summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/transform/Erasure.scala
blob: a06812084e13ae9e318a93e1f656cf666ec7db50 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
/* NSC -- new Scala compiler
 * Copyright 2005-2011 LAMP/EPFL
 * @author Martin Odersky
 */

package scala.tools.nsc
package transform

import scala.tools.nsc.symtab.classfile.ClassfileConstants._
import scala.collection.{ mutable, immutable }
import symtab._
import Flags._

abstract class Erasure extends AddInterfaces
                          with typechecker.Analyzer
                          with TypingTransformers
                          with ast.TreeDSL
{
  import global._
  import definitions._
  import CODE._

  val phaseName: String = "erasure"

  def newTransformer(unit: CompilationUnit): Transformer =
    new ErasureTransformer(unit)

  override def keepsTypeParams = false

// -------- erasure on types --------------------------------------------------------

  /** An extractor object for generic arrays */
  object GenericArray {

    /** Is `tp` an unbounded generic type (i.e. which could be instantiated
     *  with primitive as well as class types)?.
     */
    private def genericCore(tp: Type): Type = tp.normalize match {
      case TypeRef(_, sym, _) if sym.isAbstractType && !sym.owner.isJavaDefined =>
        tp
      case ExistentialType(tparams, restp) =>
        genericCore(restp)
      case _ =>
        NoType
    }

    /** If `tp` is of the form Array[...Array[T]...] where `T` is an abstract type
     *  then Some(N, T) where N is the number of Array constructors enclosing `T`,
     *  otherwise None. Existentials on any level are ignored.
     */
    def unapply(tp: Type): Option[(Int, Type)] = tp.normalize match {
      case TypeRef(_, ArrayClass, List(arg)) =>
        genericCore(arg) match {
          case NoType =>
            unapply(arg) match {
              case Some((level, core)) => Some((level + 1, core))
              case None => None
            }
          case core =>
            Some(1, core)
        }
      case ExistentialType(tparams, restp) =>
        unapply(restp)
      case _ =>
        None
    }
  }

  // A type function from T => Class[U], used to determine the return
  // type of getClass calls.  The returned type is:
  //
  //  1. If T is a value type, Class[T].
  //  2. If T is anonymous or a refinement type, calculate the intersection
  //     dominator of the parents T', and Class[_ <: T'].
  //  3. If T is a phantom type (Any or AnyVal), Class[_].
  //  4. Otherwise, Class[_ <: T].
  //
  // Note: AnyVal cannot be Class[_ <: AnyVal] because if the static type of the
  // receiver is AnyVal, it implies the receiver is boxed, so the correct
  // class object is that of java.lang.Integer, not Int.
  //
  // TODO: If T is final, return type could be Class[T].  Should it?
  def getClassReturnType(tp: Type): Type = {
    def mkClass(targs: List[Type]) = typeRef(ClassClass.tpe.prefix, ClassClass, targs)
    val tparams = ClassClass.typeParams
    val sym     = tp.typeSymbol

    if (tparams.isEmpty) mkClass(Nil)   // call must be coming post-erasure
    else if (isValueClass(sym)) mkClass(List(tp.widen))
    else if (sym.isLocalClass) getClassReturnType(erasure.intersectionDominator(tp.parents))
    else {
      val eparams    = typeParamsToExistentials(ClassClass, tparams)
      val upperBound = if (isPhantomClass(sym)) AnyClass.tpe else tp.widen

      existentialAbstraction(
        eparams,
        mkClass(List(eparams.head setInfo TypeBounds.upper(upperBound) tpe))
      )
    }
  }

  // convert a numeric with a toXXX method
  def numericConversion(tree: Tree, numericSym: Symbol): Tree = {
    val mname      = newTermName("to" + numericSym.name)
    val conversion = tree.tpe member mname

    assert(conversion != NoSymbol, tree + " => " + numericSym)
    atPos(tree.pos)(Apply(Select(tree, conversion), Nil))
  }

  private def unboundedGenericArrayLevel(tp: Type): Int = tp match {
    case GenericArray(level, core) if !(core <:< AnyRefClass.tpe) => level
    case _ => 0
  }

  // @M #2585 when generating a java generic signature that includes a selection of an inner class p.I,  (p = `pre`, I = `cls`)
  // must rewrite to p'.I, where p' refers to the class that directly defines the nested class I
  // see also #2585 marker in javaSig: there, type arguments must be included (use pre.baseType(cls.owner))
  // requires cls.isClass
  @inline private def rebindInnerClass(pre: Type, cls: Symbol): Type =
    if (cls.owner.isClass) cls.owner.tpe else pre // why not cls.isNestedClass?

  /**   The erasure |T| of a type T. This is:
   *
   *   - For a constant type, itself.
   *   - For a type-bounds structure, the erasure of its upper bound.
   *   - For every other singleton type, the erasure of its supertype.
   *   - For a typeref scala.Array+[T] where T is an abstract type, AnyRef.
   *   - For a typeref scala.Array+[T] where T is not an abstract type, scala.Array+[|T|].
   *   - For a typeref scala.Any or scala.AnyVal, java.lang.Object.
   *   - For a typeref scala.Unit, scala.runtime.BoxedUnit.
   *   - For a typeref P.C[Ts] where C refers to a class, |P|.C.
   *     (Where P is first rebound to the class that directly defines C.)
   *   - For a typeref P.C[Ts] where C refers to an alias type, the erasure of C's alias.
   *   - For a typeref P.C[Ts] where C refers to an abstract type, the
   *     erasure of C's upper bound.
   *   - For a non-empty type intersection (possibly with refinement),
   *     the erasure of its first parent.
   *   - For an empty type intersection, java.lang.Object.
   *   - For a method type (Fs)scala.Unit, (|Fs|)scala#Unit.
   *   - For any other method type (Fs)Y, (|Fs|)|T|.
   *   - For a polymorphic type, the erasure of its result type.
   *   - For the class info type of java.lang.Object, the same type without any parents.
   *   - For a class info type of a value class, the same type without any parents.
   *   - For any other class info type with parents Ps, the same type with
   *     parents |Ps|, but with duplicate references of Object removed.
   *   - for all other types, the type itself (with any sub-components erased)
   */
  object erasure extends TypeMap {
    // Compute the dominant part of the intersection type with given `parents` according to new spec.
    def intersectionDominator(parents: List[Type]): Type =
      if (parents.isEmpty) ObjectClass.tpe
      else {
        val psyms = parents map (_.typeSymbol)
        if (psyms contains ArrayClass) {
          // treat arrays specially
          arrayType(
            intersectionDominator(
              parents filter (_.typeSymbol == ArrayClass) map (_.typeArgs.head)))
        } else {
          // implement new spec for erasure of refined types.
          def isUnshadowed(psym: Symbol) =
            !(psyms exists (qsym => (psym ne qsym) && (qsym isNonBottomSubClass psym)))
          val cs = parents.iterator.filter { p => // isUnshadowed is a bit expensive, so try classes first
            val psym = p.typeSymbol
            psym.initialize
            psym.isClass && !psym.isTrait && isUnshadowed(psym)
          }
          (if (cs.hasNext) cs else parents.iterator.filter(p => isUnshadowed(p.typeSymbol))).next()
        }
      }

    def apply(tp: Type): Type = {
      tp match {
        case ConstantType(_) =>
          tp
        case st: SubType =>
          apply(st.supertype)
        case TypeRef(pre, sym, args) =>
          if (sym == ArrayClass)
            if (unboundedGenericArrayLevel(tp) == 1) ObjectClass.tpe
            else if (args.head.typeSymbol == NothingClass || args.head.typeSymbol == NullClass) arrayType(ObjectClass.tpe)
            else typeRef(apply(pre), sym, args map this)
          else if (sym == AnyClass || sym == AnyValClass || sym == SingletonClass || sym == NotNullClass) erasedTypeRef(ObjectClass)
          else if (sym == UnitClass) erasedTypeRef(BoxedUnitClass)
          else if (sym.isRefinementClass) apply(intersectionDominator(tp.parents))
          else if (sym.isClass) typeRef(apply(rebindInnerClass(pre, sym)), sym, List())  // #2585
          else apply(sym.info) // alias type or abstract type
        case PolyType(tparams, restpe) =>
          apply(restpe)
        case ExistentialType(tparams, restpe) =>
          apply(restpe)
        case mt @ MethodType(params, restpe) =>
          MethodType(
            cloneSymbols(params) map (p => p.setInfo(apply(p.tpe))),
            if (restpe.typeSymbol == UnitClass)
              erasedTypeRef(UnitClass)
            else if (settings.YdepMethTpes.value)
              // this replaces each typeref that refers to an argument by the type `p.tpe` of the actual argument p (p in params)
              apply(mt.resultType(params map (_.tpe)))
            else
              apply(restpe))
        case RefinedType(parents, decls) =>
          apply(intersectionDominator(parents))
        case AnnotatedType(_, atp, _) =>
          apply(atp)
        case ClassInfoType(parents, decls, clazz) =>
          ClassInfoType(
            if (clazz == ObjectClass || isValueClass(clazz)) Nil
            else if (clazz == ArrayClass) List(erasedTypeRef(ObjectClass))
            else removeDoubleObject(parents map this),
            decls, clazz)
        case _ =>
          mapOver(tp)
      }
    }
  }

  private object NeedsSigCollector extends TypeCollector(false) {
    def traverse(tp: Type) {
      if (!result) {
        tp match {
          case st: SubType =>
            traverse(st.supertype)
          case TypeRef(pre, sym, args) =>
            if (sym == ArrayClass) args foreach traverse
            else if (sym.isTypeParameterOrSkolem || sym.isExistentiallyBound || !args.isEmpty) result = true
            else if (sym.isClass) traverse(rebindInnerClass(pre, sym)) // #2585
            else if (!sym.owner.isPackageClass) traverse(pre)
          case PolyType(_, _) | ExistentialType(_, _) =>
            result = true
          case RefinedType(parents, decls) =>
            if (!parents.isEmpty) traverse(parents.head)
          case ClassInfoType(parents, _, _) =>
            parents foreach traverse
          case AnnotatedType(_, atp, _) =>
            traverse(atp)
          case _ =>
            mapOver(tp)
        }
      }
    }
  }

  private def needsJavaSig(tp: Type) = !settings.Ynogenericsig.value && NeedsSigCollector.collect(tp)

  // only refer to type params that will actually make it into the sig, this excludes:
  // * higher-order type parameters
  // * type parameters appearing in method parameters
  // * type members not visible in an enclosing template
  private def isTypeParameterInSig(sym: Symbol, initialSymbol: Symbol) = (
    !sym.isHigherOrderTypeParameter &&
    sym.isTypeParameterOrSkolem && (
      (initialSymbol.enclClassChain.exists(sym isNestedIn _)) ||
      traceSig("isMethod", (initialSymbol, initialSymbol.typeParams)) {
        (initialSymbol.isMethod && initialSymbol.typeParams.contains(sym))
      }
    )
  )

  // Ensure every '.' in the generated signature immediately follows
  // a close angle bracket '>'.  Any which do not are replaced with '$'.
  // This arises due to multiply nested classes in the face of the
  // rewriting explained at rebindInnerClass.   This should be done in a
  // more rigorous way up front rather than catching it after the fact,
  // but that will be more involved.
  private def dotCleanup(sig: String): String = {
    var last: Char = '\0'
    sig map {
      case '.' if last != '>' => last = '.' ; '$'
      case ch                 => last = ch ; ch
    }
  }
  // for debugging signatures: traces logic given system property
  private val traceProp = (sys.BooleanProp keyExists "scalac.sigs.trace").value // performance: get the value here
  private val traceSig  = util.Tracer(traceProp)

  /** This object is only used for sanity testing when -check:genjvm is set.
   *  In that case we make sure that the erasure of the `normalized` type
   *  is the same as the erased type that's generated. Normalization means
   *  unboxing some primitive types and further simplifications as they are done in jsig.
   */
  val prepareSigMap = new TypeMap {
    def squashBoxed(tp: Type): Type = tp.normalize match {
      case t @ RefinedType(parents, decls) =>
        val parents1 = parents mapConserve squashBoxed
        if (parents1 eq parents) tp
        else RefinedType(parents1, decls)
      case t @ ExistentialType(tparams, tpe) =>
        val tpe1 = squashBoxed(tpe)
        if (tpe1 eq tpe) t
        else ExistentialType(tparams, tpe1)
      case t =>
        if (boxedClass contains t.typeSymbol) ObjectClass.tpe
        else tp
    }
    def apply(tp: Type): Type = tp.normalize match {
      case tp1 @ TypeBounds(lo, hi) =>
        val lo1 = squashBoxed(apply(lo))
        val hi1 = squashBoxed(apply(hi))
        if ((lo1 eq lo) && (hi1 eq hi)) tp1
        else TypeBounds(lo1, hi1)
      case tp1 @ TypeRef(pre, sym, args) =>
        def argApply(tp: Type) = {
          val tp1 = apply(tp)
          if (tp1.typeSymbol == UnitClass) ObjectClass.tpe
          else squashBoxed(tp1)
        }
        if (sym == ArrayClass && args.nonEmpty)
          if (unboundedGenericArrayLevel(tp1) == 1) ObjectClass.tpe
          else mapOver(tp1)
        else if (sym == AnyClass || sym == AnyValClass || sym == SingletonClass)
          ObjectClass.tpe
        else if (sym == UnitClass)
          BoxedUnitClass.tpe
        else if (sym == NothingClass)
          RuntimeNothingClass.tpe
        else if (sym == NullClass)
          RuntimeNullClass.tpe
        else {
          val pre1 = apply(pre)
          val args1 = args mapConserve argApply
          if ((pre1 eq pre) && (args1 eq args)) tp1
          else TypeRef(pre1, sym, args1)
        }
      case tp1 @ MethodType(params, restpe) =>
        val params1 = mapOver(params)
        val restpe1 = if (restpe.normalize.typeSymbol == UnitClass) UnitClass.tpe else apply(restpe)
        if ((params1 eq params) && (restpe1 eq restpe)) tp1
        else MethodType(params1, restpe1)
      case tp1 @ RefinedType(parents, decls) =>
        val parents1 = parents mapConserve apply
        if (parents1 eq parents) tp1
        else RefinedType(parents1, decls)
      case t @ ExistentialType(tparams, tpe) =>
        val tpe1 = apply(tpe)
        if (tpe1 eq tpe) t
        else ExistentialType(tparams, tpe1)
      case tp1: ClassInfoType =>
        tp1
      case tp1 =>
        mapOver(tp1)
    }
  }

  /** The Java signature of type 'info', for symbol sym. The symbol is used to give the right return
   *  type for constructors.
   */
  def javaSig(sym0: Symbol, info: Type): Option[String] = atPhase(currentRun.erasurePhase) {
    def boxedSig(tp: Type) = jsig(tp, primitiveOK = false)

    def hiBounds(bounds: TypeBounds): List[Type] = bounds.hi.normalize match {
      case RefinedType(parents, _) => parents map normalize
      case tp                      => tp :: Nil
    }

    def jsig(tp0: Type, existentiallyBound: List[Symbol] = Nil, toplevel: Boolean = false, primitiveOK: Boolean = true): String = {
      val tp = tp0.dealias
      tp match {
        case st: SubType =>
          jsig(st.supertype, existentiallyBound, toplevel, primitiveOK)
        case ExistentialType(tparams, tpe) =>
          jsig(tpe, tparams, toplevel, primitiveOK)
        case TypeRef(pre, sym, args) =>
          def argSig(tp: Type) =
            if (existentiallyBound contains tp.typeSymbol) {
              val bounds = tp.typeSymbol.info.bounds
              if (!(AnyRefClass.tpe <:< bounds.hi)) "+" + boxedSig(bounds.hi)
              else if (!(bounds.lo <:< NullClass.tpe)) "-" + boxedSig(bounds.lo)
              else "*"
            } else {
              boxedSig(tp)
            }
          def classSig: String =
            "L"+atPhase(currentRun.icodePhase)(sym.fullName + global.genJVM.moduleSuffix(sym)).replace('.', '/')
          def classSigSuffix: String =
            "."+sym.name

          // If args isEmpty, Array is being used as a higher-kinded type
          if (sym == ArrayClass && args.nonEmpty) {
            if (unboundedGenericArrayLevel(tp) == 1) jsig(ObjectClass.tpe)
            else ARRAY_TAG.toString+(args map (jsig(_))).mkString
          }
          else if (isTypeParameterInSig(sym, sym0)) {
            assert(!sym.isAliasType, "Unexpected alias type: " + sym)
            TVAR_TAG.toString+sym.name+";"
          }
          else if (sym == AnyClass || sym == AnyValClass || sym == SingletonClass)
            jsig(ObjectClass.tpe)
          else if (sym == UnitClass)
            jsig(BoxedUnitClass.tpe)
          else if (sym == NothingClass)
            jsig(RuntimeNothingClass.tpe)
          else if (sym == NullClass)
            jsig(RuntimeNullClass.tpe)
          else if (isValueClass(sym)) {
            if (!primitiveOK) jsig(ObjectClass.tpe)
            else if (sym == UnitClass) jsig(BoxedUnitClass.tpe)
            else abbrvTag(sym).toString
          }
          else if (sym.isClass) {
            val preRebound = pre.baseType(sym.owner) // #2585
            traceSig("sym.isClass", (sym.ownerChain, preRebound, sym0.enclClassChain)) {
              dotCleanup(
                (
                  if (needsJavaSig(preRebound)) {
                    val s = jsig(preRebound, existentiallyBound)
                    if (s.charAt(0) == 'L') s.substring(0, s.length - 1) + classSigSuffix
                    else classSig
                  }
                  else classSig
                ) + (
                  if (args.isEmpty) "" else
                  "<"+(args map argSig).mkString+">"
                ) + (
                  ";"
                )
              )
            }
          }
          else jsig(erasure(tp), existentiallyBound, toplevel, primitiveOK)
        case PolyType(tparams, restpe) =>
          assert(tparams.nonEmpty)
          def boundSig(bounds: List[Type]) = {
            val (isTrait, isClass) = bounds partition (_.typeSymbol.isTrait)

            ":" + (
              if (isClass.isEmpty) "" else boxedSig(isClass.head)
            ) + (
              isTrait map (x => ":" + boxedSig(x)) mkString
            )
          }
          def paramSig(tsym: Symbol) = tsym.name + boundSig(hiBounds(tsym.info.bounds))

          val paramString = if (toplevel) tparams map paramSig mkString ("<", "", ">") else ""
          traceSig("PolyType", (tparams, restpe))(paramString + jsig(restpe))
        case MethodType(params, restpe) =>
          "("+(params map (_.tpe) map (jsig(_))).mkString+")"+
          (if (restpe.typeSymbol == UnitClass || sym0.isConstructor) VOID_TAG.toString else jsig(restpe))
        case RefinedType(parent :: _, decls) =>
          boxedSig(parent)
        case ClassInfoType(parents, _, _) =>
          (parents map (boxedSig(_))).mkString
        case AnnotatedType(_, atp, _) =>
          jsig(atp, existentiallyBound, toplevel, primitiveOK)
        case BoundedWildcardType(bounds) =>
          println("something's wrong: "+sym0+":"+sym0.tpe+" has a bounded wildcard type")
          jsig(bounds.hi, existentiallyBound, toplevel, primitiveOK)
        case _ =>
          val etp = erasure(tp)
          if (etp eq tp) throw new UnknownSig
          else jsig(etp)
      }
    }
    traceSig("javaSig", (sym0, info)) {
      if (needsJavaSig(info)) {
        try Some(jsig(info, toplevel = true))
        catch { case ex: UnknownSig => None }
      }
      else None
    }
  }

  class UnknownSig extends Exception

  /** Type reference after erasure */
  def erasedTypeRef(sym: Symbol): Type =
    typeRef(erasure(sym.owner.tpe), sym, List())

  /** Remove duplicate references to class Object in a list of parent classes */
  private def removeDoubleObject(tps: List[Type]): List[Type] = tps match {
    case List() => List()
    case tp :: tps1 =>
      if (tp.typeSymbol == ObjectClass) tp :: tps1.filter(_.typeSymbol != ObjectClass)
      else tp :: removeDoubleObject(tps1)
  }

  /**  The symbol's erased info. This is the type's erasure, except for the following symbols:
   *
   *   - For $asInstanceOf      : [T]T
   *   - For $isInstanceOf      : [T]scala#Boolean
   *   - For class Array        : [T]C where C is the erased classinfo of the Array class.
   *   - For Array[T].<init>    : {scala#Int)Array[T]
   *   - For a type parameter   : A type bounds type consisting of the erasures of its bounds.
   */
  def transformInfo(sym: Symbol, tp: Type): Type = {
    if (sym == Object_asInstanceOf)
      sym.info
    else if (sym == Object_isInstanceOf || sym == ArrayClass)
      PolyType(sym.info.typeParams, erasure(sym.info.resultType))
    else if (sym.isAbstractType)
      TypeBounds(WildcardType, WildcardType)
    else if (sym.isTerm && sym.owner == ArrayClass) {
      if (sym.isClassConstructor)
        tp match {
          case MethodType(params, TypeRef(pre, sym, args)) =>
            MethodType(cloneSymbols(params) map (p => p.setInfo(erasure(p.tpe))),
                       typeRef(erasure(pre), sym, args))
        }
      else if (sym.name == nme.apply)
        tp
      else if (sym.name == nme.update)
        (tp: @unchecked) match {
          case MethodType(List(index, tvar), restpe) =>
            MethodType(List(index.cloneSymbol.setInfo(erasure(index.tpe)), tvar),
                       erasedTypeRef(UnitClass))
        }
      else erasure(tp)
    } else if (
      sym.owner != NoSymbol &&
      sym.owner.owner == ArrayClass &&
      sym == Array_update.paramss.head(1)) {
      // special case for Array.update: the non-erased type remains, i.e. (Int,A)Unit
      // since the erasure type map gets applied to every symbol, we have to catch the
      // symbol here
      tp
    } else {
/*
      val erased =
        if (sym.isGetter && sym.tpe.isInstanceOf[MethodType])
          erasure mapOver sym.tpe // for getters, unlike for normal methods, always convert Unit to BoxedUnit.
        else
          erasure(tp)
*/
      transformMixinInfo(erasure(tp))
    }
  }

  val deconstMap = new TypeMap {
    def apply(tp: Type): Type = tp match {
      case PolyType(_, _) => mapOver(tp)
      case MethodType(_, _) => mapOver(tp) // nullarymethod was eliminated during uncurry
      case _ => tp.deconst
    }
  }
  // Methods on Any/Object which we rewrite here while we still know what
  // is a primitive and what arrived boxed.
  private lazy val interceptedMethods = Set[Symbol](Any_##, Object_##, Any_getClass) ++ (
    // Each value class has its own getClass for ultra-precise class object typing.
    ScalaValueClasses map (_.tpe member nme.getClass_)
  )

// -------- erasure on trees ------------------------------------------

  override def newTyper(context: Context) = new Eraser(context)

  /** An extractor object for boxed expressions
  object Boxed {
    def unapply(tree: Tree): Option[Tree] = tree match {
      case LabelDef(name, params, Boxed(rhs)) =>
        Some(treeCopy.LabelDef(tree, name, params, rhs) setType rhs.tpe)
      case Select(_, _) if tree.symbol == BoxedUnit_UNIT =>
        Some(Literal(()) setPos tree.pos setType UnitClass.tpe)
      case Block(List(unboxed), ret @ Select(_, _)) if ret.symbol == BoxedUnit_UNIT =>
        Some(if (unboxed.tpe.typeSymbol == UnitClass) tree
             else Block(List(unboxed), Literal(()) setPos tree.pos setType UnitClass.tpe))
      case Apply(fn, List(unboxed)) if isBox(fn.symbol) =>
        Some(unboxed)
      case _ =>
        None
    }
  }
   */

  /** The modifier typer which retypes with erased types. */
  class Eraser(context: Context) extends Typer(context) {
    private def safeToRemoveUnbox(cls: Symbol): Boolean =
      (cls == definitions.NullClass) || isBoxedValueClass(cls)

    /** Box `tree` of unboxed type */
    private def box(tree: Tree): Tree = tree match {
      case LabelDef(name, params, rhs) =>
        val rhs1 = box(rhs)
        treeCopy.LabelDef(tree, name, params, rhs1) setType rhs1.tpe
      case _ =>
        typedPos(tree.pos)(tree.tpe.typeSymbol match {
          case UnitClass  =>
            if (treeInfo isPureExpr tree) REF(BoxedUnit_UNIT)
            else BLOCK(tree, REF(BoxedUnit_UNIT))
          case NothingClass => tree // a non-terminating expression doesn't need boxing
          case x          =>
            assert(x != ArrayClass)
            tree match {
              /** Can't always remove a Box(Unbox(x)) combination because the process of boxing x
               *  may lead to throwing an exception.
               *
               *  This is important for specialization: calls to the super constructor should not box/unbox specialized
               *  fields (see TupleX). (ID)
               */
              case Apply(boxFun, List(arg)) if isUnbox(tree.symbol) && safeToRemoveUnbox(arg.tpe.typeSymbol) =>
                log("boxing an unbox: " + tree + " and replying with " + arg)
                arg
              case _ =>
                (REF(boxMethod(x)) APPLY tree) setPos (tree.pos) setType ObjectClass.tpe
            }
        })
    }

    /** Unbox `tree` of boxed type to expected type `pt`.
     *
     *  @param tree the given tree
     *  @param pt   the expected type.
     *  @return     the unboxed tree
     */
    private def unbox(tree: Tree, pt: Type): Tree = tree match {
/*
      case Boxed(unboxed) =>
        println("unbox shorten: "+tree) // this never seems to kick in during build and test; therefore disabled.
        adaptToType(unboxed, pt)
 */
      case LabelDef(name, params, rhs) =>
        val rhs1 = unbox(rhs, pt)
        treeCopy.LabelDef(tree, name, params, rhs1) setType rhs1.tpe
      case _ =>
        typedPos(tree.pos)(pt.typeSymbol match {
          case UnitClass  =>
            if (treeInfo isPureExpr tree) UNIT
            else BLOCK(tree, UNIT)
          case x          =>
            assert(x != ArrayClass)
            Apply(unboxMethod(pt.typeSymbol), tree) setType pt
        })
    }

    /** Generate a synthetic cast operation from tree.tpe to pt.
     *  @pre pt eq pt.normalize
     */
    private def cast(tree: Tree, pt: Type): Tree = {
      if (pt.typeSymbol == UnitClass) {
        // See SI-4731 for one example of how this occurs.
        log("Attempted to cast to Unit: " + tree)
        tree.duplicate setType pt
      }
      else tree AS_ATTR pt
    }

    private def isUnboxedValueMember(sym: Symbol) =
      sym != NoSymbol && isValueClass(sym.owner)

    /** Adapt `tree` to expected type `pt`.
     *
     *  @param tree the given tree
     *  @param pt   the expected type
     *  @return     the adapted tree
     */
    private def adaptToType(tree: Tree, pt: Type): Tree = {
      if (settings.debug.value && pt != WildcardType)
        log("adapting " + tree + ":" + tree.tpe + " : " +  tree.tpe.parents + " to " + pt)//debug
      if (tree.tpe <:< pt)
        tree
      else if (isValueClass(tree.tpe.typeSymbol) && !isValueClass(pt.typeSymbol))
        adaptToType(box(tree), pt)
      else if (tree.tpe.isInstanceOf[MethodType] && tree.tpe.params.isEmpty) {
        assert(tree.symbol.isStable, "adapt "+tree+":"+tree.tpe+" to "+pt)
        adaptToType(Apply(tree, List()) setPos tree.pos setType tree.tpe.resultType, pt)
      } else if (pt <:< tree.tpe)
        cast(tree, pt)
      else if (isValueClass(pt.typeSymbol) && !isValueClass(tree.tpe.typeSymbol))
        adaptToType(unbox(tree, pt), pt)
      else
        cast(tree, pt)
    }

    // @PP 1/25/2011: This is less inaccurate than it was (I removed
    // BoxedAnyArray, asInstanceOf$erased, and other long ago eliminated symbols)
    // but I do not think it yet describes the code beneath it.

    /**  Replace member references as follows:
     *
     *   - `x == y` for == in class Any becomes `x equals y` with equals in class Object.
     *   - `x != y` for != in class Any becomes `!(x equals y)` with equals in class Object.
     *   - x.asInstanceOf[T] becomes x.$asInstanceOf[T]
     *   - x.isInstanceOf[T] becomes x.$isInstanceOf[T]
     *   - x.m where m is some other member of Any becomes x.m where m is a member of class Object.
     *   - x.m where x has unboxed value type T and m is not a directly translated member of T becomes T.box(x).m
     *   - x.m where x is a reference type and m is a directly translated member of value type T becomes x.TValue().m
     *   - All forms of x.m where x is a boxed type and m is a member of an unboxed class become
     *     x.m where m is the corresponding member of the boxed class.
     */
    private def adaptMember(tree: Tree): Tree = {
      //Console.println("adaptMember: " + tree);
      tree match {
        case Apply(TypeApply(sel @ Select(qual, name), List(targ)), List()) if tree.symbol == Any_asInstanceOf =>
          val qual1 = typedQualifier(qual, NOmode, ObjectClass.tpe) // need to have an expected type, see #3037
          val qualClass = qual1.tpe.typeSymbol
          val targClass = targ.tpe.typeSymbol
/*
          if (isNumericValueClass(qualClass) && isNumericValueClass(targClass))
            // convert numeric type casts
            atPos(tree.pos)(Apply(Select(qual1, "to" + targClass.name), List()))
          else
*/
          if (isValueClass(targClass)) unbox(qual1, targ.tpe)
          else tree
        case Select(qual, name) if (name != nme.CONSTRUCTOR) =>
          if (tree.symbol == NoSymbol)
            tree
          else if (tree.symbol == Any_asInstanceOf)
            adaptMember(atPos(tree.pos)(Select(qual, Object_asInstanceOf)))
          else if (tree.symbol == Any_isInstanceOf)
            adaptMember(atPos(tree.pos)(Select(qual, Object_isInstanceOf)))
          else if (tree.symbol.owner == AnyClass)
            adaptMember(atPos(tree.pos)(Select(qual, getMember(ObjectClass, name))))
          else {
            var qual1 = typedQualifier(qual)
            if ((isValueClass(qual1.tpe.typeSymbol) && !isUnboxedValueMember(tree.symbol)))
              qual1 = box(qual1)
            else if (!isValueClass(qual1.tpe.typeSymbol) && isUnboxedValueMember(tree.symbol))
              qual1 = unbox(qual1, tree.symbol.owner.tpe)

            if (isValueClass(tree.symbol.owner) && !isValueClass(qual1.tpe.typeSymbol))
              tree.symbol = NoSymbol
            else if (qual1.tpe.isInstanceOf[MethodType] && qual1.tpe.params.isEmpty) {
              assert(qual1.symbol.isStable, qual1.symbol);
              qual1 = Apply(qual1, List()) setPos qual1.pos setType qual1.tpe.resultType
            } else if (!(qual1.isInstanceOf[Super] || (qual1.tpe.typeSymbol isSubClass tree.symbol.owner))) {
              assert(tree.symbol.owner != ArrayClass)
              qual1 = cast(qual1, tree.symbol.owner.tpe)
            }
            treeCopy.Select(tree, qual1, name)
          }
        case SelectFromArray(qual, name, erasure) =>
          var qual1 = typedQualifier(qual)
          if (!(qual1.tpe <:< erasure)) qual1 = cast(qual1, erasure)
          Select(qual1, name) copyAttrs tree
        case _ =>
          tree
      }
    }

    /** A replacement for the standard typer's adapt method.
     */
    override protected def adapt(tree: Tree, mode: Int, pt: Type, original: Tree = EmptyTree): Tree =
      adaptToType(tree, pt)

    /** A replacement for the standard typer's `typed1` method.
     */
    override protected def typed1(tree: Tree, mode: Int, pt: Type): Tree = {
      val tree1 = try {
        super.typed1(adaptMember(tree), mode, pt)
      } catch {
        case er: TypeError =>
          Console.println("exception when typing " + tree)
          Console.println(er.msg + " in file " + context.owner.sourceFile)
          er.printStackTrace
          abort()
        case ex: Exception =>
          //if (settings.debug.value)
          Console.println("exception when typing " + tree);
          throw ex
      }
      def adaptCase(cdef: CaseDef): CaseDef = {
        val body1 = adaptToType(cdef.body, tree1.tpe)
        treeCopy.CaseDef(cdef, cdef.pat, cdef.guard, body1) setType body1.tpe
      }
      def adaptBranch(branch: Tree): Tree =
        if (branch == EmptyTree) branch else adaptToType(branch, tree1.tpe);

      tree1 match {
        case If(cond, thenp, elsep) =>
          treeCopy.If(tree1, cond, adaptBranch(thenp), adaptBranch(elsep))
        case Match(selector, cases) =>
          treeCopy.Match(tree1, selector, cases map adaptCase)
        case Try(block, catches, finalizer) =>
          treeCopy.Try(tree1, adaptBranch(block), catches map adaptCase, finalizer)
        case Ident(_) | Select(_, _) =>
          if (tree1.symbol.isOverloaded) {
            val first = tree1.symbol.alternatives.head
            val sym1 = tree1.symbol.filter {
              alt => alt == first || !(first.tpe looselyMatches alt.tpe)
            }
            if (tree.symbol ne sym1) {
              tree1.symbol = sym1
              tree1.tpe = sym1.tpe
            }
          }
          tree1
        case _ =>
          tree1
      }
    }
  }

  /** The erasure transformer */
  class ErasureTransformer(unit: CompilationUnit) extends Transformer {
    /** Emit an error if there is a double definition. This can happen if:
     *
     *  - A template defines two members with the same name and erased type.
     *  - A template defines and inherits two members `m` with different types,
     *    but their erased types are the same.
     *  - A template inherits two members `m` with different types,
     *    but their erased types are the same.
     */
    private def checkNoDoubleDefs(root: Symbol) {
      def doubleDefError(sym1: Symbol, sym2: Symbol) {
        // the .toString must also be computed at the earlier phase
        def atRefc[T](op: => T) = atPhase[T](currentRun.refchecksPhase.next)(op)
        val tpe1 = atRefc(root.thisType.memberType(sym1))
        val tpe2 = atRefc(root.thisType.memberType(sym2))
        if (!tpe1.isErroneous && !tpe2.isErroneous)
          unit.error(
          if (sym1.owner == root) sym1.pos else root.pos,
          (if (sym1.owner == sym2.owner) "double definition:\n"
           else if (sym1.owner == root) "name clash between defined and inherited member:\n"
           else "name clash between inherited members:\n") +
          sym1 + ":" + atRefc(tpe1.toString) +
            (if (sym1.owner == root) "" else sym1.locationString) + " and\n" +
          sym2 + ":" + atRefc(tpe2.toString) +
            (if (sym2.owner == root) " at line " + (sym2.pos).line else sym2.locationString) +
          "\nhave same type" +
          (if (atRefc(tpe1 =:= tpe2)) "" else " after erasure: " + atPhase(phase.next)(sym1.tpe)))
        sym1.setInfo(ErrorType)
      }

      val decls = root.info.decls
      var e = decls.elems
      while (e ne null) {
        if (e.sym.isTerm) {
          var e1 = decls.lookupNextEntry(e)
          while (e1 ne null) {
            if (atPhase(phase.next)(e1.sym.info =:= e.sym.info)) doubleDefError(e.sym, e1.sym)
            e1 = decls.lookupNextEntry(e1)
          }
        }
        e = e.next
      }

      val opc = new overridingPairs.Cursor(root) {
        override def exclude(sym: Symbol): Boolean =
          (!sym.isTerm || sym.isPrivate || super.exclude(sym)
           // specialized members have no type history before 'specialize', causing double def errors for curried defs
           || !sym.hasTypeAt(currentRun.refchecksPhase.id))

        override def matches(sym1: Symbol, sym2: Symbol): Boolean =
          atPhase(phase.next)(sym1.tpe =:= sym2.tpe)
      }
      while (opc.hasNext) {
        if (!atPhase(currentRun.refchecksPhase.next)(
              root.thisType.memberType(opc.overriding) matches
              root.thisType.memberType(opc.overridden))) {
          if (settings.debug.value)
            log("" + opc.overriding.locationString + " " +
                     opc.overriding.infosString +
                     opc.overridden.locationString + " " +
                     opc.overridden.infosString)
          doubleDefError(opc.overriding, opc.overridden)
        }
        opc.next
      }
    }

/*
      for (bc <- root.info.baseClasses.tail; other <- bc.info.decls.toList) {
        if (other.isTerm && !other.isConstructor && !(other hasFlag (PRIVATE | BRIDGE))) {
          for (member <- root.info.nonPrivateMember(other.name).alternatives) {
            if (member != other &&
                !(member hasFlag BRIDGE) &&
                atPhase(phase.next)(member.tpe =:= other.tpe) &&
                !atPhase(refchecksPhase.next)(
                  root.thisType.memberType(member) matches root.thisType.memberType(other))) {
              if (settings.debug.value) log("" + member.locationString + " " + member.infosString + other.locationString + " " + other.infosString);
              doubleDefError(member, other)
            }
          }
        }
      }
*/

    /**  Add bridge definitions to a template. This means:
     *
     *   If there is a concrete member `m` which overrides a member in a base
     *   class of the template, and the erased types of the two members differ,
     *   and the two members are not inherited or defined by some parent class
     *   of the template, then a bridge from the overridden member `m1` to the
     *   member `m0` is added. The bridge has the erased type of `m1` and
     *   forwards to `m0`.
     *
     *   No bridge is added if there is already a bridge to `m0` with the erased
     *   type of `m1` in the template.
     */
    private def bridgeDefs(owner: Symbol): (List[Tree], immutable.Set[Symbol]) = {
      var toBeRemoved: immutable.Set[Symbol] = immutable.Set()
      //println("computing bridges for " + owner)//DEBUG
      assert(phase == currentRun.erasurePhase)
      val site = owner.thisType
      val bridgesScope = new Scope
      val bridgeTarget = new mutable.HashMap[Symbol, Symbol]
      var bridges: List[Tree] = List()
      val opc = atPhase(currentRun.explicitouterPhase) {
        new overridingPairs.Cursor(owner) {
          override def parents: List[Type] = List(owner.info.parents.head)
          override def exclude(sym: Symbol): Boolean =
            !sym.isMethod || sym.isPrivate || super.exclude(sym)
        }
      }
      while (opc.hasNext) {
        val member = opc.overriding
        val other = opc.overridden
        //Console.println("bridge? " + member + ":" + member.tpe + member.locationString + " to " + other + ":" + other.tpe + other.locationString)//DEBUG
        if (atPhase(currentRun.explicitouterPhase)(!member.isDeferred)) {
          val otpe = erasure(other.tpe)
          val bridgeNeeded = atPhase(phase.next) (
            !(other.tpe =:= member.tpe) &&
            !(deconstMap(other.tpe) =:= deconstMap(member.tpe)) &&
            { var e = bridgesScope.lookupEntry(member.name)
              while ((e ne null) && !((e.sym.tpe =:= otpe) && (bridgeTarget(e.sym) == member)))
                e = bridgesScope.lookupNextEntry(e)
              (e eq null)
            }
          );
          if (bridgeNeeded) {
            val bridge = other.cloneSymbolImpl(owner)
              .setPos(owner.pos)
              .setFlag(member.flags | BRIDGE)
              .resetFlag(ACCESSOR | DEFERRED | LAZY | lateDEFERRED)
            // the parameter symbols need to have the new owner
            bridge.setInfo(otpe.cloneInfo(bridge))
            bridgeTarget(bridge) = member
            atPhase(phase.next) { owner.info.decls.enter(bridge) }
            if (other.owner == owner) {
              //println("bridge to same: "+other+other.locationString)//DEBUG
              atPhase(phase.next) { owner.info.decls.unlink(other) }
              toBeRemoved += other
            }
            bridgesScope enter bridge
            bridges =
              atPhase(phase.next) {
                atPos(bridge.pos) {
                  val bridgeDef =
                    DefDef(bridge,
                      member.tpe match {
                        case MethodType(List(), ConstantType(c)) => Literal(c)
                        case _ =>
                          (((Select(This(owner), member): Tree) /: bridge.paramss)
                             ((fun, vparams) => Apply(fun, vparams map Ident)))
                      });
                  if (settings.debug.value)
                    log("generating bridge from " + other + "(" + Flags.flagsToString(bridge.flags)  + ")" + ":" + otpe + other.locationString + " to " + member + ":" + erasure(member.tpe) + member.locationString + " =\n " + bridgeDef);
                  bridgeDef
                }
              } :: bridges
          }
        }
        opc.next
      }
      (bridges, toBeRemoved)
    }
/*
      for (bc <- site.baseClasses.tail; other <- bc.info.decls.toList) {
        if (other.isMethod && !other.isConstructor) {
          for (member <- site.nonPrivateMember(other.name).alternatives) {
            if (member != other &&
                !(member hasFlag DEFERRED) &&
                (site.memberType(member) matches site.memberType(other)) &&
                !(site.parents exists (p =>
                  (p.symbol isSubClass member.owner) && (p.symbol isSubClass other.owner)))) {
...
             }
          }
*/

    def addBridges(stats: List[Tree], base: Symbol): List[Tree] =
      if (base.isTrait) stats
      else {
        val (bridges, toBeRemoved) = bridgeDefs(base)
        if (bridges.isEmpty) stats
        else (stats filterNot (stat => toBeRemoved contains stat.symbol)) ::: bridges
      }

    /**  Transform tree at phase erasure before retyping it.
     *   This entails the following:
     *
     *   - Remove all type parameters in class and method definitions.
     *   - Remove all abstract and alias type definitions.
     *   - Remove all type applications other than those involving a type test or cast.
     *   - Remove all empty trees in statements and definitions in a PackageDef.
     *   - Check that there are no double definitions in a template.
     *   - Add bridge definitions to a template.
     *   - Replace all types in type nodes and the EmptyTree object by their erasure.
     *     Type nodes of type Unit representing result types of methods are left alone.
     *   - Given a selection q.s, where the owner of `s` is not accessible but the
     *     type symbol of q's type qT is accessible, insert a cast (q.asInstanceOf[qT]).s
     *     This prevents illegal access errors (see #4283).
     *   - Reset all other type attributes to null, thus enforcing a retyping.
     */
    private val preTransformer = new TypingTransformer(unit) {
      def preErase(tree: Tree): Tree = tree match {
        case ClassDef(mods, name, tparams, impl) =>
          if (settings.debug.value)
            log("defs of " + tree.symbol + " = " + tree.symbol.info.decls)
          treeCopy.ClassDef(tree, mods, name, List(), impl)
        case DefDef(mods, name, tparams, vparamss, tpt, rhs) =>
          treeCopy.DefDef(tree, mods, name, List(), vparamss, tpt, rhs)
        case TypeDef(_, _, _, _) =>
          EmptyTree
        case Apply(instanceOf @ TypeApply(fun @ Select(qual, name), args @ List(arg)), List()) // !!! todo: simplify by having GenericArray also extract trees
              if ((fun.symbol == Any_isInstanceOf || fun.symbol == Object_isInstanceOf) &&
                  unboundedGenericArrayLevel(arg.tpe) > 0) =>
          val level = unboundedGenericArrayLevel(arg.tpe)
          def isArrayTest(arg: Tree) =
            gen.mkRuntimeCall("isArray", List(arg, Literal(Constant(level))))
          global.typer.typedPos(tree.pos) {
            if (level == 1) isArrayTest(qual)
            else
              gen.evalOnce(qual, currentOwner, unit) { qual1 =>
                gen.mkAnd(
                  Apply(TypeApply(Select(qual1(), fun.symbol),
                                  List(TypeTree(erasure(arg.tpe)))),
                        List()),
                  isArrayTest(qual1()))
              }
          }
        case TypeApply(fun, args) if (fun.symbol.owner != AnyClass &&
                                      fun.symbol != Object_asInstanceOf &&
                                      fun.symbol != Object_isInstanceOf) =>
          // leave all other type tests/type casts, remove all other type applications
          preErase(fun)
        case Apply(fn @ Select(qual, name), args) if (fn.symbol.owner == ArrayClass) =>
          if (unboundedGenericArrayLevel(qual.tpe.widen) == 1)
            // convert calls to apply/update/length on generic arrays to
            // calls of ScalaRunTime.array_xxx method calls
            global.typer.typedPos(tree.pos) { gen.mkRuntimeCall("array_"+name, qual :: args) }
          else
            // store exact array erasure in map to be retrieved later when we might
            // need to do the cast in adaptMember
            treeCopy.Apply(
              tree,
              SelectFromArray(qual, name, erasure(qual.tpe)).copyAttrs(fn),
              args)

        case Apply(fn @ Select(qual, _), Nil) if interceptedMethods(fn.symbol) =>
          if (fn.symbol == Any_## || fn.symbol == Object_##) {
            // This is unattractive, but without it we crash here on ().## because after
            // erasure the ScalaRunTime.hash overload goes from Unit => Int to BoxedUnit => Int.
            // This must be because some earlier transformation is being skipped on ##, but so
            // far I don't know what.  For null we now define null.## == 0.
            qual.tpe.typeSymbol match {
              case UnitClass | NullClass                    => LIT(0)
              case IntClass                                 => qual
              case s @ (ShortClass | ByteClass | CharClass) => numericConversion(qual, s)
              case BooleanClass                             => If(qual, LIT(true.##), LIT(false.##))
              case _                                        =>
                Apply(gen.mkAttributedRef(scalaRuntimeHash), List(qual))
            }
          }
          // Rewrite 5.getClass to ScalaRunTime.anyValClass(5)
          else if (isValueClass(qual.tpe.typeSymbol))
            Apply(gen.mkAttributedRef(scalaRuntimeAnyValClass), List(qual))
          else
            tree

        case Apply(fn, args) =>
          if (fn.symbol == Any_asInstanceOf)
            (fn: @unchecked) match {
              case TypeApply(Select(qual, _), List(targ)) =>
                if (qual.tpe <:< targ.tpe)
                  atPos(tree.pos) { Typed(qual, TypeTree(targ.tpe)) }
                else if (isNumericValueClass(qual.tpe.typeSymbol) && isNumericValueClass(targ.tpe.typeSymbol))
                  atPos(tree.pos)(numericConversion(qual, targ.tpe.typeSymbol))
                else
                  tree
            }
            // todo: also handle the case where the singleton type is buried in a compound
          else if (fn.symbol == Any_isInstanceOf) {
            fn match {
              case TypeApply(sel @ Select(qual, name), List(targ)) =>
                if (qual.tpe != null && isValueClass(qual.tpe.typeSymbol) && targ.tpe != null && targ.tpe <:< AnyRefClass.tpe)
                  unit.error(sel.pos, "isInstanceOf cannot test if value types are references.")

                def mkIsInstanceOf(q: () => Tree)(tp: Type): Tree =
                  Apply(
                    TypeApply(
                      Select(q(), Object_isInstanceOf) setPos sel.pos,
                      List(TypeTree(tp) setPos targ.pos)) setPos fn.pos,
                    List()) setPos tree.pos
                targ.tpe match {
                  case SingleType(_, _) | ThisType(_) | SuperType(_, _) =>
                    val cmpOp = if (targ.tpe <:< AnyValClass.tpe) Any_equals else Object_eq
                    atPos(tree.pos) {
                      Apply(Select(qual, cmpOp), List(gen.mkAttributedQualifier(targ.tpe)))
                    }
                  case RefinedType(parents, decls) if (parents.length >= 2) =>
                    // Optimization: don't generate isInstanceOf tests if the static type
                    // conforms, because it always succeeds.  (Or at least it had better.)
                    // At this writing the pattern matcher generates some instance tests
                    // involving intersections where at least one parent is statically known true.
                    // That needs fixing, but filtering the parents here adds an additional
                    // level of robustness (in addition to the short term fix.)
                    val parentTests = parents filterNot (qual.tpe <:< _)

                    if (parentTests.isEmpty) Literal(Constant(true))
                    else gen.evalOnce(qual, currentOwner, unit) { q =>
                      atPos(tree.pos) {
                        parentTests map mkIsInstanceOf(q) reduceRight gen.mkAnd
                      }
                    }
                  case _ =>
                    tree
                }
              case _ => tree
            }
          }
          else {
            def doDynamic(fn: Tree, qual: Tree): Tree = {
              if (fn.symbol.owner.isRefinementClass && fn.symbol.allOverriddenSymbols.isEmpty)
                ApplyDynamic(qual, args) setSymbol fn.symbol setPos tree.pos
              else tree
            }
            fn match {
              case Select(qual, _) => doDynamic(fn, qual)
              case TypeApply(fni@Select(qual, _), _) => doDynamic(fni, qual)// type parameters are irrelevant in case of dynamic call
              case _ =>
                tree
            }
          }

        case Select(qual, name) =>
          val owner = tree.symbol.owner
          // println("preXform: "+ (tree, tree.symbol, tree.symbol.owner, tree.symbol.owner.isRefinementClass))
          if (owner.isRefinementClass) {
            val overridden = tree.symbol.allOverriddenSymbols
            assert(!overridden.isEmpty, tree.symbol)
            tree.symbol = overridden.head
          }
          def isAccessible(sym: Symbol) = localTyper.context.isAccessible(sym, sym.owner.thisType)
          if (!isAccessible(owner) && qual.tpe != null) {
            // Todo: Figure out how qual.tpe could be null in the check above (it does appear in build where SwingWorker.this
            // has a null type).
            val qualSym = qual.tpe.widen.typeSymbol
            if (isAccessible(qualSym) && !qualSym.isPackageClass && !qualSym.isPackageObjectClass) {
              // insert cast to prevent illegal access error (see #4283)
              // util.trace("insert erasure cast ") (*/
              treeCopy.Select(tree, qual AS_ATTR qual.tpe.widen, name) //)
            } else tree
          } else tree

        case Template(parents, self, body) =>
          assert(!currentOwner.isImplClass)
          //Console.println("checking no dble defs " + tree)//DEBUG
          checkNoDoubleDefs(tree.symbol.owner)
          treeCopy.Template(tree, parents, emptyValDef, addBridges(body, currentOwner))

        case Match(selector, cases) =>
          Match(Typed(selector, TypeTree(selector.tpe)), cases)

        case Literal(ct) if ct.tag == ClassTag
                         && ct.typeValue.typeSymbol != definitions.UnitClass =>
          treeCopy.Literal(tree, Constant(erasure(ct.typeValue)))

        case _ =>
          tree
      }

      override def transform(tree: Tree): Tree = {
        // Reply to "!!! needed?" which adorned the next line: without it, build fails with:
        //   Exception in thread "main" scala.tools.nsc.symtab.Types$TypeError:
        //   value array_this is not a member of object scala.runtime.ScalaRunTime
        //
        // What the heck is array_this? See preTransformer in this file:
        //   gen.mkRuntimeCall("array_"+name, qual :: args)
        if (tree.symbol == ArrayClass && !tree.isType) tree
        else {
          val tree1 = preErase(tree)
          tree1 match {
            case EmptyTree | TypeTree() =>
              tree1 setType erasure(tree1.tpe)
            case DefDef(_, _, _, _, tpt, _) =>
              val result = super.transform(tree1) setType null
              tpt.tpe = erasure(tree1.symbol.tpe).resultType
              result
            case _ =>
              super.transform(tree1) setType null
          }
        }
      }
    }

    /** The main transform function: Pretransfom the tree, and then
     *  re-type it at phase erasure.next.
     */
    override def transform(tree: Tree): Tree = {
      val tree1 = preTransformer.transform(tree)
      atPhase(phase.next) {
        val tree2 = mixinTransformer.transform(tree1)
        if (settings.debug.value)
          log("tree after addinterfaces: \n" + tree2)

        newTyper(rootContext(unit, tree, true)).typed(tree2)
      }
    }
  }
}