summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/backend/opt/Inliners.scala
blob: 8cd2a140669fca8bbaa43a2506e63da7d3420eac (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Iulian Dragos
 */


package scala.tools.nsc
package backend.opt

import scala.collection.mutable
import scala.tools.nsc.symtab._
import scala.reflect.internal.util.NoSourceFile

/**
 * Inliner balances two competing goals:
 *   (a) aggressive inlining of:
 *       (a.1) the apply methods of anonymous closures, so that their anon-classes can be eliminated;
 *       (a.2) higher-order-methods defined in an external library, e.g. `Range.foreach()` among many others.
 *   (b) circumventing the barrier to inter-library inlining that private accesses in the callee impose.
 *
 * Summing up the discussion in SI-5442 and SI-5891,
 * the current implementation achieves to a large degree both goals above, and
 * overcomes a problem exhibited by previous versions:
 *
 *   (1) Problem: Attempting to access a private member `p` at runtime resulting in an `IllegalAccessError`,
 *                where `p` is defined in a library L, and is accessed from a library C (for Client),
 *                where C was compiled against L', an optimized version of L where the inliner made `p` public at the bytecode level.
 *                The only such members are fields, either synthetic or isParamAccessor, and thus having a dollar sign in their name
 *                (the accessibility of methods and constructors isn't touched by the inliner).
 *
 * Thus we add one more goal to our list:
 *   (c) Compile C (either optimized or not) against any of L or L',
 *       so that it runs with either L or L' (in particular, compile against L' and run with L).
 *
 * The chosen strategy is described in some detail in the comments for `accessRequirements()` and `potentiallyPublicized()`.
 * Documentation at http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/Inliner.pdf
 *
 *  @author Iulian Dragos
 */
abstract class Inliners extends SubComponent {
  import global._
  import icodes._
  import icodes.opcodes._
  import definitions.{
    NullClass, NothingClass, ObjectClass,
    PredefModule, RuntimePackage, ScalaInlineClass, ScalaNoInlineClass,
    isFunctionType, isByNameParamType
  }

  val phaseName = "inliner"

  override val enabled: Boolean = settings.inline

  /** Debug - for timing the inliner. */
  /****
  private def timed[T](s: String, body: => T): T = {
    val t1 = System.currentTimeMillis()
    val res = body
    val t2 = System.currentTimeMillis()
    val ms = (t2 - t1).toInt
    if (ms >= MAX_INLINE_MILLIS)
      println("%s: %d milliseconds".format(s, ms))

    res
  }
  ****/

  /** Look up implementation of method 'sym in 'clazz'.
   */
  def lookupImplFor(sym: Symbol, clazz: Symbol): Symbol = {
    // TODO: verify that clazz.superClass is equivalent here to clazz.tpe.parents(0).typeSymbol (.tpe vs .info)
    def needsLookup = (
         (clazz != NoSymbol)
      && (clazz != sym.owner)
      && !sym.isEffectivelyFinalOrNotOverridden
      && clazz.isEffectivelyFinalOrNotOverridden
    )
    def lookup(clazz: Symbol): Symbol = {
      // println("\t\tlooking up " + meth + " in " + clazz.fullName + " meth.owner = " + meth.owner)
      assert(clazz != NoSymbol, "Walked up past Object.superClass looking for " + sym +
                                ", most likely this reveals the TFA at fault (receiver and callee don't match).")
      if (sym.owner == clazz || isBottomType(clazz)) sym
      else sym.overridingSymbol(clazz) orElse (
        if (sym.owner.isTrait) sym
        else lookup(clazz.superClass)
      )
    }
    if (needsLookup) {
      val concreteMethod = lookup(clazz)
      debuglog("\tlooked up method: " + concreteMethod.fullName)

      concreteMethod
    }
    else sym
  }

  /* A warning threshold */
  private final val MAX_INLINE_MILLIS = 2000

  /** The maximum size in basic blocks of methods considered for inlining. */
  final val MAX_INLINE_SIZE = 16

  /** Maximum loop iterations. */
  final val MAX_INLINE_RETRY = 15

  /** Small method size (in blocks) */
  val SMALL_METHOD_SIZE = 1

  /** Create a new phase */
  override def newPhase(p: Phase) = new InliningPhase(p)

  /** The Inlining phase.
   */
  class InliningPhase(prev: Phase) extends ICodePhase(prev) {
    def name = phaseName
    val inliner = new Inliner

    object iclassOrdering extends Ordering[IClass] {
      def compare(a: IClass, b: IClass) = {
        val sourceNamesComparison = (a.cunit.toString() compare b.cunit.toString())
        if(sourceNamesComparison != 0) sourceNamesComparison
        else {
          val namesComparison = (a.toString() compare b.toString())
          if(namesComparison != 0) namesComparison
          else {
            a.symbol.id compare b.symbol.id
          }
        }
      }
    }
    val queue = new mutable.PriorityQueue[IClass]()(iclassOrdering)

    override def apply(c: IClass) { queue += c }

    override def run() {
      knownLacksInline.clear()
      knownHasInline.clear()
      try {
        super.run()
        for(c <- queue) { inliner analyzeClass c }
      } finally {
        inliner.clearCaches()
        knownLacksInline.clear()
        knownHasInline.clear()
      }
    }
  }

  def isBottomType(sym: Symbol) = sym == NullClass || sym == NothingClass

  /** Is the given class a closure? */
  def isClosureClass(cls: Symbol): Boolean =
    cls.isFinal && cls.isSynthetic && !cls.isModuleClass && cls.isAnonymousFunction

  /*
      TODO now that Inliner runs faster we could consider additional "monadic methods" (in the limit, all those taking a closure as last arg)
      Any "monadic method" occurring in a given caller C that is not `isMonadicMethod()` will prevent CloseElim from eliminating
      any anonymous-closure-class any whose instances are given as argument to C invocations.
   */
  def isMonadicMethod(sym: Symbol) = {
    nme.unspecializedName(sym.name) match {
      case nme.foreach | nme.filter | nme.withFilter | nme.map | nme.flatMap => true
      case _                                                                 => false
    }
  }

  val knownLacksInline = mutable.Set.empty[Symbol] // cache to avoid multiple inliner.hasInline() calls.
  val knownHasInline   = mutable.Set.empty[Symbol] // as above. Motivated by the need to warn on "inliner failures".

  def hasInline(sym: Symbol)    = {
    if     (knownLacksInline(sym)) false
    else if(knownHasInline(sym))   true
    else {
      val b = (sym hasAnnotation ScalaInlineClass)
      if(b) { knownHasInline   += sym }
      else  { knownLacksInline += sym }

      b
    }
  }

  def hasNoInline(sym: Symbol)  = sym hasAnnotation ScalaNoInlineClass

  /**
   * Simple inliner.
   */
  class Inliner {
    object NonPublicRefs extends Enumeration {
      val Private, Protected, Public = Value

      /** Cache whether a method calls private members. */
      val usesNonPublics = mutable.Map.empty[IMethod, Value]
    }
    import NonPublicRefs._

    /** The current iclass */
    private var currentIClazz: IClass = _
    private def warn(pos: Position, msg: String) = currentRun.reporting.inlinerWarning(pos, msg)

    private def ownedName(sym: Symbol): String = exitingUncurry {
      val count = (
        if (!sym.isMethod) 1
        else if (sym.owner.isAnonymousFunction) 3
        else 2
      )
      (sym.ownerChain take count filterNot (_.isPackageClass)).reverseMap(_.nameString).mkString(".")
    }
    private def inlineLog(what: String, main: => String, comment: => String) {
      def cstr = comment match {
        case ""   => ""
        case str  => " // " + str
      }
      val width = if (currentIClazz eq null) 40 else currentIClazz.symbol.enclosingPackage.fullName.length + 25
      val fmt = "%8s  %-" + width + "s" + cstr
      log(fmt.format(what, main))
    }
    private def inlineLog(what: String, main: Symbol, comment: => String) {
      inlineLog(what, ownedName(main), comment)
    }

    val recentTFAs = mutable.Map.empty[Symbol, Tuple2[Boolean, analysis.MethodTFA]]

    private def getRecentTFA(incm: IMethod, forceable: Boolean): (Boolean, analysis.MethodTFA) = {

        def containsRETURN(blocks: List[BasicBlock]) = blocks exists { bb => bb.lastInstruction.isInstanceOf[RETURN] }

      val opt = recentTFAs.get(incm.symbol)
      if(opt.isDefined) {
        // FYI val cachedBBs = opt.get._2.in.keySet
        // FYI assert(incm.blocks.toSet == cachedBBs)
        // incm.code.touched plays no role here
        return opt.get
      }

      val hasRETURN = containsRETURN(incm.code.blocksList) || (incm.exh exists { eh => containsRETURN(eh.blocks) })
      var a: analysis.MethodTFA = null
      if(hasRETURN) { a = new analysis.MethodTFA(incm); a.run() }

      if(forceable) { recentTFAs.put(incm.symbol, (hasRETURN, a)) }

      (hasRETURN, a)
    }

    def clearCaches() {
      // methods
      NonPublicRefs.usesNonPublics.clear()
      recentTFAs.clear()
      tfa.knownUnsafe.clear()
      tfa.knownSafe.clear()
      tfa.knownNever.clear()
      // basic blocks
      tfa.preCandidates.clear()
      tfa.relevantBBs.clear()
      // callsites
      tfa.remainingCALLs.clear()
      tfa.isOnWatchlist.clear()
    }

    object imethodOrdering extends Ordering[IMethod] {
      def compare(a: IMethod, b: IMethod) = {
        val namesComparison = (a.toString() compare b.toString())
        if(namesComparison != 0) namesComparison
        else {
          a.symbol.id compare b.symbol.id
        }
      }
    }

    def analyzeClass(cls: IClass): Unit =
      if (settings.inline) {
        inlineLog("class", s"${cls.symbol.decodedName}", s"analyzing ${cls.methods.size} methods in $cls")

        this.currentIClazz = cls
        val ms = cls.methods sorted imethodOrdering
        ms foreach { im =>
          if (hasInline(im.symbol)) {
            inlineLog("skip", im.symbol, "no inlining into @inline methods")
          }
          else if(im.hasCode && !im.symbol.isBridge) {
            analyzeMethod(im)
          }
        }
      }

    val tfa   = new analysis.MTFAGrowable()
    tfa.stat  = global.settings.YstatisticsEnabled
    val staleOut      = new mutable.ListBuffer[BasicBlock]
    val splicedBlocks = mutable.Set.empty[BasicBlock]
    val staleIn       = mutable.Set.empty[BasicBlock]

    /**
     * A transformation local to the body of the IMethod received as argument.
     * An inlining decision consists in replacing a callsite with the body of the callee.
     * Please notice that, because `analyzeMethod()` itself may modify a method body,
     * the particular callee bodies that end up being inlined depend on the particular order in which methods are visited
     * (no topological sorting over the call-graph is attempted).
     *
     * Making an inlining decision requires type-flow information for both caller and callee.
     * Regarding the caller, such information is needed only for basic blocks containing inlining candidates
     * (and their transitive predecessors). This observation leads to using a custom type-flow analysis (MTFAGrowable)
     * that can be re-inited, i.e. that reuses lattice elements (type-flow information computed in a previous iteration)
     * as starting point for faster convergence in a new iteration.
     *
     * The mechanics of inlining are iterative for a given invocation of `analyzeMethod(m)`,
     * and are affected by inlinings from previous iterations
     * (ie, "heuristic" rules are based on statistics tracked for that purpose):
     *
     *   (1) before the iterations proper start, so-called preinlining is performed.
     *       Those callsites whose (receiver, concreteMethod) are both known statically
     *       can be analyzed for inlining before computing a type-flow. Details in `preInline()`
     *
     *   (2) the first iteration computes type-flow information for basic blocks containing inlining candidates
     *       (and their transitive predecessors), so called `relevantBBs` basic blocks.
     *       The ensuing analysis of each candidate (performed by `analyzeInc()`)
     *       may result in a CFG isomorphic to that of the callee being inserted in place of the callsite
     *       (i.e. a CALL_METHOD instruction is replaced with a single-entry single-exit CFG,
     *        a substitution we call "successful inlining").
     *
     *   (3) following iterations have `relevantBBs` updated to focus on the inlined basic blocks and their successors only.
     *       Details in `MTFAGrowable.reinit()`
     * */
    def analyzeMethod(m: IMethod): Unit = {
      // m.normalize
      if (settings.debug)
        inlineLog("caller", ownedName(m.symbol), "in " + m.symbol.owner.fullName)

      val sizeBeforeInlining  = m.code.blockCount
      val instrBeforeInlining = m.code.instructionCount
      var retry = false
      var count = 0

      // fresh name counter
      val fresh = mutable.HashMap.empty[String, Int] withDefaultValue 0
      // how many times have we already inlined this method here?
      val inlinedMethodCount = mutable.HashMap.empty[Symbol, Int] withDefaultValue 0
      val caller = new IMethodInfo(m)
      def analyzeMessage = s"Analyzing ${caller.length} blocks of $m for inlining sites."

      def preInline(isFirstRound: Boolean): Int = {
        val inputBlocks = caller.m.linearizedBlocks()
        val callsites: Function1[BasicBlock, List[opcodes.CALL_METHOD]] = {
          if(isFirstRound) tfa.conclusives else tfa.knownBeforehand
        }
        inlineWithoutTFA(inputBlocks, callsites)
      }

      /*
       *  Inline straightforward callsites (those that can be inlined without a TFA).
       *
       *  To perform inlining, all we need to know is listed as formal params in `analyzeInc()`:
       *    - callsite and block containing it
       *    - actual (ie runtime) class of the receiver
       *    - actual (ie runtime) method being invoked
       *    - stack length just before the callsite (to check whether enough arguments have been pushed).
       *  The assert below lists the conditions under which "no TFA is needed"
       *  (the statically known receiver and method are both final, thus, at runtime they can't be any others than those).
       *
       */
      def inlineWithoutTFA(inputBlocks: Traversable[BasicBlock], callsites: Function1[BasicBlock, List[opcodes.CALL_METHOD]]): Int = {
        var inlineCount = 0
        import scala.util.control.Breaks._
        for(x <- inputBlocks; easyCake = callsites(x); if easyCake.nonEmpty) {
          breakable {
            for(ocm <- easyCake) {
              assert(ocm.method.isEffectivelyFinalOrNotOverridden && ocm.method.owner.isEffectivelyFinalOrNotOverridden)
              if(analyzeInc(ocm, x, ocm.method.owner, -1, ocm.method)) {
                inlineCount += 1
                break()
              }
            }
          }
        }

        inlineCount
      }

      /*
       *  Decides whether it's feasible and desirable to inline the body of the method given by `concreteMethod`
       *  at the program point given by `i` (a callsite). The boolean result indicates whether inlining was performed.
       *
       */
      def analyzeInc(i: CALL_METHOD, bb: BasicBlock, receiver: Symbol, stackLength: Int, concreteMethod: Symbol): Boolean = {
        assert(bb.toList contains i, "Candidate callsite does not belong to BasicBlock.")
        val shouldWarn = hasInline(i.method)

        def warnNoInline(reason: String): Boolean = {
          def msg = "Could not inline required method %s because %s.".format(i.method.unexpandedName.decode, reason)
          if (settings.debug)
            inlineLog("fail", i.method.fullName, reason)
          if (shouldWarn)
            warn(i.pos, msg)

          false
        }

        var isAvailable = icodes available concreteMethod.enclClass

        if (!isAvailable && shouldLoadImplFor(concreteMethod, receiver)) {
          // Until r22824 this line was:
          //   icodes.icode(concreteMethod.enclClass, true)
          //
          // Changing it to
          //   icodes.load(concreteMethod.enclClass)
          // was the proximate cause for SI-3882:
          //   error: Illegal index: 0 overlaps List((variable par1,LONG))
          //   error: Illegal index: 0 overlaps List((variable par1,LONG))
          isAvailable = icodes.load(concreteMethod.enclClass)
        }

        def isCandidate = (
             isClosureClass(receiver)
          || concreteMethod.isEffectivelyFinalOrNotOverridden
          || receiver.isEffectivelyFinalOrNotOverridden
        )

        def isApply     = concreteMethod.name == nme.apply

        def isCountable = !(
             isClosureClass(receiver)
          || isApply
          || isMonadicMethod(concreteMethod)
          || receiver.enclosingPackage == definitions.RuntimePackage
        )   // only count non-closures

        debuglog("Treating " + i
              + "\n\treceiver: " + receiver
              + "\n\ticodes.available: " + isAvailable
              + "\n\tconcreteMethod.isEffectivelyFinalOrNotOverridden: " + concreteMethod.isEffectivelyFinalOrNotOverridden)

        if (!isCandidate) warnNoInline("it can be overridden")
        else if (!isAvailable) warnNoInline("bytecode unavailable")
        else lookupIMethod(concreteMethod, receiver) filter (callee => callee.hasCode || warnNoInline("callee has no code")) exists { callee =>
          val inc   = new IMethodInfo(callee)
          val pair  = new CallerCalleeInfo(caller, inc, fresh, inlinedMethodCount)

          if (inc.hasHandlers && (stackLength == -1)) {
            // no inlining is done, yet don't warn about it, stackLength == -1 indicates we're trying to inlineWithoutTFA.
            // Shortly, a TFA will be computed and an error message reported if indeed inlining not possible.
            false
          }
          else {
            val isSafe = pair isStampedForInlining stackLength match {
              case DontInlineHere(msg)                       => warnNoInline(msg)
              case NeverSafeToInline                         => false
              case InlineableAtThisCaller                    => true
              case FeasibleInline(required, toPublicize)     =>
                for (f <- toPublicize) {
                  inlineLog("access", f, "making public")
                  f setFlag Flags.notPRIVATE
                  f setFlag Flags.notPROTECTED
                }
                // only add to `knownSafe` after all `toPublicize` fields actually made public.
                if (required == NonPublicRefs.Public)
                  tfa.knownSafe += inc.sym

                true
            }
            isSafe && {
               retry   = true
               if (isCountable) count += 1
               pair.doInline(bb, i)
               if (!pair.isInlineForced || inc.isMonadic) caller.inlinedCalls += 1
               inlinedMethodCount(inc.sym) += 1

               // Remove the caller from the cache (this inlining might have changed its calls-private relation).
               usesNonPublics -= m
               recentTFAs     -= m.symbol
               true
            }
          }
        }
      }

      /* Pre-inlining consists in invoking the usual inlining subroutine with (receiver class, concrete method) pairs as input
       * where both method and receiver are final, which implies that the receiver computed via TFA will always match `concreteMethod.owner`.
       *
       * As with any invocation of `analyzeInc()` the inlining outcome is based on heuristics which favor inlining an isMonadicMethod before other methods.
       * That's why preInline() is invoked twice: any inlinings downplayed by the heuristics during the first round get an opportunity to rank higher during the second.
       *
       * As a whole, both `preInline()` invocations amount to priming the inlining process,
       * so that the first TFA that is run afterwards is able to gain more information as compared to a cold-start.
       */
      /*val totalPreInlines = */ { // Val name commented out to emphasize it is never used
        val firstRound = preInline(isFirstRound = true)
        if(firstRound == 0) 0 else (firstRound + preInline(isFirstRound = false))
      }
      staleOut.clear()
      splicedBlocks.clear()
      staleIn.clear()

      do {
        retry = false
        debuglog(analyzeMessage)

        /* it's important not to inline in unreachable basic blocks. linearizedBlocks() returns only reachable ones. */
        tfa.callerLin = caller.m.linearizedBlocks()
           /* TODO Do we really want to inline inside exception handlers?
           *  Seems counterproductive (the larger the method the less likely it will be JITed).
            * The alternative would be `linearizer.linearizeAt(caller.m, caller.m.startBlock)`.
            * And, we would cut down on TFA iterations, too.
            * See also comment on the same topic in TypeFlowAnalysis. */

        tfa.reinit(m, staleOut.toList, splicedBlocks, staleIn)
        tfa.run

        staleOut.clear()
        splicedBlocks.clear()
        staleIn.clear()

        import scala.util.control.Breaks._
        for(bb <- tfa.callerLin; if tfa.preCandidates(bb)) {
          val cms = bb.toList collect { case cm : CALL_METHOD => cm }
          breakable {
            for (cm <- cms; if tfa.remainingCALLs.isDefinedAt(cm)) {
              val analysis.CallsiteInfo(_, receiver, stackLength, concreteMethod) = tfa.remainingCALLs(cm)
              if (analyzeInc(cm, bb, receiver, stackLength, concreteMethod)) {
                break()
              }
            }
          }
        }

        /* As part of inlining, some instructions are moved to a new block.
         *     In detail: the instructions moved to a new block originally appeared after a (by now inlined) callsite.
         *     Their new home is an `afterBlock` created by `doInline()` to that effect.
         *     Each block in staleIn is one such `afterBlock`.
         *
         * Some of those instructions may be CALL_METHOD possibly tracked in `remainingCALLs`
         * (with an entry still noting the old containing block). However, that causes no problem:
         *
         *   (1) such callsites won't be analyzed for inlining by `analyzeInc()` (*in this iteration*)
         *       because of the `break` that abandons the original basic block where it was contained.
         *
         *   (2) Additionally, its new containing block won't be visited either (*in this iteration*)
         *       because the new blocks don't show up in the linearization computed before inlinings started:
         *       `for(bb <- tfa.callerLin; if tfa.preCandidates(bb)) {`
         *
         * For a next iteration, the new home of any instructions that have moved
         * will be tracked properly in `remainingCALLs` after `MTFAGrowable.reinit()` puts on radar their new homes.
         *
         */
        if(retry) {
          for(afterBlock <- staleIn) {
            val justCALLsAfter = afterBlock.toList collect { case c : opcodes.CALL_METHOD => c }
            for(ia <- justCALLsAfter) { tfa.remainingCALLs.remove(ia) }
          }
        }

        /*
        if(splicedBlocks.nonEmpty) { // TODO explore (saves time but leads to slightly different inlining decisions)
          // opportunistically perform straightforward inlinings before the next typeflow round
          val savedRetry = retry
          val savedStaleOut = staleOut.toSet; staleOut.clear()
          val savedStaleIn  = staleIn.toSet ; staleIn.clear()
          val howmany = inlineWithoutTFA(splicedBlocks, tfa.knownBeforehand)
          splicedBlocks ++= staleIn
          staleOut.clear(); staleOut ++= savedStaleOut;
          staleIn.clear();  staleIn  ++= savedStaleIn;
          retry = savedRetry
        }
        */

        if (tfa.stat)
          log(m.symbol.fullName + " iterations: " + tfa.iterations + " (size: " + caller.length + ")")
      }
      while (retry && count < MAX_INLINE_RETRY)

      for(inlFail <- tfa.warnIfInlineFails) {
        warn(inlFail.pos, "At the end of the day, could not inline @inline-marked method " + inlFail.method.unexpandedName.decode)
      }

      m.normalize()
      if (sizeBeforeInlining > 0) {
        val instrAfterInlining = m.code.instructionCount
        val inlinings = caller.inlinedCalls
        if (inlinings > 0) {
          val s1      = s"instructions $instrBeforeInlining -> $instrAfterInlining"
          val s2      = if (sizeBeforeInlining == m.code.blockCount) "" else s", blocks $sizeBeforeInlining -> ${m.code.blockCount}"
          val callees = inlinedMethodCount.toList map { case (k, v) => k.fullNameString + ( if (v == 1) "" else "/" + v ) }

          inlineLog("inlined", m.symbol.fullName, callees.sorted.mkString(inlinings + " inlined: ", ", ", ""))
          inlineLog("<<tldr>>", m.symbol.fullName, s"${m.symbol.nameString}: $s1$s2")
        }
      }
    }

    private def isHigherOrderMethod(sym: Symbol) = (
         sym.isMethod
      && enteringExplicitOuter(sym.info.paramTypes exists isFunctionType) // was "at erasurePhase.prev"
    )

    /** Should method 'sym' being called in 'receiver' be loaded from disk? */
    def shouldLoadImplFor(sym: Symbol, receiver: Symbol): Boolean = {
      def alwaysLoad    = (receiver.enclosingPackage == RuntimePackage) || (receiver == PredefModule.moduleClass)
      def loadCondition = sym.isEffectivelyFinalOrNotOverridden && isMonadicMethod(sym) && isHigherOrderMethod(sym)

      val res = hasInline(sym) || alwaysLoad || loadCondition
      debuglog("shouldLoadImplFor: " + receiver + "." + sym + ": " + res)
      res
    }

    class IMethodInfo(val m: IMethod) {
      override def toString = m.toString

      val sym           = m.symbol
      def owner         = sym.owner
      def paramTypes    = sym.info.paramTypes
      def minimumStack  = paramTypes.length + 1

      def isBridge      = sym.isBridge
      val isInClosure   = isClosureClass(owner)
      val isHigherOrder = isHigherOrderMethod(sym)
      def isMonadic     = isMonadicMethod(sym)

      def handlers      = m.exh
      def blocks        = m.blocks
      def locals        = m.locals
      def length        = blocks.length
      def openBlocks    = blocks filterNot (_.closed)
      def instructions  = m.code.instructions

      def isSmall         = (length <= SMALL_METHOD_SIZE) && blocks(0).length < 10
      def isLarge         = length > MAX_INLINE_SIZE
      def isRecursive     = m.recursive
      def hasHandlers     = handlers.nonEmpty || m.bytecodeHasEHs

      def isSynchronized         = sym.hasFlag(Flags.SYNCHRONIZED)
      def hasNonFinalizerHandler = handlers exists {
        case _: Finalizer => true
        case _            => false
      }

      // the number of inlined calls in 'm', used by 'isScoreOK'
      var inlinedCalls = 0

      def addLocals(ls: List[Local])  = m.locals ++= ls
      def addLocal(l: Local)          = addLocals(List(l))
      def addHandlers(exhs: List[ExceptionHandler]) = m.exh = exhs ::: m.exh

      /**
       * This method inspects the callee's instructions, finding out the most restrictive accessibility implied by them.
       *
       * Rather than giving up upon encountering an access to a private field `p`, it provisorily admits `p` as "can-be-made-public", provided:
       *   - `p` is being compiled as part of this compilation run, and
       *   - `p` is synthetic or param-accessor.
       *
       * This method is side-effect free, in particular it lets the invoker decide
       * whether the accessibility of the `toBecomePublic` fields should be changed or not.
       */
      def accessRequirements: AccessReq = {

        var toBecomePublic: List[Symbol] = Nil

        def check(sym: Symbol, cond: Boolean) =
          if (cond) Private
          else if (sym.isProtected) Protected
          else Public

        def canMakePublic(f: Symbol): Boolean =
          (m.sourceFile ne NoSourceFile) &&
          (f.isSynthetic || f.isParamAccessor) &&
          { toBecomePublic = f :: toBecomePublic; true }

        /* A safety check to consider as private, for the purposes of inlining, a public field that:
         *   (1) is defined in an external library, and
         *   (2) can be presumed synthetic (due to a dollar sign in its name).
         * Such field was made public by `doMakePublic()` and we don't want to rely on that,
         * because under other compilation conditions (ie no -optimize) that won't be the case anymore.
         *
         * This allows aggressive intra-library inlining (making public if needed)
         * that does not break inter-library scenarios (see comment for `Inliners`).
         *
         * TODO handle more robustly the case of a trait var changed at the source-level from public to private[this]
         *      (eg by having ICodeReader use unpickler, see SI-5442).

         DISABLED

        def potentiallyPublicized(f: Symbol): Boolean = {
          (m.sourceFile eq NoSourceFile) && f.name.containsChar('$')
        }
        */


        def isPrivateForInlining(sym: Symbol): Boolean = {
          if (sym.isJavaDefined) {
            def check(sym: Symbol) = !(sym.isPublic || sym.isProtected)
            check(sym) || check(sym.owner) // SI-7582 Must check the enclosing class *and* the symbol for Java.
          }
          else sym.isPrivate // Scala never emits package-private bytecode
        }

        def checkField(f: Symbol)   = check(f, isPrivateForInlining(f) && !canMakePublic(f))
        def checkSuper(n: Symbol)   = check(n, isPrivateForInlining(n) || !n.isClassConstructor)
        def checkMethod(n: Symbol)  = check(n, isPrivateForInlining(n))

        def getAccess(i: Instruction) = i match {
          case CALL_METHOD(n, SuperCall(_)) => checkSuper(n)
          case CALL_METHOD(n, _)            => checkMethod(n)
          case LOAD_FIELD(f, _)             => checkField(f)
          case STORE_FIELD(f, _)            => checkField(f)
          case _                            => Public
        }

        var seen = Public
        val iter = instructions.iterator
        while((seen ne Private) && iter.hasNext) {
          val i = iter.next()
          getAccess(i) match {
            case Private    =>
              inlineLog("access", s"instruction $i requires private access", "pos=" + i.pos)
              toBecomePublic = Nil
              seen = Private
            case Protected  => seen = Protected
            case _          => ()
          }
        }

        AccessReq(seen, toBecomePublic)
      }

    }

    /**
     * Classifies a pair (caller, callee) into one of four categories:
     *
     *   (a) inlining should be performed, classified in turn into:
     *       (a.1) `InlineableAtThisCaller`: unconditionally at this caller
     *       (a.2) `FeasibleInline`: it only remains for certain access requirements to be met (see `IMethodInfo.accessRequirements()`)
     *
     *   (b) inlining shouldn't be performed, classified in turn into:
     *       (b.1) `DontInlineHere`: indicates that this particular occurrence of the callee at the caller shouldn't be inlined.
     *                - Nothing is said about the outcome for other callers, or for other occurrences of the callee for the same caller.
     *                - In particular inlining might be possible, but heuristics gave a low score for it.
     *       (b.2) `NeverSafeToInline`: the callee can't be inlined anywhere, irrespective of caller.
     *
     * The classification above is computed by `isStampedForInlining()` based on which `analyzeInc()` goes on to:
     *   - either log the reason for failure --- case (b) ---,
     *   - or perform inlining --- case (a) ---.
     */
    sealed abstract class InlineSafetyInfo
    case object NeverSafeToInline           extends InlineSafetyInfo
    case object InlineableAtThisCaller      extends InlineSafetyInfo
    case class  DontInlineHere(msg: String) extends InlineSafetyInfo
    case class  FeasibleInline(accessNeeded: NonPublicRefs.Value, toBecomePublic: List[Symbol]) extends InlineSafetyInfo

    case class AccessReq(
      accessNeeded:   NonPublicRefs.Value,
      toBecomePublic: List[Symbol]
    )

    final class CallerCalleeInfo(val caller: IMethodInfo, val inc: IMethodInfo, fresh: mutable.Map[String, Int], inlinedMethodCount: scala.collection.Map[Symbol, Int]) {

      assert(!caller.isBridge && inc.m.hasCode,
             "A guard in Inliner.analyzeClass() should have prevented from getting here.")

      def isLargeSum  = caller.length + inc.length - 1 > SMALL_METHOD_SIZE

      private def freshName(s: String): TermName = {
        fresh(s) += 1
        newTermName(s + fresh(s))
      }

      private def isKnownToInlineSafely: Boolean = { tfa.knownSafe(inc.sym) }

      val isInlineForced    = hasInline(inc.sym)
      val isInlineForbidden = hasNoInline(inc.sym)
      assert(!(isInlineForced && isInlineForbidden), "method ("+inc.m+") marked both @inline and @noinline.")

      /** Inline 'inc' into 'caller' at the given block and instruction.
       *  The instruction must be a CALL_METHOD.
       */
      def doInline(block: BasicBlock, instr: CALL_METHOD) {

        staleOut += block

        tfa.remainingCALLs.remove(instr) // this bookkeeping is done here and not in MTFAGrowable.reinit due to (1st) convenience and (2nd) necessity.
        tfa.isOnWatchlist.remove(instr)  // ditto
        tfa.warnIfInlineFails.remove(instr)

        val targetPos = instr.pos

        def blockEmit(i: Instruction) = block.emit(i, targetPos)
        def newLocal(baseName: String, kind: TypeKind) =
          new Local(caller.sym.newVariable(freshName(baseName), targetPos) setInfo kind.toType, kind, false)

        val (hasRETURN, a) = getRecentTFA(inc.m, isInlineForced)

        /* The exception handlers that are active at the current block. */
        val activeHandlers = caller.handlers filter (_ covered block)

        /* Map 'original' blocks to the ones inlined in the caller. */
        val inlinedBlock = mutable.Map[BasicBlock, BasicBlock]()

        val varsInScope = mutable.HashSet[Local]() ++= block.varsInScope

        /* Side effects varsInScope when it sees SCOPE_ENTERs. */
        def instrBeforeFilter(i: Instruction): Boolean = {
          i match { case SCOPE_ENTER(l) => varsInScope += l ; case _ => () }
          i ne instr
        }
        val instrBefore = block.toList takeWhile instrBeforeFilter
        val instrAfter  = block.toList drop (instrBefore.length + 1)

        assert(!instrAfter.isEmpty, "CALL_METHOD cannot be the last instruction in block!")

        // store the '$this' into the special local
        val inlinedThis = newLocal("$inlThis", REFERENCE(ObjectClass))

        /* buffer for the returned value */
        val retVal = inc.m.returnType match {
          case UNIT  => null
          case x     => newLocal("$retVal", x)
        }

        val inlinedLocals = mutable.HashMap.empty[Local, Local]

        /* Add a new block in the current context. */
        def newBlock() = {
          val b = caller.m.code.newBlock()
          activeHandlers foreach (_ addCoveredBlock b)
          if (retVal ne null) b.varsInScope += retVal
          b.varsInScope += inlinedThis
          b.varsInScope ++= varsInScope
          b
        }

        def translateExh(e: ExceptionHandler) = {
          val handler: ExceptionHandler = e.dup
          handler.covered = handler.covered map inlinedBlock
          handler setStartBlock inlinedBlock(e.startBlock)
          handler
        }

        /* alfa-rename `l` in caller's context. */
        def dupLocal(l: Local): Local = {
          val sym = caller.sym.newVariable(freshName(l.sym.name.toString), l.sym.pos)
          // sym.setInfo(l.sym.tpe)
          val dupped = new Local(sym, l.kind, false)
          inlinedLocals(l) = dupped
          dupped
        }

        val afterBlock = newBlock()

        /* Map from nw.init instructions to their matching NEW call */
        val pending: mutable.Map[Instruction, NEW] = new mutable.HashMap

        /* Map an instruction from the callee to one suitable for the caller. */
        def map(i: Instruction): Instruction = {
          def assertLocal(l: Local) = {
            assert(caller.locals contains l, "Could not find local '" + l + "' in locals, nor in inlinedLocals: " + inlinedLocals)
            i
          }
          def isInlined(l: Local) = inlinedLocals isDefinedAt l

          val newInstr = i match {
            case THIS(clasz)                    => LOAD_LOCAL(inlinedThis)
            case STORE_THIS(_)                  => STORE_LOCAL(inlinedThis)
            case JUMP(whereto)                  => JUMP(inlinedBlock(whereto))
            case CJUMP(succ, fail, cond, kind)  => CJUMP(inlinedBlock(succ), inlinedBlock(fail), cond, kind)
            case CZJUMP(succ, fail, cond, kind) => CZJUMP(inlinedBlock(succ), inlinedBlock(fail), cond, kind)
            case SWITCH(tags, labels)           => SWITCH(tags, labels map inlinedBlock)
            case RETURN(_)                      => JUMP(afterBlock)
            case LOAD_LOCAL(l) if isInlined(l)  => LOAD_LOCAL(inlinedLocals(l))
            case STORE_LOCAL(l) if isInlined(l) => STORE_LOCAL(inlinedLocals(l))
            case LOAD_LOCAL(l)                  => assertLocal(l)
            case STORE_LOCAL(l)                 => assertLocal(l)
            case SCOPE_ENTER(l) if isInlined(l) => SCOPE_ENTER(inlinedLocals(l))
            case SCOPE_EXIT(l) if isInlined(l)  => SCOPE_EXIT(inlinedLocals(l))

            case nw @ NEW(sym) =>
              val r = NEW(sym)
              pending(nw.init) = r
              r

            case CALL_METHOD(meth, Static(true)) if meth.isClassConstructor =>
              CALL_METHOD(meth, Static(onInstance = true))

            case _ => i.clone()
          }
          // check any pending NEW's
          pending remove i foreach (_.init = newInstr.asInstanceOf[CALL_METHOD])
          newInstr
        }

        caller addLocals (inc.locals map dupLocal)
        caller addLocal inlinedThis

        if (retVal ne null)
          caller addLocal retVal

        inc.m foreachBlock { b =>
          inlinedBlock += (b -> newBlock())
          inlinedBlock(b).varsInScope ++= (b.varsInScope map inlinedLocals)
        }

        // re-emit the instructions before the call
        block.open()
        block.clear()
        block emit instrBefore

        // store the arguments into special locals
        inc.m.params.reverse foreach (p => blockEmit(STORE_LOCAL(inlinedLocals(p))))
        blockEmit(STORE_LOCAL(inlinedThis))

        // jump to the start block of the callee
        blockEmit(JUMP(inlinedBlock(inc.m.startBlock)))
        block.close()

        // duplicate the other blocks in the callee
        val calleeLin = inc.m.linearizedBlocks()
        calleeLin foreach { bb =>
          var info = if(hasRETURN) (a in bb) else null
          def emitInlined(i: Instruction) = inlinedBlock(bb).emit(i, targetPos)
          def emitDrops(toDrop: Int)      = info.stack.types drop toDrop foreach (t => emitInlined(DROP(t)))

          for (i <- bb) {
            i match {
              case RETURN(UNIT) => emitDrops(0)
              case RETURN(kind) =>
                if (info.stack.length > 1) {
                  emitInlined(STORE_LOCAL(retVal))
                  emitDrops(1)
                  emitInlined(LOAD_LOCAL(retVal))
                }
              case _            => ()
            }
            emitInlined(map(i))
            info = if(hasRETURN) a.interpret(info, i) else null
          }
          inlinedBlock(bb).close()
        }

        afterBlock emit instrAfter
        afterBlock.close()

        staleIn        += afterBlock
        splicedBlocks ++= (calleeLin map inlinedBlock)

        // add exception handlers of the callee
        caller addHandlers (inc.handlers map translateExh)
        assert(pending.isEmpty, "Pending NEW elements: " + pending)
        if (settings.debug) icodes.checkValid(caller.m)
      }

      def isStampedForInlining(stackLength: Int): InlineSafetyInfo = {

        if(tfa.blackballed(inc.sym)) { return NeverSafeToInline }

        if(!isKnownToInlineSafely) {

          if(inc.openBlocks.nonEmpty) {
            val msg = ("Encountered " + inc.openBlocks.size + " open block(s) in isSafeToInline: this indicates a bug in the optimizer!\n" +
                       "  caller = " + caller.m + ", callee = " + inc.m)
            warn(inc.sym.pos, msg)
            tfa.knownNever += inc.sym
            return DontInlineHere("Open blocks in " + inc.m)
          }

          val reasonWhyNever: String = {
            var rs: List[String] = Nil
            if(inc.isRecursive)    { rs ::= "is recursive"           }
            if(isInlineForbidden)  { rs ::= "is annotated @noinline" }
            if(inc.isSynchronized) { rs ::= "is synchronized method" }
            if(inc.m.bytecodeHasEHs) { rs ::= "bytecode contains exception handlers / finally clause" } // SI-6188
            if(inc.m.bytecodeHasInvokeDynamic) { rs ::= "bytecode contains invoke dynamic" }
            if(rs.isEmpty) null else rs.mkString("", ", and ", "")
          }

          if(reasonWhyNever != null) {
            tfa.knownNever += inc.sym
            inlineLog("never", inc.sym, reasonWhyNever)
            // next time around NeverSafeToInline is returned, thus skipping (duplicate) msg, this is intended.
            return DontInlineHere(inc.m + " " + reasonWhyNever)
          }

          if(sameSymbols) { // TODO but this also amounts to recursive, ie should lead to adding to tfa.knownNever, right?
            tfa.knownUnsafe += inc.sym
            return DontInlineHere("sameSymbols (ie caller == callee)")
          }

        }

        /*
         * From here on, two main categories of checks remain, (a) and (b) below:
         *   (a.1) either the scoring heuristics give green light; or
         *   (a.2) forced as candidate due to @inline.
         * After that, safety proper is checked:
         *   (b.1) the callee does not contain calls to private methods when called from another class
         *   (b.2) the callee is not going to be inlined into a position with non-empty stack,
         *         while having a top-level finalizer (see liftedTry problem)
         * As a result of (b), some synthetic private members can be chosen to become public.
         */

        val score    = inlinerScore
        val scoreStr = if (score > 0) "+" + score else "" + score
        val what     = if (score > 0) "ok to" else "don't"
        inlineLog(scoreStr, inc.m.symbol, s"$what inline into ${ownedName(caller.m.symbol)}")

        if (!isInlineForced && score <= 0) {
          // During inlining retry, a previous caller-callee pair that scored low may pass.
          // Thus, adding the callee to tfa.knownUnsafe isn't warranted.
          return DontInlineHere(s"inliner heuristic")
        }

        if(inc.hasHandlers && (stackLength > inc.minimumStack)) {
          return DontInlineHere("callee contains exception handlers / finally clause, and is invoked with non-empty operand stack") // SI-6157
        }

        if(isKnownToInlineSafely) { return InlineableAtThisCaller }

        if(stackLength > inc.minimumStack && inc.hasNonFinalizerHandler) {
          val msg = "method " + inc.sym + " is used on a non-empty stack with finalizer."
          debuglog(msg)
          // FYI: not reason enough to add inc.sym to tfa.knownUnsafe (because at other callsite in this caller, inlining might be ok)
          return DontInlineHere(msg)
        }

        val accReq = inc.accessRequirements
        if(!canAccess(accReq.accessNeeded)) {
          tfa.knownUnsafe += inc.sym
          val msg = "access level required by callee not matched by caller"
          inlineLog("fail", inc.sym, msg)
          return DontInlineHere(msg)
        }

        FeasibleInline(accReq.accessNeeded, accReq.toBecomePublic)

      }

      def canAccess(level: NonPublicRefs.Value) = level match {
        case Private    => caller.owner == inc.owner
        case Protected  => caller.owner.tpe <:< inc.owner.tpe
        case Public     => true
      }
      private def sameSymbols = caller.sym == inc.sym

      /** Gives green light for inlining (which may still be vetoed later). Heuristics:
       *   - it's bad to make the caller larger (> SMALL_METHOD_SIZE) if it was small
       *   - it's bad to inline large methods
       *   - it's good to inline higher order functions
       *   - it's good to inline closures functions.
       *   - it's bad (useless) to inline inside bridge methods
       */
      def inlinerScore: Int = {
        var score = 0

        // better not inline inside closures, but hope that the closure itself is repeatedly inlined
        if (caller.isInClosure)           score -= 2
        else if (caller.inlinedCalls < 1) score -= 1 // only monadic methods can trigger the first inline

        if (inc.isSmall) score += 1
        // if (inc.hasClosureParam) score += 2
        if (inc.isLarge) score -= 1
        if (caller.isSmall && isLargeSum) {
          score -= 1
          debuglog(s"inliner score decreased to $score because small caller $caller would become large")
        }

        if (inc.isMonadic)          score += 3
        else if (inc.isHigherOrder) score += 1

        if (inc.isInClosure)                 score += 2
        if (inlinedMethodCount(inc.sym) > 2) score -= 2
        score
      }
    }

    def lookupIMethod(meth: Symbol, receiver: Symbol): Option[IMethod] = {
      def tryParent(sym: Symbol) = icodes icode sym flatMap (_ lookupMethod meth)

      (receiver.info.baseClasses.iterator map tryParent find (_.isDefined)).flatten
    }
  } /* class Inliner */
} /* class Inliners */