
            // several switch variables will appear with the same name in the
            //  assembly code, but this makes no truble
            switchLocal.SetLocalSymInfo("$switch_var")

            mcode.Emit(OpCodes.Stloc, switchLocal)
            var i = 0
            for (l <- tags) {
              var targetLabel = labels(branches(i))
              for (i <- l) {
                mcode.Emit(OpCodes.Ldloc, switchLocal)
                loadI4(i, mcode)
                mcode.Emit(OpCodes.Beq, targetLabel)
              }
              i += 1
            }
            val defaultTarget = labels(branches(i))
            if (next != branches(i))
              mcode.Emit(OpCodes.Br, defaultTarget)

          case JUMP(whereto) =>
            val (leaveHandler, leaveFinally, lfTarget) = leavesHandler(block, whereto)
            if (leaveHandler) {
              if (leaveFinally) {
                if (lfTarget.isDefined) mcode.Emit(OpCodes.Leave, lfTarget.get)
                else mcode.Emit(OpCodes.Endfinally)
              } else
                mcode.Emit(OpCodes.Leave, labels(whereto))
            } else if (next != whereto)
              mcode.Emit(OpCodes.Br, labels(whereto))

          case CJUMP(success, failure, cond, kind) =>
            // cond is TestOp (see Primitives.scala), and can take
            // values EQ, NE, LT, GE LE, GT
            // kind is TypeKind
            val isFloat = kind == FLOAT || kind == DOUBLE
            val emit = (c: TestOp, l: Label) => emitBr(c, l, isFloat)
            emitCondBr(block, cond, success, failure, next, emit)

          case CZJUMP(success, failure, cond, kind) =>
            emitCondBr(block, cond, success, failure, next, emitBrBool(_, _))

          case RETURN(kind) =>
            if (currentHandlers.isEmpty)
              mcode.Emit(OpCodes.Ret)
            else {
              val (local, label) = returnFromHandler(kind)
              if (kind != UNIT)
                mcode.Emit(OpCodes.Stloc, local)
              mcode.Emit(OpCodes.Leave, label)
            }

          case THROW(_) =>
            mcode.Emit(OpCodes.Throw)

          case DROP(kind) =>
            mcode.Emit(OpCodes.Pop)

          case DUP(kind) =>
            // see comment on `var previousWasNEW`
            if (!previousWasNEW)
              mcode.Emit(OpCodes.Dup)
            else
              previousWasNEW = false

          case MONITOR_ENTER() =>
            mcode.Emit(OpCodes.Call, MMONITOR_ENTER)

          case MONITOR_EXIT() =>
            mcode.Emit(OpCodes.Call, MMONITOR_EXIT)

          case SCOPE_ENTER(_) | SCOPE_EXIT(_) | LOAD_EXCEPTION(_) =>
            ()
        }

      } // end for (instr <- b) { .. }
    } // end genBlock

    def genPrimitive(primitive: Primitive, pos: Position) {
      primitive match {
        case Negation(kind) =>
          kind match {
            // CHECK: is ist possible to get this for BOOL? in this case, verify.
            case BOOL | BYTE | CHAR | SHORT | INT | LONG | FLOAT | DOUBLE =>
              mcode.Emit(OpCodes.Neg)

            case _ => abort("Impossible to negate a " + kind)
          }

        case Arithmetic(op, kind) =>
          op match {
            case ADD => mcode.Emit(OpCodes.Add)
            case SUB => mcode.Emit(OpCodes.Sub)
            case MUL => mcode.Emit(OpCodes.Mul)
            case DIV => mcode.Emit(OpCodes.Div)
            case REM => mcode.Emit(OpCodes.Rem)
            case NOT => mcode.Emit(OpCodes.Not) //bitwise complement (one's complement)
            case _ => abort("Unknown arithmetic primitive " + primitive )
          }

        case Logical(op, kind) => op match {
          case AND => mcode.Emit(OpCodes.And)
          case OR => mcode.Emit(OpCodes.Or)
          case XOR => mcode.Emit(OpCodes.Xor)
        }

        case Shift(op, kind) => op match {
          case LSL => mcode.Emit(OpCodes.Shl)
          case ASR => mcode.Emit(OpCodes.Shr)
          case LSR => mcode.Emit(OpCodes.Shr_Un)
        }

        case Conversion(src, dst) =>
          debuglog("Converting from: " + src + " to: " + dst)

          dst match {
            case BYTE =>   mcode.Emit(OpCodes.Conv_I1) // I1 for System.SByte, i.e. a scala.Byte
            case SHORT =>  mcode.Emit(OpCodes.Conv_I2)
            case CHAR =>   mcode.Emit(OpCodes.Conv_U2)
            case INT =>    mcode.Emit(OpCodes.Conv_I4)
            case LONG =>   mcode.Emit(OpCodes.Conv_I8)
            case FLOAT =>  mcode.Emit(OpCodes.Conv_R4)
            case DOUBLE => mcode.Emit(OpCodes.Conv_R8)
            case _ =>
              Console.println("Illegal conversion at: " + clasz +
                              " at: " + pos.source + ":" + pos.line)
          }

        case ArrayLength(_) =>
          mcode.Emit(OpCodes.Ldlen)

        case StartConcat =>
          mcode.Emit(OpCodes.Newobj, MSTRING_BUILDER_CONSTR)


        case StringConcat(el) =>
          val elemType : MsilType = el match {
            case REFERENCE(_) | ARRAY(_) => MOBJECT
            case _ => msilType(el)
          }

          val argTypes:Array[MsilType] = Array(elemType)
          val stringBuilderAppend = MSTRING_BUILDER.GetMethod("Append", argTypes )
          mcode.Emit(OpCodes.Callvirt,  stringBuilderAppend)

        case EndConcat =>
          mcode.Emit(OpCodes.Callvirt, MSTRING_BUILDER_TOSTRING)

        case _ =>
          abort("Unimplemented primitive " + primitive)
      }
    } // end genPrimitive


    ////////////////////// loading ///////////////////////

    def loadI4(value: Int, code: ILGenerator): Unit = value match {
      case -1 => code.Emit(OpCodes.Ldc_I4_M1)
      case 0  => code.Emit(OpCodes.Ldc_I4_0)
      case 1  => code.Emit(OpCodes.Ldc_I4_1)
      case 2  => code.Emit(OpCodes.Ldc_I4_2)
      case 3  => code.Emit(OpCodes.Ldc_I4_3)
      case 4  => code.Emit(OpCodes.Ldc_I4_4)
      case 5  => code.Emit(OpCodes.Ldc_I4_5)
      case 6  => code.Emit(OpCodes.Ldc_I4_6)
      case 7  => code.Emit(OpCodes.Ldc_I4_7)
      case 8  => code.Emit(OpCodes.Ldc_I4_8)
      case _  =>
        if (value >= -128 && value <= 127)
          code.Emit(OpCodes.Ldc_I4_S, value)
        else
          code.Emit(OpCodes.Ldc_I4, value)
    }

    def loadArg(code: ILGenerator, loadAddr: Boolean)(i: Int) =
      if (loadAddr) {
        if (i >= -128 && i <= 127)
          code.Emit(OpCodes.Ldarga_S, i)
        else
          code.Emit(OpCodes.Ldarga, i)
      } else {
        i match {
          case 0 => code.Emit(OpCodes.Ldarg_0)
          case 1 => code.Emit(OpCodes.Ldarg_1)
          case 2 => code.Emit(OpCodes.Ldarg_2)
          case 3 => code.Emit(OpCodes.Ldarg_3)
          case _      =>
            if (i >= -128 && i <= 127)
              code.Emit(OpCodes.Ldarg_S, i)
            else
              code.Emit(OpCodes.Ldarg, i)
        }
      }

    def loadLocal(i: Int, local: Local, code: ILGenerator, loadAddr: Boolean) =
      if (loadAddr) {
        if (i >= -128 && i <= 127)
          code.Emit(OpCodes.Ldloca_S, localBuilders(local))
        else
          code.Emit(OpCodes.Ldloca, localBuilders(local))
      } else {
        i match {
          case 0 => code.Emit(OpCodes.Ldloc_0)
          case 1 => code.Emit(OpCodes.Ldloc_1)
          case 2 => code.Emit(OpCodes.Ldloc_2)
          case 3 => code.Emit(OpCodes.Ldloc_3)
          case _      =>
            if (i >= -128 && i <= 127)
              code.Emit(OpCodes.Ldloc_S, localBuilders(local))
            else
              code.Emit(OpCodes.Ldloc, localBuilders(local))
        }
      }

    ////////////////////// branches ///////////////////////

    /** Returns a Triple (Boolean, Boolean, Option[Label])
     *   - whether the jump leaves some exception block (try / catch / finally)
     *   - whether it leaves a finally handler (finally block, but not it's try / catch)
     *   - a label where to jump for leaving the finally handler
     *     . None to leave directly using `endfinally`
     *     . Some(label) to emit `leave label` (for try / catch inside a finally handler)
     */
    def leavesHandler(from: BasicBlock, to: BasicBlock): (Boolean, Boolean, Option[Label]) =
      if (currentHandlers.isEmpty) (false, false, None)
      else {
        val h = currentHandlers.head
        val leaveHead = { h.covers(from) != h.covers(to) ||
                          h.blocks.contains(from) != h.blocks.contains(to) }
        if (leaveHead) {
          // we leave the innermost exception block.
          // find out if we also leave som e `finally` handler
          currentHandlers.find(e => {
            e.cls == NoSymbol && e.blocks.contains(from) != e.blocks.contains(to)
          }) match {
            case Some(finallyHandler) =>
              if (h == finallyHandler) {
                // the finally handler is the innermost, so we can emit `endfinally` directly
                (true, true, None)
              } else {
                // we need to `Leave` to the `endfinally` of the next outer finally handler
                val l = endFinallyLabels.getOrElseUpdate(finallyHandler, mcode.DefineLabel())
                (true, true, Some(l))
              }
            case None =>
              (true, false, None)
          }
        } else (false, false, None)
      }

    def emitCondBr(block: BasicBlock, cond: TestOp, success: BasicBlock, failure: BasicBlock,
                   next: BasicBlock, emitBrFun: (TestOp, Label) => Unit) {
      val (sLeaveHandler, sLeaveFinally, slfTarget) = leavesHandler(block, success)
      val (fLeaveHandler, fLeaveFinally, flfTarget) = leavesHandler(block, failure)

      if (sLeaveHandler || fLeaveHandler) {
        val sLabelOpt = if (sLeaveHandler) {
          val leaveSLabel = mcode.DefineLabel()
          emitBrFun(cond, leaveSLabel)
          Some(leaveSLabel)
        } else {
          emitBrFun(cond, labels(success))
          None
        }

        if (fLeaveHandler) {
          if (fLeaveFinally) {
            if (flfTarget.isDefined) mcode.Emit(OpCodes.Leave, flfTarget.get)
            else mcode.Emit(OpCodes.Endfinally)
          } else
            mcode.Emit(OpCodes.Leave, labels(failure))
        } else
          mcode.Emit(OpCodes.Br, labels(failure))

        sLabelOpt.map(l => {
          mcode.MarkLabel(l)
          if (sLeaveFinally) {
            if (slfTarget.isDefined) mcode.Emit(OpCodes.Leave, slfTarget.get)
            else mcode.Emit(OpCodes.Endfinally)
          } else
            mcode.Emit(OpCodes.Leave, labels(success))
        })
      } else {
        if (next == success) {
          emitBrFun(cond.negate, labels(failure))
        } else {
          emitBrFun(cond, labels(success))
          if (next != failure) {
            mcode.Emit(OpCodes.Br, labels(failure))
          }
        }
      }
    }

    def emitBr(condition: TestOp, dest: Label, isFloat: Boolean) {
      condition match {
        case EQ => mcode.Emit(OpCodes.Beq, dest)
        case NE => mcode.Emit(OpCodes.Bne_Un, dest)
        case LT => mcode.Emit(if (isFloat) OpCodes.Blt_Un else OpCodes.Blt, dest)
        case GE => mcode.Emit(if (isFloat) OpCodes.Bge_Un else OpCodes.Bge, dest)
        case LE => mcode.Emit(if (isFloat) OpCodes.Ble_Un else OpCodes.Ble, dest)
        case GT => mcode.Emit(if (isFloat) OpCodes.Bgt_Un else OpCodes.Bgt, dest)
      }
    }

    def emitBrBool(cond: TestOp, dest: Label) {
      (cond: @unchecked) match {
        // EQ -> Brfalse, NE -> Brtrue; this is because we come from
        // a CZJUMP. If the value on the stack is 0 (e.g. a boolean
        // method returned false), and we are in the case EQ, then
        // we need to emit Brfalse (EQ Zero means false). vice versa
        case EQ => mcode.Emit(OpCodes.Brfalse, dest)
        case NE => mcode.Emit(OpCodes.Brtrue, dest)
      }
    }

    ////////////////////// local vars ///////////////////////

    /**
     * Compute the indexes of each local variable of the given
     * method.
     */
    def computeLocalVarsIndex(m: IMethod) {
      var idx = if (m.symbol.isStaticMember) 0 else 1

      val params = m.params
      for (l <- params) {
        debuglog("Index value for parameter " + l + ": " + idx)
        l.index = idx
        idx += 1 // sizeOf(l.kind)
      }

      val locvars = m.locals filterNot (params contains)
      idx = 0

      for (l <- locvars) {
        debuglog("Index value for local variable " + l + ": " + idx)
        l.index = idx
        idx += 1 // sizeOf(l.kind)
      }

    }

    ////////////////////// Utilities ////////////////////////

    /** Return the a name of this symbol that can be used on the .NET
     * platform. It removes spaces from names.
     *
     * Special handling: scala.All and scala.AllRef are 'erased' to
     * scala.All$ and scala.AllRef$. This is needed because they are
     * not real classes, and they mean 'abrupt termination upon evaluation
     * of that expression' or 'null' respectively. This handling is
     * done already in GenICode, but here we need to remove references
     * from method signatures to these types, because such classes can
     * not exist in the classpath: the type checker will be very confused.
     */
    def msilName(sym: Symbol): String = {
      val suffix = sym.moduleSuffix
      // Flags.JAVA: "symbol was not defined by a scala-class" (java, or .net-class)

      if (sym == definitions.NothingClass)
        return "scala.runtime.Nothing$"
      else if (sym == definitions.NullClass)
        return "scala.runtime.Null$"

      (if (sym.isClass || (sym.isModule && !sym.isMethod)) {
        if (sym.isNestedClass) sym.simpleName
        else sym.fullName
       } else
         sym.simpleName.toString.trim()) + suffix
    }


    ////////////////////// flags ///////////////////////

    def msilTypeFlags(sym: Symbol): Int = {
      var mf: Int = TypeAttributes.AutoLayout | TypeAttributes.AnsiClass

      if(sym.isNestedClass) {
        mf = mf | (if (sym hasFlag Flags.PRIVATE) TypeAttributes.NestedPrivate else TypeAttributes.NestedPublic)
      } else {
        mf = mf | (if (sym hasFlag Flags.PRIVATE) TypeAttributes.NotPublic else TypeAttributes.Public)
      }
      mf = mf | (if (sym hasFlag Flags.ABSTRACT) TypeAttributes.Abstract else 0)
      mf = mf | (if (sym.isTrait && !sym.isImplClass) TypeAttributes.Interface else TypeAttributes.Class)
      mf = mf | (if (sym isFinal) TypeAttributes.Sealed else 0)
      mf
      // static: not possible (or?)
    }

    def msilMethodFlags(sym: Symbol): Short = {
      var mf: Int = MethodAttributes.HideBySig |
        (if (sym hasFlag Flags.PRIVATE) MethodAttributes.Private
         else MethodAttributes.Public)

      if (!sym.isClassConstructor) {
        if (sym.isStaticMember)
          mf = mf | FieldAttributes.Static // coincidentally, same value as for MethodAttributes.Static ...
        else {
          mf = mf | MethodAttributes.Virtual
          if (sym.isFinal && !getType(sym.owner).IsInterface)
            mf = mf | MethodAttributes.Final
          if (sym.isDeferred || getType(sym.owner).IsInterface)
            mf = mf | MethodAttributes.Abstract
        }
      }

      if (sym.isStaticMember) {
        mf = mf | MethodAttributes.Static
      }

      // constructors of module classes should be private
      if (sym.isPrimaryConstructor && isTopLevelModule(sym.owner)) {
        mf |= MethodAttributes.Private
        mf &= ~(MethodAttributes.Public)
      }

      mf.toShort
    }

    def msilFieldFlags(sym: Symbol): Short = {
      var mf: Int =
        if (sym hasFlag Flags.PRIVATE) FieldAttributes.Private
        else if (sym hasFlag Flags.PROTECTED) FieldAttributes.FamORAssem
        else FieldAttributes.Public

      if (sym hasFlag Flags.FINAL)
        mf = mf | FieldAttributes.InitOnly

      if (sym.isStaticMember)
        mf = mf | FieldAttributes.Static

      // TRANSIENT: "not serialized", VOLATILE: doesn't exist on .net
      // TODO: add this annotation also if the class has the custom attribute
      // System.NotSerializedAttribute
      sym.annotations.foreach( a => a match {
        case AnnotationInfo(TransientAtt, _, _) =>
          mf = mf | FieldAttributes.NotSerialized
        case _ => ()
      })

      mf.toShort
    }

    ////////////////////// builders, types ///////////////////////

    var entryPoint: Symbol = _

    val notInitializedModules = mutable.HashSet[Symbol]()

    // TODO: create fields also in def createType, and not in genClass,
    // add a getField method (it only works as it is because fields never
    // accessed from outside a class)

    val localBuilders = mutable.HashMap[Local, LocalBuilder]()

    private[GenMSIL] def findEntryPoint(cls: IClass) {

      def isEntryPoint(sym: Symbol):Boolean = {
        if (isStaticModule(sym.owner) && msilName(sym) == "main")
          if (sym.tpe.paramTypes.length == 1) {
            toTypeKind(sym.tpe.paramTypes(0)) match {
              case ARRAY(elem) =>
                if (elem.toType.typeSymbol == definitions.StringClass) {
                  return true
                }
              case _ => ()
            }
          }
        false
      }

      if((entryPoint == null) && settings.Xshowcls.isSetByUser) {  // TODO introduce dedicated setting instead
        val entryclass = settings.Xshowcls.value.toString
        val cfn = cls.symbol.fullName
        if(cfn == entryclass) {
          for (m <- cls.methods; if isEntryPoint(m.symbol)) { entryPoint = m.symbol }
          if(entryPoint == null) { warning("Couldn't find main method in class " + cfn) }
        }
      }

      if (firstSourceName == "")
        if (cls.symbol.sourceFile != null) // is null for nested classes
          firstSourceName = cls.symbol.sourceFile.name
    }

    // #####################################################################
    // get and create types

    private def msilType(t: TypeKind): MsilType = (t: @unchecked) match {
      case UNIT           => MVOID
      case BOOL           => MBOOL
      case BYTE           => MBYTE
      case SHORT          => MSHORT
      case CHAR           => MCHAR
      case INT            => MINT
      case LONG           => MLONG
      case FLOAT          => MFLOAT
      case DOUBLE         => MDOUBLE
      case REFERENCE(cls) => getType(cls)
      case ARRAY(elem)    =>
        msilType(elem) match {
          // For type builders, cannot call "clrTypes.mkArrayType" because this looks up
          // the type "tp" in the assembly (not in the HashMap "types" of the backend).
          // This can fail for nested types because the builders are not complete yet.
          case tb: TypeBuilder => tb.MakeArrayType()
          case tp: MsilType => clrTypes.mkArrayType(tp)
        }
    }

    private def msilType(tpe: Type): MsilType = msilType(toTypeKind(tpe))

    private def msilParamTypes(sym: Symbol): Array[MsilType] = {
      sym.tpe.paramTypes.map(msilType).toArray
    }

    def getType(sym: Symbol) = getTypeOpt(sym).getOrElse(abort(showsym(sym)))

    /**
     * Get an MSIL type from a symbol. First look in the clrTypes.types map, then
     * lookup the name using clrTypes.getType
     */
    def getTypeOpt(sym: Symbol): Option[MsilType] = {
      val tmp = types.get(sym)
      tmp match {
        case typ @ Some(_) => typ
        case None =>
          def typeString(sym: Symbol): String = {
            val s = if (sym.isNestedClass) typeString(sym.owner) +"+"+ sym.simpleName
                    else sym.fullName
            if (sym.isModuleClass && !sym.isTrait) s + "$" else s
          }
          val name = typeString(sym)
          val typ = clrTypes.getType(name)
          if (typ == null)
            None
          else {
            types(sym) = typ
            Some(typ)
          }
      }
    }

    def mapType(sym: Symbol, mType: MsilType) {
      assert(mType != null, showsym(sym))
      types(sym) = mType
    }

    def createTypeBuilder(iclass: IClass) {
      /**
       * First look in the clrTypes.types map, if that fails check if it's a class being compiled, otherwise
       * lookup by name (clrTypes.getType calls the static method msil.Type.GetType(fullname)).
       */
      def msilTypeFromSym(sym: Symbol): MsilType = {
        types.get(sym).getOrElse {
          classes.get(sym) match {
            case Some(iclass) =>
	              msilTypeBuilderFromSym(sym)
            case None =>
              getType(sym)
          }
        }
      }

      def msilTypeBuilderFromSym(sym: Symbol): TypeBuilder = {
        if(!(types.contains(sym) && types(sym).isInstanceOf[TypeBuilder])){
          val iclass = classes(sym)
          assert(iclass != null)
          createTypeBuilder(iclass)
        }
        types(sym).asInstanceOf[TypeBuilder]
      }

      val sym = iclass.symbol
      if (types.contains(sym) && types(sym).isInstanceOf[TypeBuilder])
        return

      def isInterface(s: Symbol) = s.isTrait && !s.isImplClass
      val parents: List[Type] =
        if (sym.info.parents.isEmpty) List(definitions.ObjectClass.tpe)
        else sym.info.parents.distinct

      val superType : MsilType = if (isInterface(sym)) null else msilTypeFromSym(parents.head.typeSymbol)
      debuglog("super type: " + parents(0).typeSymbol + ", msil type: " + superType)

      val interfaces: Array[MsilType] =
	parents.tail.map(p => msilTypeFromSym(p.typeSymbol)).toArray
      if (parents.length > 1) {
        if (settings.debug.value) {
          log("interfaces:")
          for (i <- 0.until(interfaces.length)) {
            log("  type: " + parents(i + 1).typeSymbol + ", msil type: " + interfaces(i))
          }
        }
      }

      val tBuilder = if (sym.isNestedClass) {
        val ownerT = msilTypeBuilderFromSym(sym.owner).asInstanceOf[TypeBuilder]
        ownerT.DefineNestedType(msilName(sym), msilTypeFlags(sym), superType, interfaces)
      } else {
        mmodule.DefineType(msilName(sym), msilTypeFlags(sym), superType, interfaces)
      }
      mapType(sym, tBuilder)
    } // createTypeBuilder

    def createClassMembers(iclass: IClass) {
      try {
        createClassMembers0(iclass)
      }
      catch {
        case e: Throwable =>
          java.lang.System.err.println(showsym(iclass.symbol))
          java.lang.System.err.println("with methods = " + iclass.methods)
          throw e
      }
    }

    def createClassMembers0(iclass: IClass) {

      val mtype = getType(iclass.symbol).asInstanceOf[TypeBuilder]

      for (ifield <- iclass.fields) {
        val sym = ifield.symbol
        debuglog("Adding field: " + sym.fullName)

        var attributes = msilFieldFlags(sym)
        val fieldTypeWithCustomMods =
          new PECustomMod(msilType(sym.tpe),
                          customModifiers(sym.annotations))
        val fBuilder = mtype.DefineField(msilName(sym),
                                         fieldTypeWithCustomMods,
                                         attributes)
        fields(sym) = fBuilder
        addAttributes(fBuilder, sym.annotations)
      } // all iclass.fields iterated over

      if (isStaticModule(iclass.symbol)) {
        val sc = iclass.lookupStaticCtor
        if (sc.isDefined) {
          val m = sc.get
          val oldLastBlock = m.lastBlock
          val lastBlock = m.newBlock()
          oldLastBlock.replaceInstruction(oldLastBlock.length - 1, JUMP(lastBlock))
          // call object's private ctor from static ctor
          lastBlock.emit(CIL_NEWOBJ(iclass.symbol.primaryConstructor))
          lastBlock.emit(DROP(toTypeKind(iclass.symbol.tpe)))
          lastBlock emit RETURN(UNIT)
          lastBlock.close
        }
      }

      if (iclass.symbol != definitions.ArrayClass) {
      for (m: IMethod <- iclass.methods) {
        val sym = m.symbol
        debuglog("Creating MethodBuilder for " + Flags.flagsToString(sym.flags) + " " +
              sym.owner.fullName + "::" + sym.name)

        val ownerType = getType(sym.enclClass).asInstanceOf[TypeBuilder]
        assert(mtype == ownerType, "mtype = " + mtype + "; ownerType = " + ownerType)
        var paramTypes = msilParamTypes(sym)
        val attr = msilMethodFlags(sym)

        if (m.symbol.isClassConstructor) {
          val constr =
            ownerType.DefineConstructor(attr, CallingConventions.Standard, paramTypes)
          for (i <- 0.until(paramTypes.length)) {
            constr.DefineParameter(i, ParameterAttributes.None, msilName(m.params(i).sym))
          }
          mapConstructor(sym, constr)
          addAttributes(constr, sym.annotations)
        } else {
          var resType = msilType(m.returnType)
          val method =
            ownerType.DefineMethod(msilName(sym), attr, resType, paramTypes)
          for (i <- 0.until(paramTypes.length)) {
            method.DefineParameter(i, ParameterAttributes.None, msilName(m.params(i).sym))
          }
          if (!methods.contains(sym))
            mapMethod(sym, method)
          addAttributes(method, sym.annotations)
          debuglog("\t created MethodBuilder " + method)
        }
      }
      } // method builders created for non-array iclass

      if (isStaticModule(iclass.symbol)) {
        addModuleInstanceField(iclass.symbol)
        notInitializedModules += iclass.symbol
        if (iclass.lookupStaticCtor.isEmpty) {
          addStaticInit(iclass.symbol)
        }
      }

    } // createClassMembers0

    private def isTopLevelModule(sym: Symbol): Boolean =
      enteringRefchecks {
        sym.isModuleClass && !sym.isImplClass && !sym.isNestedClass
      }

    // if the module is lifted it does not need to be initialized in
    // its static constructor, and the MODULE$ field is not required.
    // the outer class will care about it.
    private def isStaticModule(sym: Symbol): Boolean = {
      // .net inner classes: removed '!sym.hasFlag(Flags.LIFTED)', added
      // 'sym.isStatic'. -> no longer compatible without skipping flatten!
      sym.isModuleClass && sym.isStatic && !sym.isImplClass
    }

    private def isCloneable(sym: Symbol): Boolean = {
      !sym.annotations.forall( a => a match {
        case AnnotationInfo(CloneableAttr, _, _) => false
        case _ => true
      })
    }

    private def addModuleInstanceField(sym: Symbol) {
      debuglog("Adding Module-Instance Field for " + showsym(sym))
      val tBuilder = getType(sym).asInstanceOf[TypeBuilder]
      val fb = tBuilder.DefineField(MODULE_INSTANCE_NAME,
                           tBuilder,
                           (FieldAttributes.Public |
                            //FieldAttributes.InitOnly |
                            FieldAttributes.Static).toShort)
      fields(sym) = fb
    }


    // the symbol may be a object-symbol (module-symbol), or a module-class-symbol
    private def getModuleInstanceField(sym: Symbol): FieldInfo = {
      assert(sym.isModule || sym.isModuleClass, "Expected module: " + showsym(sym))

      // when called by LOAD_MODULE, the corresponding type maybe doesn't
      // exist yet -> make a getType
      val moduleClassSym = if (sym.isModule) sym.moduleClass else sym

      // TODO: get module field for modules not defined in the
      // source currently compiling (e.g. Console)

      fields get moduleClassSym match {
        case Some(sym) => sym
        case None =>
          //val mclass = types(moduleClassSym)
          val nameInMetadata = nestingAwareFullClassname(moduleClassSym)
          val mClass = clrTypes.getType(nameInMetadata)
          val mfield = mClass.GetField("MODULE$")
          assert(mfield ne null, "module not found " + showsym(moduleClassSym))
          fields(moduleClassSym) = mfield
          mfield
      }

      //fields(moduleClassSym)
    }

    def nestingAwareFullClassname(csym: Symbol) : String = {
      val suffix = csym.moduleSuffix
      val res = if (csym.isNestedClass)
        nestingAwareFullClassname(csym.owner) + "+" + csym.encodedName
      else
        csym.fullName
      res + suffix
    }

    /** Adds a static initializer which creates an instance of the module
     *  class (calls the primary constructor). A special primary constructor
     *  will be generated (notInitializedModules) which stores the new instance
     *  in the MODULE$ field right after the super call.
     */
    private def addStaticInit(sym: Symbol) {
      val tBuilder = getType(sym).asInstanceOf[TypeBuilder]

      val staticInit = tBuilder.DefineConstructor(
        (MethodAttributes.Static | MethodAttributes.Public).toShort,
        CallingConventions.Standard,
        MsilType.EmptyTypes)

      val sicode = staticInit.GetILGenerator()

      val instanceConstructor = constructors(sym.primaryConstructor)

      // there are no constructor parameters. assuming the constructor takes no parameter
      // is fine: we call (in the static constructor) the constructor of the module class,
      // which takes no arguments - an object definition cannot take constructor arguments.
      sicode.Emit(OpCodes.Newobj, instanceConstructor)
      // the stsfld is done in the instance constructor, just after the super call.
      sicode.Emit(OpCodes.Pop)

      sicode.Emit(OpCodes.Ret)
    }

    private def generateMirrorClass(sym: Symbol) {
      val tBuilder = getType(sym)
      assert(sym.isModuleClass, "Can't generate Mirror-Class for the Non-Module class " + sym)
      debuglog("Dumping mirror class for object: " + sym)
      val moduleName = msilName(sym)
      val mirrorName = moduleName.substring(0, moduleName.length() - 1)
      val mirrorTypeBuilder = mmodule.DefineType(mirrorName,
                                                 TypeAttributes.Class |
                                                 TypeAttributes.Public |
                                                 TypeAttributes.Sealed,
                                                 MOBJECT,
                                                 MsilType.EmptyTypes)

      val iclass = classes(sym)

      for (m <- sym.tpe.nonPrivateMembers
           if m.owner != definitions.ObjectClass && !m.isProtected &&
           m.isMethod && !m.isClassConstructor && !m.isStaticMember && !m.isCase &&
           !m.isDeferred)
        {
          debuglog("   Mirroring method: " + m)
          val paramTypes = msilParamTypes(m)
          val paramNames: Array[String] = new Array[String](paramTypes.length)
          for (i <- 0 until paramTypes.length)
            paramNames(i) = "x_" + i

          // CHECK: verify if getMethodName is better than msilName
          val mirrorMethod = mirrorTypeBuilder.DefineMethod(msilName(m),
                                                            (MethodAttributes.Public |
                                                            MethodAttributes.Static).toShort,
                                                            msilType(m.tpe.resultType),
                                                            paramTypes)

          var i = 0
          while (i < paramTypes.length) {
            mirrorMethod.DefineParameter(i, ParameterAttributes.None, paramNames(i))
            i += 1
          }

          val mirrorCode = mirrorMethod.GetILGenerator()
          mirrorCode.Emit(OpCodes.Ldsfld, getModuleInstanceField(sym))
          val mInfo = getMethod(m)
          for (paramidx <- 0.until(paramTypes.length)) {
            val mInfoParams = mInfo.GetParameters
            val loadAddr = mInfoParams(paramidx).ParameterType.IsByRef
            loadArg(mirrorCode, loadAddr)(paramidx)
          }

          mirrorCode.Emit(OpCodes.Callvirt, getMethod(m))
          mirrorCode.Emit(OpCodes.Ret)
        }

      addSymtabAttribute(sym.sourceModule, mirrorTypeBuilder)

      mirrorTypeBuilder.CreateType()
      mirrorTypeBuilder.setSourceFilepath(iclass.cunit.source.file.path)
    }


    // #####################################################################
    // delegate callers

    var delegateCallers: TypeBuilder = _
    var nbDelegateCallers: Int = 0

    private def initDelegateCallers() = {
      delegateCallers = mmodule.DefineType("$DelegateCallers", TypeAttributes.Public |
                                          TypeAttributes.Sealed)
    }

    private def createDelegateCaller(functionType: Type, delegateType: Type) = {
      if (delegateCallers == null)
        initDelegateCallers()
      // create a field an store the function-object
      val mFunctionType: MsilType = msilType(functionType)
      val anonfunField: FieldBuilder = delegateCallers.DefineField(
        "$anonfunField$$" + nbDelegateCallers, mFunctionType,
        (FieldAttributes.InitOnly | FieldAttributes.Public | FieldAttributes.Static).toShort)
      mcode.Emit(OpCodes.Stsfld, anonfunField)


      // create the static caller method and the delegate object
      val (params, returnType) = delegateType.member(nme.apply).tpe match {
        case MethodType(delParams, delReturn) => (delParams, delReturn)
        case _ => abort("not a delegate type: "  + delegateType)
      }
      val caller: MethodBuilder = delegateCallers.DefineMethod(
        "$delegateCaller$$" + nbDelegateCallers,
        (MethodAttributes.Final | MethodAttributes.Public | MethodAttributes.Static).toShort,
        msilType(returnType), (params map (_.tpe)).map(msilType).toArray)
      for (i <- 0 until params.length)
        caller.DefineParameter(i, ParameterAttributes.None, "arg" + i) // FIXME: use name of parameter symbol
      val delegCtor = msilType(delegateType).GetConstructor(Array(MOBJECT, INT_PTR))
      mcode.Emit(OpCodes.Ldnull)
      mcode.Emit(OpCodes.Ldftn, caller)
      mcode.Emit(OpCodes.Newobj, delegCtor)


      // create the static caller method body
      val functionApply: MethodInfo = getMethod(functionType.member(nme.apply))
      val dcode: ILGenerator = caller.GetILGenerator()
      dcode.Emit(OpCodes.Ldsfld, anonfunField)
      for (i <- 0 until params.length) {
        loadArg(dcode, false /* TODO confirm whether passing actual as-is to formal is correct wrt the ByRef attribute of the param */)(i)
        emitBox(dcode, toTypeKind(params(i).tpe))
      }
      dcode.Emit(OpCodes.Callvirt, functionApply)
      emitUnbox(dcode, toTypeKind(returnType))
      dcode.Emit(OpCodes.Ret)

      nbDelegateCallers = nbDelegateCallers + 1

    } //def createDelegateCaller

    def emitBox(code: ILGenerator, boxType: TypeKind) = (boxType: @unchecked) match {
      // doesn't make sense, unit as parameter..
      case UNIT   => code.Emit(OpCodes.Ldsfld, boxedUnit)
      case BOOL | BYTE | SHORT | CHAR | INT | LONG | FLOAT | DOUBLE =>
        code.Emit(OpCodes.Box, msilType(boxType))
      case REFERENCE(cls) if clrTypes.isValueType(cls) =>
        code.Emit(OpCodes.Box, (msilType(boxType)))
      case REFERENCE(_) | ARRAY(_) =>
        warning("Tried to BOX a non-valuetype.")
        ()
    }

    def emitUnbox(code: ILGenerator, boxType: TypeKind) = (boxType: @unchecked) match {
      case UNIT   => code.Emit(OpCodes.Pop)
      /* (1) it's essential to keep the code emitted here (as of now plain calls to System.Convert.ToBlaBla methods)
             behaviorally.equiv.wrt. BoxesRunTime.unboxToBlaBla methods
             (case null: that's easy, case boxed: track changes to unboxBlaBla)
         (2) See also: asInstanceOf to cast from Any to number,
             tracked in http://lampsvn.epfl.ch/trac/scala/ticket/4437  */
      case BOOL   => code.Emit(OpCodes.Call, toBool)
      case BYTE   => code.Emit(OpCodes.Call, toSByte)
      case SHORT  => code.Emit(OpCodes.Call, toShort)
      case CHAR   => code.Emit(OpCodes.Call, toChar)
      case INT    => code.Emit(OpCodes.Call, toInt)
      case LONG   => code.Emit(OpCodes.Call, toLong)
      case FLOAT  => code.Emit(OpCodes.Call, toFloat)
      case DOUBLE => code.Emit(OpCodes.Call, toDouble)
      case REFERENCE(cls) if clrTypes.isValueType(cls) =>
        code.Emit(OpCodes.Unbox, msilType(boxType))
        code.Emit(OpCodes.Ldobj, msilType(boxType))
      case REFERENCE(_) | ARRAY(_) =>
        warning("Tried to UNBOX a non-valuetype.")
        ()
    }

    // #####################################################################
    // get and create methods / constructors

    def getConstructor(sym: Symbol): ConstructorInfo = constructors.get(sym) match {
      case Some(constr) => constr
      case None =>
        val mClass = getType(sym.owner)
        val constr = mClass.GetConstructor(msilParamTypes(sym))
        if (constr eq null) {
          java.lang.System.out.println("Cannot find constructor " + sym.owner + "::" + sym.name)
          java.lang.System.out.println("scope = " + sym.owner.tpe.decls)
          abort(sym.fullName)
        }
        else {
          mapConstructor(sym, constr)
          constr
        }
    }

    def mapConstructor(sym: Symbol, cInfo: ConstructorInfo) = {
      constructors(sym) = cInfo
    }

    private def getMethod(sym: Symbol): MethodInfo = {

        methods.get(sym) match {
        case Some(method) => method
        case None =>
          val mClass = getType(sym.owner)
          try {
            val method = mClass.GetMethod(msilName(sym), msilParamTypes(sym),
                                          msilType(sym.tpe.resultType))
            if (method eq null) {
              java.lang.System.out.println("Cannot find method " + sym.owner + "::" + msilName(sym))
              java.lang.System.out.println("scope = " + sym.owner.tpe.decls)
              abort(sym.fullName)
            }
            else {
              mapMethod(sym, method)
              method
            }
          }
          catch {
            case e: Exception =>
              Console.println("While looking up " + mClass + "::" + sym.nameString)
            Console.println("\t" + showsym(sym))
            throw e
          }
      }
    }

    /*
     * add a mapping between sym and mInfo
     */
    private def mapMethod(sym: Symbol, mInfo: MethodInfo) {
      assert (mInfo != null, mInfo)
      methods(sym) = mInfo
    }

    private def showsym(sym: Symbol): String = (sym.toString +
      "\n  symbol = " + Flags.flagsToString(sym.flags) + " " + sym +
      "\n  owner  = " + Flags.flagsToString(sym.owner.flags) + " " + sym.owner
    )

  } // class BytecodeGenerator

} // class GenMSIL