summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/transform/Erasure.scala
blob: e327a6658c04569381c4fec788ccf6bbbcc1eef6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author Martin Odersky
 */

package scala.tools.nsc
package transform

import scala.reflect.internal.ClassfileConstants._
import scala.collection.{ mutable, immutable }
import symtab._
import Flags._
import scala.reflect.internal.Mode._

abstract class Erasure extends InfoTransform
                          with scala.reflect.internal.transform.Erasure
                          with typechecker.Analyzer
                          with TypingTransformers
                          with ast.TreeDSL
                          with TypeAdaptingTransformer
{
  import global._
  import definitions._
  import CODE._

  val analyzer: typechecker.Analyzer { val global: Erasure.this.global.type } =
    this.asInstanceOf[typechecker.Analyzer { val global: Erasure.this.global.type }]

  val phaseName: String = "erasure"

  def newTransformer(unit: CompilationUnit): Transformer =
    new ErasureTransformer(unit)

  override def keepsTypeParams = false

// -------- erasure on types --------------------------------------------------------

  // convert a numeric with a toXXX method
  def numericConversion(tree: Tree, numericSym: Symbol): Tree = {
    val mname      = newTermName("to" + numericSym.name)
    val conversion = tree.tpe member mname

    assert(conversion != NoSymbol, tree + " => " + numericSym)
    atPos(tree.pos)(Apply(Select(tree, conversion), Nil))
  }

  private object NeedsSigCollector extends TypeCollector(false) {
    def traverse(tp: Type) {
      if (!result) {
        tp match {
          case st: SubType =>
            traverse(st.supertype)
          case TypeRef(pre, sym, args) =>
            if (sym == ArrayClass) args foreach traverse
            else if (sym.isTypeParameterOrSkolem || sym.isExistentiallyBound || !args.isEmpty) result = true
            else if (sym.isClass) traverse(rebindInnerClass(pre, sym)) // #2585
            else if (!sym.isTopLevel) traverse(pre)
          case PolyType(_, _) | ExistentialType(_, _) =>
            result = true
          case RefinedType(parents, _) =>
            parents foreach traverse
          case ClassInfoType(parents, _, _) =>
            parents foreach traverse
          case AnnotatedType(_, atp) =>
            traverse(atp)
          case _ =>
            mapOver(tp)
        }
      }
    }
  }

  override protected def verifyJavaErasure = settings.Xverify || settings.debug
  def needsJavaSig(tp: Type, throwsArgs: List[Type]) = !settings.Ynogenericsig && {
    NeedsSigCollector.collect(tp) || throwsArgs.exists(NeedsSigCollector.collect)
  }

  // only refer to type params that will actually make it into the sig, this excludes:
  // * higher-order type parameters
  // * type parameters appearing in method parameters
  // * type members not visible in an enclosing template
  private def isTypeParameterInSig(sym: Symbol, initialSymbol: Symbol) = (
    !sym.isHigherOrderTypeParameter &&
    sym.isTypeParameterOrSkolem && (
      (initialSymbol.enclClassChain.exists(sym isNestedIn _)) ||
      (initialSymbol.isMethod && initialSymbol.typeParams.contains(sym))
    )
  )

  // Ensure every '.' in the generated signature immediately follows
  // a close angle bracket '>'.  Any which do not are replaced with '$'.
  // This arises due to multiply nested classes in the face of the
  // rewriting explained at rebindInnerClass.   This should be done in a
  // more rigorous way up front rather than catching it after the fact,
  // but that will be more involved.
  private def dotCleanup(sig: String): String = {
    // OPT 50% of time in generic signatures (~1% of compile time) was in this method, hence the imperative rewrite.
    var last: Char = '\u0000'
    var i = 0
    val len = sig.length
    val copy: Array[Char] = sig.toCharArray
    var changed = false
    while (i < len) {
      val ch = copy(i)
      if (ch == '.' && last != '>') {
         copy(i) = '$'
         changed = true
      }
      last = ch
      i += 1
    }
    if (changed) new String(copy) else sig
  }

  /** This object is only used for sanity testing when -check:genjvm is set.
   *  In that case we make sure that the erasure of the `normalized` type
   *  is the same as the erased type that's generated. Normalization means
   *  unboxing some primitive types and further simplifications as they are done in jsig.
   */
  val prepareSigMap = new TypeMap {
    def squashBoxed(tp: Type): Type = tp.dealiasWiden match {
      case t @ RefinedType(parents, decls) =>
        val parents1 = parents mapConserve squashBoxed
        if (parents1 eq parents) tp
        else RefinedType(parents1, decls)
      case t @ ExistentialType(tparams, tpe) =>
        val tpe1 = squashBoxed(tpe)
        if (tpe1 eq tpe) t
        else ExistentialType(tparams, tpe1)
      case t =>
        if (boxedClass contains t.typeSymbol) ObjectTpe
        else tp
    }
    def apply(tp: Type): Type = tp.dealiasWiden match {
      case tp1 @ TypeBounds(lo, hi) =>
        val lo1 = squashBoxed(apply(lo))
        val hi1 = squashBoxed(apply(hi))
        if ((lo1 eq lo) && (hi1 eq hi)) tp1
        else TypeBounds(lo1, hi1)
      case tp1 @ TypeRef(pre, sym, args) =>
        def argApply(tp: Type) = {
          val tp1 = apply(tp)
          if (tp1.typeSymbol == UnitClass) ObjectTpe
          else squashBoxed(tp1)
        }
        if (sym == ArrayClass && args.nonEmpty)
          if (unboundedGenericArrayLevel(tp1) == 1) ObjectTpe
          else mapOver(tp1)
        else if (sym == AnyClass || sym == AnyValClass || sym == SingletonClass)
          ObjectTpe
        else if (sym == UnitClass)
          BoxedUnitTpe
        else if (sym == NothingClass)
          RuntimeNothingClass.tpe
        else if (sym == NullClass)
          RuntimeNullClass.tpe
        else {
          val pre1 = apply(pre)
          val args1 = args mapConserve argApply
          if ((pre1 eq pre) && (args1 eq args)) tp1
          else TypeRef(pre1, sym, args1)
        }
      case tp1 @ MethodType(params, restpe) =>
        val params1 = mapOver(params)
        val restpe1 = if (restpe.typeSymbol == UnitClass) UnitTpe else apply(restpe)
        if ((params1 eq params) && (restpe1 eq restpe)) tp1
        else MethodType(params1, restpe1)
      case tp1 @ RefinedType(parents, decls) =>
        val parents1 = parents mapConserve apply
        if (parents1 eq parents) tp1
        else RefinedType(parents1, decls)
      case t @ ExistentialType(tparams, tpe) =>
        val tpe1 = apply(tpe)
        if (tpe1 eq tpe) t
        else ExistentialType(tparams, tpe1)
      case tp1: ClassInfoType =>
        tp1
      case tp1 =>
        mapOver(tp1)
    }
  }

  private def hiBounds(bounds: TypeBounds): List[Type] = bounds.hi.dealiasWiden match {
    case RefinedType(parents, _) => parents map (_.dealiasWiden)
    case tp                      => tp :: Nil
  }

  private def isErasedValueType(tpe: Type) = tpe.isInstanceOf[ErasedValueType]

  /* Drop redundant types (ones which are implemented by some other parent) from the immediate parents.
   * This is important on Android because there is otherwise an interface explosion.
   * This is now restricted to Scala defined ancestors: a Java defined ancestor may need to be listed
   * as an immediate parent to support an `invokespecial`.
   */
  def minimizeParents(parents: List[Type]): List[Type] = if (parents.isEmpty) parents else {
    def isRedundantParent(sym: Symbol) = sym.isInterface || sym.isTrait

    var rest   = parents.tail
    var leaves = collection.mutable.ListBuffer.empty[Type] += parents.head
    while(rest.nonEmpty) {
      val candidate = rest.head
      if (candidate.typeSymbol.isJavaDefined && candidate.typeSymbol.isInterface) leaves += candidate
      else {
        val nonLeaf = leaves exists { t => t.typeSymbol isSubClass candidate.typeSymbol }
        if (!nonLeaf) {
          leaves = leaves filterNot { t => isRedundantParent(t.typeSymbol) && (candidate.typeSymbol isSubClass t.typeSymbol) }
          leaves += candidate
        }
      }
      rest = rest.tail
    }
    leaves.toList
  }


  /** The Java signature of type 'info', for symbol sym. The symbol is used to give the right return
   *  type for constructors.
   */
  def javaSig(sym0: Symbol, info: Type): Option[String] = enteringErasure {
    val isTraitSignature = sym0.enclClass.isTrait

    def superSig(parents: List[Type]) = {
      def isInterfaceOrTrait(sym: Symbol) = sym.isInterface || sym.isTrait

      // a signature should always start with a class
      def ensureClassAsFirstParent(tps: List[Type]) = tps match {
        case Nil => ObjectTpe :: Nil
        case head :: tail if isInterfaceOrTrait(head.typeSymbol) => ObjectTpe :: tps
        case _ => tps
      }

      val minParents = minimizeParents(parents)
      val validParents =
        if (isTraitSignature)
          // java is unthrilled about seeing interfaces inherit from classes
          minParents filter (p => isInterfaceOrTrait(p.typeSymbol))
        else minParents

      val ps = ensureClassAsFirstParent(validParents)

      (ps map boxedSig).mkString
    }
    def boxedSig(tp: Type) = jsig(tp, primitiveOK = false)
    def boundsSig(bounds: List[Type]) = {
      val (isTrait, isClass) = bounds partition (_.typeSymbol.isTrait)
      val classPart = isClass match {
        case Nil    => ":" // + boxedSig(ObjectTpe)
        case x :: _ => ":" + boxedSig(x)
      }
      classPart :: (isTrait map boxedSig) mkString ":"
    }
    def paramSig(tsym: Symbol) = tsym.name + boundsSig(hiBounds(tsym.info.bounds))
    def polyParamSig(tparams: List[Symbol]) = (
      if (tparams.isEmpty) ""
      else tparams map paramSig mkString ("<", "", ">")
    )

    // Anything which could conceivably be a module (i.e. isn't known to be
    // a type parameter or similar) must go through here or the signature is
    // likely to end up with Foo<T>.Empty where it needs Foo<T>.Empty$.
    def fullNameInSig(sym: Symbol) = "L" + enteringJVM(sym.javaBinaryNameString)

    def jsig(tp0: Type, existentiallyBound: List[Symbol] = Nil, toplevel: Boolean = false, primitiveOK: Boolean = true): String = {
      val tp = tp0.dealias
      tp match {
        case st: SubType =>
          jsig(st.supertype, existentiallyBound, toplevel, primitiveOK)
        case ExistentialType(tparams, tpe) =>
          jsig(tpe, tparams, toplevel, primitiveOK)
        case TypeRef(pre, sym, args) =>
          def argSig(tp: Type) =
            if (existentiallyBound contains tp.typeSymbol) {
              val bounds = tp.typeSymbol.info.bounds
              if (!(AnyRefTpe <:< bounds.hi)) "+" + boxedSig(bounds.hi)
              else if (!(bounds.lo <:< NullTpe)) "-" + boxedSig(bounds.lo)
              else "*"
            } else tp match {
              case PolyType(_, res) =>
                "*" // SI-7932
              case _ =>
                boxedSig(tp)
            }
          def classSig = {
            val preRebound = pre.baseType(sym.owner) // #2585
            dotCleanup(
              (
                if (needsJavaSig(preRebound, Nil)) {
                  val s = jsig(preRebound, existentiallyBound)
                  if (s.charAt(0) == 'L') s.substring(0, s.length - 1) + "." + sym.javaSimpleName
                  else fullNameInSig(sym)
                }
                else fullNameInSig(sym)
              ) + (
                if (args.isEmpty) "" else
                "<"+(args map argSig).mkString+">"
              ) + (
                ";"
              )
            )
          }

          // If args isEmpty, Array is being used as a type constructor
          if (sym == ArrayClass && args.nonEmpty) {
            if (unboundedGenericArrayLevel(tp) == 1) jsig(ObjectTpe)
            else ARRAY_TAG.toString+(args map (jsig(_))).mkString
          }
          else if (isTypeParameterInSig(sym, sym0)) {
            assert(!sym.isAliasType, "Unexpected alias type: " + sym)
            "" + TVAR_TAG + sym.name + ";"
          }
          else if (sym == AnyClass || sym == AnyValClass || sym == SingletonClass)
            jsig(ObjectTpe)
          else if (sym == UnitClass)
            jsig(BoxedUnitTpe)
          else if (sym == NothingClass)
            jsig(RuntimeNothingClass.tpe)
          else if (sym == NullClass)
            jsig(RuntimeNullClass.tpe)
          else if (isPrimitiveValueClass(sym)) {
            if (!primitiveOK) jsig(ObjectTpe)
            else if (sym == UnitClass) jsig(BoxedUnitTpe)
            else abbrvTag(sym).toString
          }
          else if (sym.isDerivedValueClass) {
            val unboxed     = sym.derivedValueClassUnbox.tpe_*.finalResultType
            val unboxedSeen = (tp memberType sym.derivedValueClassUnbox).finalResultType
            def unboxedMsg  = if (unboxed == unboxedSeen) "" else s", seen within ${sym.simpleName} as $unboxedSeen"
            logResult(s"Erasure of value class $sym (underlying type $unboxed$unboxedMsg) is") {
              if (isPrimitiveValueType(unboxedSeen) && !primitiveOK)
                classSig
              else
                jsig(unboxedSeen, existentiallyBound, toplevel, primitiveOK)
            }
          }
          else if (sym.isClass)
            classSig
          else
            jsig(erasure(sym0)(tp), existentiallyBound, toplevel, primitiveOK)
        case PolyType(tparams, restpe) =>
          assert(tparams.nonEmpty)
          val poly = if (toplevel) polyParamSig(tparams) else ""
          poly + jsig(restpe)

        case MethodType(params, restpe) =>
          val buf = new StringBuffer("(")
          params foreach (p => {
            val tp = p.attachments.get[TypeParamVarargsAttachment] match {
              case Some(att) =>
                // For @varargs forwarders, a T* parameter has type Array[Object] in the forwarder
                // instead of Array[T], as the latter would erase to Object (instead of Array[Object]).
                // To make the generic signature correct ("[T", not "[Object"), an attachment on the
                // parameter symbol stores the type T that was replaced by Object.
                buf.append("["); att.typeParamRef
              case _         => p.tpe
            }
            buf append jsig(tp)
          })
          buf append ")"
          buf append (if (restpe.typeSymbol == UnitClass || sym0.isConstructor) VOID_TAG.toString else jsig(restpe))
          buf.toString

        case RefinedType(parents, decls) =>
          jsig(intersectionDominator(parents), primitiveOK = primitiveOK)
        case ClassInfoType(parents, _, _) =>
          superSig(parents)
        case AnnotatedType(_, atp) =>
          jsig(atp, existentiallyBound, toplevel, primitiveOK)
        case BoundedWildcardType(bounds) =>
          println("something's wrong: "+sym0+":"+sym0.tpe+" has a bounded wildcard type")
          jsig(bounds.hi, existentiallyBound, toplevel, primitiveOK)
        case _ =>
          val etp = erasure(sym0)(tp)
          if (etp eq tp) throw new UnknownSig
          else jsig(etp)
      }
    }
    val throwsArgs = sym0.annotations flatMap ThrownException.unapply
    if (needsJavaSig(info, throwsArgs)) {
      try Some(jsig(info, toplevel = true) + throwsArgs.map("^" + jsig(_, toplevel = true)).mkString(""))
      catch { case ex: UnknownSig => None }
    }
    else None
  }

  class UnknownSig extends Exception

  // TODO: move to constructors?
  object mixinTransformer extends Transformer {
    /** Add calls to supermixin constructors
      *    `super[mix].$init$()`
      *  to tree, which is assumed to be the body of a constructor of class clazz.
      */
    private def addMixinConstructorCalls(tree: Tree, clazz: Symbol): Tree = {
      def mixinConstructorCall(mc: Symbol): Tree = atPos(tree.pos) {
        Apply(SuperSelect(clazz, mc.primaryConstructor), Nil)
      }
      val mixinConstructorCalls: List[Tree] = {
        for (mc <- clazz.mixinClasses.reverse
             if mc.isTrait && mc.primaryConstructor != NoSymbol)
          yield mixinConstructorCall(mc)
      }
      tree match {

        case Block(Nil, expr) =>
          // AnyVal constructor - have to provide a real body so the
          // jvm doesn't throw a VerifyError. But we can't add the
          // body until now, because the typer knows that Any has no
          // constructor and won't accept a call to super.init.
          assert((clazz isSubClass AnyValClass) || clazz.info.parents.isEmpty, clazz)
          Block(List(Apply(gen.mkSuperInitCall, Nil)), expr)

        case Block(stats, expr) =>
          // needs `hasSymbolField` check because `supercall` could be a block (named / default args)
          val (presuper, supercall :: rest) = stats span (t => t.hasSymbolWhich(_ hasFlag PRESUPER))
          treeCopy.Block(tree, presuper ::: (supercall :: mixinConstructorCalls ::: rest), expr)
      }
    }

    override def transform(tree: Tree): Tree = {
      val sym = tree.symbol
      val tree1 = tree match {
        case DefDef(_,_,_,_,_,_) if sym.isClassConstructor && sym.isPrimaryConstructor && sym.owner != ArrayClass =>
          deriveDefDef(tree)(addMixinConstructorCalls(_, sym.owner)) // (3)
        case Template(parents, self, body) =>
          val parents1 = sym.owner.info.parents map (t => TypeTree(t) setPos tree.pos)
          treeCopy.Template(tree, parents1, noSelfType, body)
        case _ =>
          tree
      }
      super.transform(tree1)
    }
  }


  val deconstMap = new TypeMap {
    // For some reason classOf[Foo] creates ConstantType(Constant(tpe)) with an actual Type for tpe,
    // which is later translated to a Class. Unfortunately that means we have bugs like the erasure
    // of Class[Foo] and classOf[Bar] not being seen as equivalent, leading to duplicate method
    // generation and failing bytecode. See ticket #4753.
    def apply(tp: Type): Type = tp match {
      case PolyType(_, _)                  => mapOver(tp)
      case MethodType(_, _)                => mapOver(tp)     // nullarymethod was eliminated during uncurry
      case ConstantType(Constant(_: Type)) => ClassClass.tpe  // all classOfs erase to Class
      case _                               => tp.deconst
    }
  }

  // ## requires a little translation
  private lazy val poundPoundMethods = Set[Symbol](Any_##, Object_##)
  // Methods on Any/Object which we rewrite here while we still know what
  // is a primitive and what arrived boxed.
  private lazy val interceptedMethods = poundPoundMethods ++ primitiveGetClassMethods

// -------- erasure on trees ------------------------------------------

  override def newTyper(context: Context) = new Eraser(context)

  class ComputeBridges(unit: CompilationUnit, root: Symbol) {

    class BridgesCursor(root: Symbol) extends overridingPairs.Cursor(root) {
      override def parents              = List(root.info.firstParent)
      // Varargs bridges may need generic bridges due to the non-repeated part of the signature of the involved methods.
      // The vararg bridge is generated during refchecks (probably to simplify override checking),
      // but then the resulting varargs "bridge" method may itself need an actual erasure bridge.
      // TODO: like javac, generate just one bridge method that wraps Seq <-> varargs and does erasure-induced casts
      override def exclude(sym: Symbol) = !sym.isMethod || super.exclude(sym)
    }

    var toBeRemoved  = immutable.Set[Symbol]()
    val site         = root.thisType
    val bridgesScope = newScope
    val bridgeTarget = mutable.HashMap[Symbol, Symbol]()
    var bridges      = List[Tree]()

    val opc = enteringExplicitOuter { new BridgesCursor(root) }

    def compute(): (List[Tree], immutable.Set[Symbol]) = {
      while (opc.hasNext) {
        if (enteringExplicitOuter(!opc.low.isDeferred))
          checkPair(opc.currentPair)

        opc.next()
      }
      (bridges, toBeRemoved)
    }

    /** Check that a bridge only overrides members that are also overridden by the original member.
     *  This test is necessary only for members that have a value class in their type.
     *  Such members are special because their types after erasure and after post-erasure differ/.
     *  This means we generate them after erasure, but the post-erasure transform might introduce
     *  a name clash. The present method guards against these name clashes.
     *
     *  @param  member   The original member
     *  @param  other    The overridden symbol for which the bridge was generated
     *  @param  bridge   The bridge
     */
    def checkBridgeOverrides(member: Symbol, other: Symbol, bridge: Symbol): Seq[(Position, String)] = {
      def fulldef(sym: Symbol) =
        if (sym == NoSymbol) sym.toString
        else s"$sym: ${sym.tpe} in ${sym.owner}"
      val clashErrors = mutable.Buffer[(Position, String)]()
      def clashError(what: String) = {
        val pos = if (member.owner == root) member.pos else root.pos
        val msg = sm"""bridge generated for member ${fulldef(member)}
                      |which overrides ${fulldef(other)}
                      |clashes with definition of $what;
                      |both have erased type ${exitingPostErasure(bridge.tpe)}"""
        clashErrors += Tuple2(pos, msg)
      }
      for (bc <- root.baseClasses) {
        if (settings.debug)
          exitingPostErasure(println(
            sm"""check bridge overrides in $bc
                |${bc.info.nonPrivateDecl(bridge.name)}
                |${site.memberType(bridge)}
                |${site.memberType(bc.info.nonPrivateDecl(bridge.name) orElse IntClass)}
                |${(bridge.matchingSymbol(bc, site))}"""))

        def overriddenBy(sym: Symbol) =
          sym.matchingSymbol(bc, site).alternatives filter (sym => !sym.isBridge)
        for (overBridge <- exitingPostErasure(overriddenBy(bridge))) {
          if (overBridge == member) {
            clashError("the member itself")
          } else {
            val overMembers = overriddenBy(member)
            if (!overMembers.exists(overMember =>
              exitingPostErasure(overMember.tpe =:= overBridge.tpe))) {
              clashError(fulldef(overBridge))
            }
          }
        }
      }
      clashErrors
    }

    /** TODO - work through this logic with a fine-toothed comb, incorporating
     *  into SymbolPairs where appropriate.
     */
    def checkPair(pair: SymbolPair) {
      import pair._
      val member = low
      val other  = high
      val otpe   = highErased

      val bridgeNeeded = exitingErasure (
        !member.isMacro &&
        !(other.tpe =:= member.tpe) &&
        !(deconstMap(other.tpe) =:= deconstMap(member.tpe)) &&
        { var e = bridgesScope.lookupEntry(member.name)
          while ((e ne null) && !((e.sym.tpe =:= otpe) && (bridgeTarget(e.sym) == member)))
            e = bridgesScope.lookupNextEntry(e)
          (e eq null)
        }
      )
      if (!bridgeNeeded)
        return

      var newFlags = (member.flags | BRIDGE | ARTIFACT) & ~(ACCESSOR | DEFERRED | LAZY)
      // If `member` is a ModuleSymbol, the bridge should not also be a ModuleSymbol. Otherwise we
      // end up with two module symbols with the same name in the same scope, which is surprising
      // when implementing later phases.
      if (member.isModule) newFlags = (newFlags | METHOD) & ~(MODULE | STABLE)
      val bridge = other.cloneSymbolImpl(root, newFlags) setPos root.pos

      debuglog("generating bridge from %s (%s): %s to %s: %s".format(
        other, flagsToString(newFlags),
        otpe + other.locationString, member,
        specialErasure(root)(member.tpe) + member.locationString)
      )

      // the parameter symbols need to have the new owner
      bridge setInfo (otpe cloneInfo bridge)
      bridgeTarget(bridge) = member

      def sigContainsValueClass = (member.tpe exists (_.typeSymbol.isDerivedValueClass))

      val shouldAdd = (
            !sigContainsValueClass
        ||  (checkBridgeOverrides(member, other, bridge) match {
              case Nil => true
              case es if member.owner.isAnonymousClass => resolveAnonymousBridgeClash(member, bridge); true
              case es => for ((pos, msg) <- es) reporter.error(pos, msg); false
            })
      )

      if (shouldAdd) {
        exitingErasure(root.info.decls enter bridge)
        if (other.owner == root) {
          exitingErasure(root.info.decls.unlink(other))
          toBeRemoved += other
        }

        bridgesScope enter bridge
        bridges ::= makeBridgeDefDef(bridge, member, other)
      }
    }

    def makeBridgeDefDef(bridge: Symbol, member: Symbol, other: Symbol) = exitingErasure {
      // type checking ensures we can safely call `other`, but unless `member.tpe <:< other.tpe`,
      // calling `member` is not guaranteed to succeed in general, there's
      // nothing we can do about this, except for an unapply: when this subtype test fails,
      // return None without calling `member`
      //
      // TODO: should we do this for user-defined unapplies as well?
      // does the first argument list have exactly one argument -- for user-defined unapplies we can't be sure
      def maybeWrap(bridgingCall: Tree): Tree = {
        val guardExtractor = ( // can't statically know which member is going to be selected, so don't let this depend on member.isSynthetic
             (member.name == nme.unapply || member.name == nme.unapplySeq)
          && !exitingErasure((member.tpe <:< other.tpe))) // no static guarantees (TODO: is the subtype test ever true?)

        import CODE._
        val _false    = FALSE
        val pt        = member.tpe.resultType
        lazy val zero =
          if      (_false.tpe <:< pt)    _false
          else if (NoneModule.tpe <:< pt) REF(NoneModule)
          else EmptyTree

        if (guardExtractor && (zero ne EmptyTree)) {
          val typeTest = gen.mkIsInstanceOf(REF(bridge.firstParam), member.tpe.params.head.tpe)
          IF (typeTest) THEN bridgingCall ELSE zero
        } else bridgingCall
      }
      val rhs = member.tpe match {
        case MethodType(Nil, ConstantType(c)) => Literal(c)
        case _                                =>
          val sel: Tree    = Select(This(root), member)
          val bridgingCall = (sel /: bridge.paramss)((fun, vparams) => Apply(fun, vparams map Ident))

          maybeWrap(bridgingCall)
      }
      DefDef(bridge, rhs)
    }
  }

  /** The modifier typer which retypes with erased types. */
  class Eraser(_context: Context) extends Typer(_context) {
    val typeAdapter = new TypeAdapter { def typedPos(pos: Position)(tree: Tree): Tree = Eraser.this.typedPos(pos)(tree) }
    import typeAdapter._

    override protected def stabilize(tree: Tree, pre: Type, mode: Mode, pt: Type): Tree = tree

    /**  Replace member references as follows:
     *
     *   - `x == y` for == in class Any becomes `x equals y` with equals in class Object.
     *   - `x != y` for != in class Any becomes `!(x equals y)` with equals in class Object.
     *   - x.asInstanceOf[T] becomes x.$asInstanceOf[T]
     *   - x.isInstanceOf[T] becomes x.$isInstanceOf[T]
     *   - x.isInstanceOf[ErasedValueType(tref)] becomes x.isInstanceOf[tref.sym.tpe]
     *   - x.m where m is some other member of Any becomes x.m where m is a member of class Object.
     *   - x.m where x has unboxed value type T and m is not a directly translated member of T becomes T.box(x).m
     *   - x.m where x is a reference type and m is a directly translated member of value type T becomes x.TValue().m
     *   - All forms of x.m where x is a boxed type and m is a member of an unboxed class become
     *     x.m where m is the corresponding member of the boxed class.
     */
    private def adaptMember(tree: Tree): Tree = {
      //Console.println("adaptMember: " + tree);
      tree match {
        case Apply(ta @ TypeApply(sel @ Select(qual, name), List(targ)), List())
        if tree.symbol == Any_asInstanceOf =>
          val qual1 = typedQualifier(qual, NOmode, ObjectTpe) // need to have an expected type, see #3037
          // !!! Make pending/run/t5866b.scala work. The fix might be here and/or in unbox1.
          if (isPrimitiveValueType(targ.tpe) || isErasedValueType(targ.tpe)) {
            val noNullCheckNeeded = targ.tpe match {
              case ErasedValueType(_, underlying) => isPrimitiveValueType(underlying)
              case _ => true
            }
            if (noNullCheckNeeded) unbox(qual1, targ.tpe)
            else {
              val untyped =
//                util.trace("new asinstanceof test") {
                  gen.evalOnce(qual1, context.owner, context.unit) { qual =>
                    If(Apply(Select(qual(), nme.eq), List(Literal(Constant(null)) setType NullTpe)),
                       Literal(Constant(null)) setType targ.tpe,
                       unbox(qual(), targ.tpe))
                  }
//                }
              typed(untyped)
            }
          } else treeCopy.Apply(tree, treeCopy.TypeApply(ta, treeCopy.Select(sel, qual1, name), List(targ)), List())

        case Apply(TypeApply(sel @ Select(qual, name), List(targ)), List())
        if tree.symbol == Any_isInstanceOf =>
          targ.tpe match {
            case ErasedValueType(clazz, _) => targ.setType(clazz.tpe)
            case _ =>
          }
            tree
        case Select(qual, name) =>
          if (tree.symbol == NoSymbol) {
            tree
          } else if (name == nme.CONSTRUCTOR) {
            if (tree.symbol.owner == AnyValClass) tree.symbol = ObjectClass.primaryConstructor
            tree
          } else if (tree.symbol == Any_asInstanceOf)
            adaptMember(atPos(tree.pos)(Select(qual, Object_asInstanceOf)))
          else if (tree.symbol == Any_isInstanceOf)
            adaptMember(atPos(tree.pos)(Select(qual, Object_isInstanceOf)))
          else if (tree.symbol.owner == AnyClass)
            adaptMember(atPos(tree.pos)(Select(qual, getMember(ObjectClass, tree.symbol.name))))
          else {
            var qual1 = typedQualifier(qual)
            if ((isPrimitiveValueType(qual1.tpe) && !isPrimitiveValueMember(tree.symbol)) ||
                 isErasedValueType(qual1.tpe))
              qual1 = box(qual1)
            else if (!isPrimitiveValueType(qual1.tpe) && isPrimitiveValueMember(tree.symbol))
              qual1 = unbox(qual1, tree.symbol.owner.tpe)

            def selectFrom(qual: Tree) = treeCopy.Select(tree, qual, name)

            if (isPrimitiveValueMember(tree.symbol) && !isPrimitiveValueType(qual1.tpe)) {
              tree.symbol = NoSymbol
              selectFrom(qual1)
            } else if (isMethodTypeWithEmptyParams(qual1.tpe)) { // see also adaptToType in TypeAdapter
              assert(qual1.symbol.isStable, qual1.symbol)
              adaptMember(selectFrom(applyMethodWithEmptyParams(qual1)))
            } else if (!(qual1.isInstanceOf[Super] || (qual1.tpe.typeSymbol isSubClass tree.symbol.owner))) {
              assert(tree.symbol.owner != ArrayClass)
              selectFrom(cast(qual1, tree.symbol.owner.tpe.resultType))
            } else {
              selectFrom(qual1)
            }
          }
        case SelectFromArray(qual, name, erasure) =>
          var qual1 = typedQualifier(qual)
          if (!(qual1.tpe <:< erasure)) qual1 = cast(qual1, erasure)
          Select(qual1, name) copyAttrs tree
        case _ =>
          tree
      }
    }

    /** A replacement for the standard typer's adapt method.
     */
    override protected def adapt(tree: Tree, mode: Mode, pt: Type, original: Tree = EmptyTree): Tree =
      adaptToType(tree, pt)

    /** A replacement for the standard typer's `typed1` method.
     */
    override def typed1(tree: Tree, mode: Mode, pt: Type): Tree = {
      val tree1 = try {
        tree match {
          case InjectDerivedValue(arg) =>
            (tree.attachments.get[TypeRefAttachment]: @unchecked) match {
              case Some(itype) =>
                val tref = itype.tpe
                val argPt = enteringErasure(erasedValueClassArg(tref))
                log(s"transforming inject $arg -> $tref/$argPt")
                val result = typed(arg, mode, argPt)
                log(s"transformed inject $arg -> $tref/$argPt = $result:${result.tpe}")
                return result setType ErasedValueType(tref.sym, result.tpe)

            }
          case _ =>
            super.typed1(adaptMember(tree), mode, pt)
        }
      } catch {
        case er: TypeError =>
          Console.println("exception when typing " + tree+"/"+tree.getClass)
          Console.println(er.msg + " in file " + context.owner.sourceFile)
          er.printStackTrace
          abort("unrecoverable error")
        case ex: Exception =>
          //if (settings.debug.value)
          try Console.println("exception when typing " + tree)
          finally throw ex
          throw ex
      }

      def adaptCase(cdef: CaseDef): CaseDef = {
        val newCdef = deriveCaseDef(cdef)(adaptToType(_, tree1.tpe))
        newCdef setType newCdef.body.tpe
      }
      def adaptBranch(branch: Tree): Tree =
        if (branch == EmptyTree) branch else adaptToType(branch, tree1.tpe)

      tree1 match {
        case fun: Function =>
          fun.attachments.get[SAMFunction] match {
            case Some(SAMFunction(samTp, _)) => fun setType specialScalaErasure(samTp)
            case _ => fun
          }

        case If(cond, thenp, elsep) =>
          treeCopy.If(tree1, cond, adaptBranch(thenp), adaptBranch(elsep))
        case Match(selector, cases) =>
          treeCopy.Match(tree1, selector, cases map adaptCase)
        case Try(block, catches, finalizer) =>
          treeCopy.Try(tree1, adaptBranch(block), catches map adaptCase, finalizer)
        case Ident(_) | Select(_, _) =>
          if (tree1.symbol.isOverloaded) {
            val first = tree1.symbol.alternatives.head
            val sym1 = tree1.symbol.filter {
              alt => alt == first || !(first.tpe looselyMatches alt.tpe)
            }
            if (tree.symbol ne sym1) {
              tree1 setSymbol sym1 setType sym1.tpe
            }
          }
          tree1
        case _ =>
          tree1
      }
    }
  }

  /** The erasure transformer */
  class ErasureTransformer(unit: CompilationUnit) extends Transformer {
    import overridingPairs.Cursor

    private def doubleDefError(pair: SymbolPair) {
      import pair._

      if (!pair.isErroneous) {
        val what = (
          if (low.owner == high.owner) "double definition"
          else if (low.owner == base) "name clash between defined and inherited member"
          else "name clash between inherited members"
        )
        val when = if (exitingRefchecks(lowType matches highType)) "" else " after erasure: " + exitingPostErasure(highType)

        reporter.error(pos,
          s"""|$what:
              |${exitingRefchecks(highString)} and
              |${exitingRefchecks(lowString)}
              |have same type$when""".trim.stripMargin
        )
      }
      low setInfo ErrorType
    }

    private def sameTypeAfterErasure(sym1: Symbol, sym2: Symbol) =
      exitingPostErasure(sym1.info =:= sym2.info) && !sym1.isMacro && !sym2.isMacro

    /** TODO - adapt SymbolPairs so it can be used here. */
    private def checkNoDeclaredDoubleDefs(base: Symbol) {
      val decls = base.info.decls

      // SI-8010 force infos, otherwise makeNotPrivate in ExplicitOuter info transformer can trigger
      //         a scope rehash while were iterating and we can see the same entry twice!
      //         Inspection of SymbolPairs (the basis of OverridingPairs), suggests that it is immune
      //         from this sort of bug as it copies the symbols into a temporary scope *before* any calls to `.info`,
      //         ie, no variant of it calls `info` or `tpe` in `SymbolPair#exclude`.
      //
      //         Why not just create a temporary scope here? We need to force the name changes in any case before
      //         we do these checks, so that we're comparing same-named methods based on the expanded names that actually
      //         end up in the bytecode.
      exitingPostErasure(decls.foreach(_.info))

      var e = decls.elems
      while (e ne null) {
        if (e.sym.isTerm) {
          var e1 = decls lookupNextEntry e
          while (e1 ne null) {
            assert(e.sym ne e1.sym, s"Internal error: encountered ${e.sym.debugLocationString} twice during scope traversal. This might be related to SI-8010.")
            if (sameTypeAfterErasure(e.sym, e1.sym))
              doubleDefError(new SymbolPair(base, e.sym, e1.sym))

            e1 = decls lookupNextEntry e1
          }
        }
        e = e.next
      }
    }

    private class DoubleDefsCursor(root: Symbol) extends Cursor(root) {
      // specialized members have no type history before 'specialize', causing double def errors for curried defs
      override def exclude(sym: Symbol): Boolean = (
           sym.isType
        || super.exclude(sym)
        || !sym.hasTypeAt(currentRun.refchecksPhase.id)
      )
      override def matches(lo: Symbol, high: Symbol) = !high.isPrivate
    }

    /** Emit an error if there is a double definition. This can happen if:
     *
     *  - A template defines two members with the same name and erased type.
     *  - A template defines and inherits two members `m` with different types,
     *    but their erased types are the same.
     *  - A template inherits two members `m` with different types,
     *    but their erased types are the same.
     */
    private def checkNoDoubleDefs(root: Symbol) {
      checkNoDeclaredDoubleDefs(root)
      def isErasureDoubleDef(pair: SymbolPair) = {
        import pair._
        log(s"Considering for erasure clash:\n$pair")
        !exitingRefchecks(lowType matches highType) && sameTypeAfterErasure(low, high)
      }
      (new DoubleDefsCursor(root)).iterator filter isErasureDoubleDef foreach doubleDefError
    }

    /**  Add bridge definitions to a template. This means:
     *
     *   If there is a concrete member `m` which overrides a member in a base
     *   class of the template, and the erased types of the two members differ,
     *   and the two members are not inherited or defined by some parent class
     *   of the template, then a bridge from the overridden member `m1` to the
     *   member `m0` is added. The bridge has the erased type of `m1` and
     *   forwards to `m0`.
     *
     *   No bridge is added if there is already a bridge to `m0` with the erased
     *   type of `m1` in the template.
     */
    private def bridgeDefs(owner: Symbol): (List[Tree], immutable.Set[Symbol]) = {
      assert(phase == currentRun.erasurePhase, phase)
      new ComputeBridges(unit, owner) compute()
    }

    def addBridges(stats: List[Tree], base: Symbol): List[Tree] =
      if (base.isTrait) stats
      else {
        val (bridges, toBeRemoved) = bridgeDefs(base)
        if (bridges.isEmpty) stats
        else (stats filterNot (stat => toBeRemoved contains stat.symbol)) ::: bridges
      }

    /**  Transform tree at phase erasure before retyping it.
     *   This entails the following:
     *
     *   - Remove all type parameters in class and method definitions.
     *   - Remove all abstract and alias type definitions.
     *   - Remove all type applications other than those involving a type test or cast.
     *   - Remove all empty trees in statements and definitions in a PackageDef.
     *   - Check that there are no double definitions in a template.
     *   - Add bridge definitions to a template.
     *   - Replace all types in type nodes and the EmptyTree object by their erasure.
     *     Type nodes of type Unit representing result types of methods are left alone.
     *   - Given a selection q.s, where the owner of `s` is not accessible but the
     *     type symbol of q's type qT is accessible, insert a cast (q.asInstanceOf[qT]).s
     *     This prevents illegal access errors (see #4283).
     *   - Remove all instance creations new C(arg) where C is an inlined class.
     *   - Reset all other type attributes to null, thus enforcing a retyping.
     */
    private val preTransformer = new TypingTransformer(unit) {

      private def preEraseNormalApply(tree: Apply) = {
        val fn = tree.fun
        val args = tree.args

        def qualifier = fn match {
          case Select(qual, _) => qual
          case TypeApply(Select(qual, _), _) => qual
        }
        def preEraseAsInstanceOf = {
          (fn: @unchecked) match {
            case TypeApply(Select(qual, _), List(targ)) =>
              if (qual.tpe <:< targ.tpe)
                atPos(tree.pos) { Typed(qual, TypeTree(targ.tpe)) }
              else if (isNumericValueClass(qual.tpe.typeSymbol) && isNumericValueClass(targ.tpe.typeSymbol))
                atPos(tree.pos)(numericConversion(qual, targ.tpe.typeSymbol))
              else
                tree
          }
          // todo: also handle the case where the singleton type is buried in a compound
        }

        def preEraseIsInstanceOf = {
          fn match {
            case TypeApply(sel @ Select(qual, name), List(targ)) =>
              if (qual.tpe != null && isPrimitiveValueClass(qual.tpe.typeSymbol) && targ.tpe != null && targ.tpe <:< AnyRefTpe)
                reporter.error(sel.pos, "isInstanceOf cannot test if value types are references.")

              def mkIsInstanceOf(q: () => Tree)(tp: Type): Tree =
                Apply(
                  TypeApply(
                    Select(q(), Object_isInstanceOf) setPos sel.pos,
                    List(TypeTree(tp) setPos targ.pos)) setPos fn.pos,
                  List()) setPos tree.pos
              targ.tpe match {
                case SingleType(_, _) | ThisType(_) | SuperType(_, _) =>
                  val cmpOp = if (targ.tpe <:< AnyValTpe) Any_equals else Object_eq
                  atPos(tree.pos) {
                    Apply(Select(qual, cmpOp), List(gen.mkAttributedQualifier(targ.tpe)))
                  }
                case RefinedType(parents, decls) if (parents.length >= 2) =>
                  gen.evalOnce(qual, currentOwner, unit) { q =>
                    // Optimization: don't generate isInstanceOf tests if the static type
                    // conforms, because it always succeeds.  (Or at least it had better.)
                    // At this writing the pattern matcher generates some instance tests
                    // involving intersections where at least one parent is statically known true.
                    // That needs fixing, but filtering the parents here adds an additional
                    // level of robustness (in addition to the short term fix.)
                    val parentTests = parents filterNot (qual.tpe <:< _)

                    if (parentTests.isEmpty) Literal(Constant(true))
                    else atPos(tree.pos) {
                      parentTests map mkIsInstanceOf(q) reduceRight gen.mkAnd
                    }
                  }
                case _ =>
                  tree
              }
            case _ => tree
          }
        }

        if (fn.symbol == Any_asInstanceOf) {
          preEraseAsInstanceOf
        } else if (fn.symbol == Any_isInstanceOf) {
          preEraseIsInstanceOf
        } else if (fn.symbol.isOnlyRefinementMember) {
          // !!! Another spot where we produce overloaded types (see test pos/t6301)
          log(s"${fn.symbol.fullLocationString} originates in refinement class - call will be implemented via reflection.")
          ApplyDynamic(qualifier, args) setSymbol fn.symbol setPos tree.pos
        } else if (fn.symbol.isMethodWithExtension && !fn.symbol.tpe.isErroneous) {
          Apply(gen.mkAttributedRef(extensionMethods.extensionMethod(fn.symbol)), qualifier :: args)
        } else {
          tree
        }
      }

      private def preEraseApply(tree: Apply) = {
        tree.fun match {
          case TypeApply(fun @ Select(qual, name), args @ List(arg))
          if ((fun.symbol == Any_isInstanceOf || fun.symbol == Object_isInstanceOf) &&
              unboundedGenericArrayLevel(arg.tpe) > 0) => // !!! todo: simplify by having GenericArray also extract trees
            val level = unboundedGenericArrayLevel(arg.tpe)
            def isArrayTest(arg: Tree) =
              gen.mkRuntimeCall(nme.isArray, List(arg, Literal(Constant(level))))

            global.typer.typedPos(tree.pos) {
              if (level == 1) isArrayTest(qual)
              else gen.evalOnce(qual, currentOwner, unit) { qual1 =>
                gen.mkAnd(
                  gen.mkMethodCall(
                    qual1(),
                    fun.symbol,
                    List(specialErasure(fun.symbol)(arg.tpe)),
                    Nil
                  ),
                  isArrayTest(qual1())
                )
              }
            }
          case fn @ Select(qual, name) =>
            val args = tree.args
            if (fn.symbol.owner == ArrayClass) {
              // Have to also catch calls to abstract types which are bounded by Array.
              if (unboundedGenericArrayLevel(qual.tpe.widen) == 1 || qual.tpe.typeSymbol.isAbstractType) {
                // convert calls to apply/update/length on generic arrays to
                // calls of ScalaRunTime.array_xxx method calls
                global.typer.typedPos(tree.pos) {
                  val arrayMethodName = name match {
                    case nme.apply  => nme.array_apply
                    case nme.length => nme.array_length
                    case nme.update => nme.array_update
                    case nme.clone_ => nme.array_clone
                    case _          => reporter.error(tree.pos, "Unexpected array member, no translation exists.") ; nme.NO_NAME
                  }
                  gen.mkRuntimeCall(arrayMethodName, qual :: args)
                }
              } else {
                // store exact array erasure in map to be retrieved later when we might
                // need to do the cast in adaptMember
                // Note: No specialErasure needed here because we simply cast, on
                // elimination of SelectFromArray, no boxing or unboxing is done there.
                treeCopy.Apply(
                  tree,
                  SelectFromArray(qual, name, erasure(tree.symbol)(qual.tpe)).copyAttrs(fn),
                  args)
              }
            }
            else if (args.isEmpty && interceptedMethods(fn.symbol)) {
              if (poundPoundMethods.contains(fn.symbol)) {
                // This is unattractive, but without it we crash here on ().## because after
                // erasure the ScalaRunTime.hash overload goes from Unit => Int to BoxedUnit => Int.
                // This must be because some earlier transformation is being skipped on ##, but so
                // far I don't know what.  For null we now define null.## == 0.
                def staticsCall(methodName: TermName): Tree = {
                  val newTree = gen.mkMethodCall(RuntimeStaticsModule, methodName, qual :: Nil)
                  global.typer.typed(newTree)
                }

                qual.tpe.typeSymbol match {
                  case UnitClass | NullClass                    => LIT(0)
                  case IntClass                                 => qual
                  case s @ (ShortClass | ByteClass | CharClass) => numericConversion(qual, s)
                  case BooleanClass                             => If(qual, LIT(true.##), LIT(false.##))
                  case LongClass                                => staticsCall(nme.longHash)
                  case FloatClass                               => staticsCall(nme.floatHash)
                  case DoubleClass                              => staticsCall(nme.doubleHash)
                  case _                                        => staticsCall(nme.anyHash)
                }
              } else if (isPrimitiveValueClass(qual.tpe.typeSymbol)) {
                // Rewrite 5.getClass to ScalaRunTime.anyValClass(5)
                global.typer.typed(gen.mkRuntimeCall(nme.anyValClass, List(qual, typer.resolveClassTag(tree.pos, qual.tpe.widen))))
              } else if (primitiveGetClassMethods.contains(fn.symbol)) {
                // if we got here then we're trying to send a primitive getClass method to either
                // a) an Any, in which cage Object_getClass works because Any erases to object. Or
                //
                // b) a non-primitive, e.g. because the qualifier's type is a refinement type where one parent
                //    of the refinement is a primitive and another is AnyRef. In that case
                //    we get a primitive form of _getClass trying to target a boxed value
                //    so we need replace that method name with Object_getClass to get correct behavior.
                //    See SI-5568.
                tree setSymbol Object_getClass
              } else {
                devWarning(s"The symbol '${fn.symbol}' was intercepted but didn't match any cases, that means the intercepted methods set doesn't match the code")
                tree
              }
            } else qual match {
              case New(tpt) if name == nme.CONSTRUCTOR && tpt.tpe.typeSymbol.isDerivedValueClass =>
                // println("inject derived: "+arg+" "+tpt.tpe)
                val List(arg) = args
                val attachment = new TypeRefAttachment(tree.tpe.asInstanceOf[TypeRef])
                InjectDerivedValue(arg) updateAttachment attachment
              case _ =>
                preEraseNormalApply(tree)
            }

          case _ =>
            preEraseNormalApply(tree)
        }
      }

      def preErase(tree: Tree): Tree = tree match {
        case tree: Apply =>
          preEraseApply(tree)

        case TypeApply(fun, args) if (fun.symbol.owner != AnyClass &&
                                      fun.symbol != Object_asInstanceOf &&
                                      fun.symbol != Object_isInstanceOf &&
                                      fun.symbol != Object_synchronized) =>
          // leave all other type tests/type casts, remove all other type applications
          preErase(fun)

        case Select(qual, name) =>
          val sym = tree.symbol
          val owner = sym.owner
          if (owner.isRefinementClass) {
            sym.allOverriddenSymbols filterNot (_.owner.isRefinementClass) match {
              case overridden :: _ =>
                log(s"${sym.fullLocationString} originates in refinement class - replacing with ${overridden.fullLocationString}.")
                tree.symbol = overridden
              case Nil =>
                // Ideally this should not be reached or reachable; anything which would
                // get here should have been caught in the surrounding Apply.
                devWarning(s"Failed to rewrite reflective apply - now don't know what to do with " + tree)
                return treeCopy.Select(tree, gen.mkAttributedCast(qual, qual.tpe.widen), name)
            }
          }

          def isJvmAccessible(sym: Symbol) = (sym.isClass && !sym.isJavaDefined) || localTyper.context.isAccessible(sym, sym.owner.thisType)
          if (!isJvmAccessible(owner) && qual.tpe != null) {
            qual match {
              case Super(_, _) =>
                // Insert a cast here at your peril -- see SI-5162.
                reporter.error(tree.pos, s"Unable to access ${tree.symbol.fullLocationString} with a super reference.")
                tree
              case _ =>
                // Todo: Figure out how qual.tpe could be null in the check above (it does appear in build where SwingWorker.this
                // has a null type).
                val qualSym = qual.tpe.widen.typeSymbol
                if (isJvmAccessible(qualSym) && !qualSym.isPackageClass && !qualSym.isPackageObjectClass) {
                  // insert cast to prevent illegal access error (see #4283)
                  // util.trace("insert erasure cast ") (*/
                  treeCopy.Select(tree, gen.mkAttributedCast(qual, qual.tpe.widen), name) //)
                } else tree
            }
          } else tree
        case Template(parents, self, body) =>
          //Console.println("checking no dble defs " + tree)//DEBUG
          checkNoDoubleDefs(tree.symbol.owner)
          treeCopy.Template(tree, parents, noSelfType, addBridges(body, currentOwner))

        case Match(selector, cases) =>
          Match(Typed(selector, TypeTree(selector.tpe)), cases)

        case Literal(ct) if ct.tag == ClazzTag
                         && ct.typeValue.typeSymbol != definitions.UnitClass =>
          val erased = ct.typeValue.dealiasWiden match {
            case tr @ TypeRef(_, clazz, _) if clazz.isDerivedValueClass => scalaErasure.eraseNormalClassRef(tr)
            case tpe => specialScalaErasure(tpe)
          }
          treeCopy.Literal(tree, Constant(erased))

        case ClassDef(_,_,_,_) =>
          debuglog("defs of " + tree.symbol + " = " + tree.symbol.info.decls)
          copyClassDef(tree)(tparams = Nil)
        case DefDef(_,_,_,_,_,_) =>
          copyDefDef(tree)(tparams = Nil)
        case TypeDef(_, _, _, _) =>
          EmptyTree

        case _ =>
          tree
      }

      override def transform(tree: Tree): Tree = {
        // Reply to "!!! needed?" which adorned the next line: without it, build fails with:
        //   Exception in thread "main" scala.tools.nsc.symtab.Types$TypeError:
        //   value array_this is not a member of object scala.runtime.ScalaRunTime
        //
        // What the heck is array_this? See preTransformer in this file:
        //   gen.mkRuntimeCall("array_"+name, qual :: args)
        if (tree.symbol == ArrayClass && !tree.isType) tree
        else {
          val tree1 = preErase(tree)
          tree1 match {
            case TypeApply(fun, targs @ List(targ)) if (fun.symbol == Any_asInstanceOf  || fun.symbol == Object_synchronized) && targ.tpe == UnitTpe =>
              // SI-9066 prevent transforming `o.asInstanceOf[Unit]` to `o.asInstanceOf[BoxedUnit]`.
              // adaptMember will then replace the call by a reference to BoxedUnit.UNIT.
              treeCopy.TypeApply(tree1, transform(fun), targs).clearType()
            case EmptyTree | TypeTree() =>
              tree1 setType specialScalaErasure(tree1.tpe)
            case ArrayValue(elemtpt, trees) =>
              treeCopy.ArrayValue(
                tree1, elemtpt setType specialScalaErasure.applyInArray(elemtpt.tpe), trees map transform).clearType()
            case DefDef(_, _, _, _, tpt, _) =>
              // TODO: move this in some post-processing transform in the fields phase?
              if (fields.symbolAnnotationsTargetFieldAndGetter(tree.symbol))
                fields.dropFieldAnnotationsFromGetter(tree.symbol)

              try super.transform(tree1).clearType()
              finally tpt setType specialErasure(tree1.symbol)(tree1.symbol.tpe).resultType
            case ApplyDynamic(qual, Literal(Constant(bootstrapMethodRef: Symbol)) :: _) =>
              tree
            case _ =>
              super.transform(tree1).clearType()
          }
        }
      }
    }

    /** The main transform function: Pretransform the tree, and then
     *  re-type it at phase erasure.next.
     */
    override def transform(tree: Tree): Tree = {
      val tree1 = preTransformer.transform(tree)
      // log("tree after pretransform: "+tree1)
      exitingErasure {
        val tree2 = mixinTransformer.transform(tree1)
        // debuglog("tree after addinterfaces: \n" + tree2)

        newTyper(rootContextPostTyper(unit, tree)).typed(tree2)
      }
    }
  }

  final def resolveAnonymousBridgeClash(sym: Symbol, bridge: Symbol) {
    // TODO reinstate this after Delambdafy generates anonymous classes that meet this requirement.
    // require(sym.owner.isAnonymousClass, sym.owner)
    log(s"Expanding name of ${sym.debugLocationString} as it clashes with bridge. Renaming deemed safe because the owner is anonymous.")
    sym.expandName(sym.owner)
    bridge.resetFlag(BRIDGE)
  }

  /** Does this symbol compile to the underlying platform's notion of an interface,
    * without requiring compiler magic before it can be instantiated?
    *
    * More specifically, we're interested in whether LambdaMetaFactory can instantiate this type,
    * assuming it has a single abstract method. In other words, if we were to mix this
    * trait into a class, it should not result in any compiler-generated members having to be
    * implemented in ("mixed in to") this class (except for the SAM).
    *
    * Thus, the type must erase to a java interface, either by virtue of being defined as one,
    * or by being a trait that:
    *   - is static (explicitouter or lambdalift may add disqualifying members)
    *   - extends only other traits that compile to pure interfaces (except for Any)
    *   - has no val/var members
    *
    * TODO: can we speed this up using the INTERFACE flag, or set it correctly by construction?
    */
  final def compilesToPureInterface(tpSym: Symbol): Boolean = {
    def ok(sym: Symbol) =
      sym.isJavaInterface ||
      sym.isTrait &&
      // Unless sym.isStatic, even if the constructor is zero-argument now, it may acquire arguments in explicit outer or lambdalift.
      // This is an impl restriction to simplify the decision of whether to expand the SAM during uncurry
      // (when we don't yet know whether it will receive an outer pointer in explicit outer or whether lambda lift will add proxies for captures).
      // When we delay sam expansion until after explicit outer & lambda lift, we could decide there whether
      // to expand sam at compile time or use LMF, and this implementation restriction could be lifted.
      sym.isStatic &&
      // HACK: this is to rule out traits with an effectful initializer.
      // The constructor only exists if the trait's template has statements.
      // Sadly, we can't be more precise without access to the tree that defines the SAM's owner.
      !sym.primaryConstructor.exists &&
      (sym.isInterface || sym.info.decls.forall(mem => mem.isMethod || mem.isType)) // TODO OPT: && {sym setFlag INTERFACE; true})

    // we still need to check our ancestors even if the INTERFACE flag is set, as it doesn't take inheritance into account
    ok(tpSym) && tpSym.ancestors.forall(sym => (sym eq AnyClass) || (sym eq ObjectClass) || ok(sym))
  }

  private class TypeRefAttachment(val tpe: TypeRef)
}