summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/transform/patmat/MatchTranslation.scala
blob: bf3bc6b26ea9675e84a7c2697b0b1ac7f9ce9994 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/* NSC -- new Scala compiler
 *
 * Copyright 2011-2013 LAMP/EPFL
 * @author Adriaan Moors
 */

package scala.tools.nsc.transform.patmat

import scala.language.postfixOps
import scala.collection.mutable
import scala.reflect.internal.util.Statistics

/** Translate typed Trees that represent pattern matches into the patternmatching IR, defined by TreeMakers.
 */
trait MatchTranslation {
  self: PatternMatching =>

  import PatternMatchingStats._
  import global._
  import definitions._
  import global.analyzer.{ErrorUtils, formalTypes}
  import treeInfo.{ WildcardStarArg, Unapplied, isStar, unbind }
  import CODE._

  // Always map repeated params to sequences
  private def setVarInfo(sym: Symbol, info: Type) =
    sym setInfo debug.patmatResult(s"changing ${sym.defString} to")(repeatedToSeq(info))

  private def hasSym(t: Tree) = t.symbol != null && t.symbol != NoSymbol

  trait MatchTranslator extends TreeMakers with TreeMakerWarnings {
    import typer.context

    /** A conservative approximation of which patterns do not discern anything.
     * They are discarded during the translation.
     */
    object WildcardPattern {
      def unapply(pat: Tree): Boolean = pat match {
        case Bind(nme.WILDCARD, WildcardPattern()) => true // don't skip when binding an interesting symbol!
        case Star(WildcardPattern())               => true
        case x: Ident                              => treeInfo.isVarPattern(x)
        case Alternative(ps)                       => ps forall unapply
        case EmptyTree                             => true
        case _                                     => false
      }
    }

    object PatternBoundToUnderscore {
      def unapply(pat: Tree): Boolean = pat match {
        case Bind(nme.WILDCARD, _)                => true // don't skip when binding an interesting symbol!
        case Ident(nme.WILDCARD)                  => true
        case Alternative(ps)                      => ps forall unapply
        case Typed(PatternBoundToUnderscore(), _) => true
        case _                                    => false
      }
    }

    object SymbolBound {
      def unapply(tree: Tree): Option[(Symbol, Tree)] = tree match {
        case Bind(_, expr) if hasSym(tree) => Some(tree.symbol -> expr)
        case _                             => None
      }
    }

    def newBoundTree(tree: Tree, pt: Type): BoundTree = tree match {
      case SymbolBound(sym, expr) => BoundTree(setVarInfo(sym, pt), expr)
      case _                      => BoundTree(setVarInfo(freshSym(tree.pos, prefix = "p"), pt), tree)
    }

    final case class BoundTree(binder: Symbol, tree: Tree) {
      private lazy val extractor = ExtractorCall(tree)

      def pos     = tree.pos
      def tpe     = binder.info.dealiasWiden  // the type of the variable bound to the pattern
      def pt      = unbound match {
        case Star(tpt)      => this glbWith seqType(tpt.tpe)
        case TypeBound(tpe) => tpe
        case tree           => tree.tpe
      }
      def glbWith(other: Type) = glb(tpe :: other :: Nil).normalize

      object SymbolAndTypeBound {
        def unapply(tree: Tree): Option[(Symbol, Type)] = tree match {
          case SymbolBound(sym, TypeBound(tpe)) => Some(sym -> tpe)
          case TypeBound(tpe)                   => Some(binder -> tpe)
          case _                                => None
        }
      }

      object TypeBound {
        def unapply(tree: Tree): Option[Type] = tree match {
          case Typed(Ident(_), _) if tree.tpe != null => Some(tree.tpe)
          case _                                      => None
        }
      }

      private def rebindTo(pattern: Tree) = BoundTree(binder, pattern)
      private def step(treeMakers: TreeMaker*)(subpatterns: BoundTree*): TranslationStep = TranslationStep(treeMakers.toList, subpatterns.toList)

      private def bindingStep(sub: Symbol, subpattern: Tree) = step(SubstOnlyTreeMaker(sub, binder))(rebindTo(subpattern))
      private def equalityTestStep()                         = step(EqualityTestTreeMaker(binder, tree, pos))()
      private def typeTestStep(sub: Symbol, subPt: Type)     = step(TypeTestTreeMaker(sub, binder, subPt, glbWith(subPt))(pos))()
      private def alternativesStep(alts: List[Tree])         = step(AlternativesTreeMaker(binder, translatedAlts(alts), alts.head.pos))()
      private def translatedAlts(alts: List[Tree])           = alts map (alt => rebindTo(alt).translate())
      private def noStep()                                   = step()()

      private def unsupportedPatternMsg = sm"""
        |unsupported pattern: ${tree.shortClass} / $this (this is a scalac bug.)
        |""".trim

      // example check: List[Int] <:< ::[Int]
      private def extractorStep(): TranslationStep = {
        import extractor.treeMaker

        // paramType = the type expected by the unapply
        // TODO: paramType may contain unbound type params (run/t2800, run/t3530)
        val makers = {
          val paramType = extractor.aligner.wholeType
          // Statically conforms to paramType
          if (this ensureConformsTo paramType) treeMaker(binder, false, pos) :: Nil
          else {
            // chain a type-testing extractor before the actual extractor call
            // it tests the type, checks the outer pointer and casts to the expected type
            // TODO: the outer check is mandated by the spec for case classes, but we do it for user-defined unapplies as well [SPEC]
            // (the prefix of the argument passed to the unapply must equal the prefix of the type of the binder)
            val typeTest = TypeTestTreeMaker(binder, binder, paramType, paramType)(pos, extractorArgTypeTest = true)
            val binderKnownNonNull = typeTest impliesBinderNonNull binder

            // check whether typetest implies binder is not null,
            // even though the eventual null check will be on typeTest.nextBinder
            // it'll be equal to binder casted to paramType anyway (and the type test is on binder)
            typeTest :: treeMaker(typeTest.nextBinder, binderKnownNonNull, pos) :: Nil
          }
        }

        step(makers: _*)(extractor.subBoundTrees: _*)
      }

      // Summary of translation cases. I moved the excerpts from the specification further below so all
      // the logic can be seen at once.
      //
      // [1] skip wildcard trees -- no point in checking them
      // [2] extractor and constructor patterns
      // [3] replace subpatBinder by patBinder, as if the Bind was not there.
      //     It must be patBinder, as subpatBinder has the wrong info: even if the bind assumes a better type,
      //     this is not guaranteed until we cast
      // [4] typed patterns - a typed pattern never has any subtrees
      //     must treat Typed and Bind together -- we need to know the patBinder of the Bind pattern to get at the actual type
      // [5] literal and stable id patterns
      // [6] pattern alternatives
      // [7] symbol-less bind patterns - this happens in certain ill-formed programs, there'll be an error later
      //     don't fail here though (or should we?)
      def nextStep(): TranslationStep = tree match {
        case WildcardPattern()                                        => noStep()
        case _: UnApply | _: Apply                                    => extractorStep()
        case SymbolAndTypeBound(sym, tpe)                             => typeTestStep(sym, tpe)
        case TypeBound(tpe)                                           => typeTestStep(binder, tpe)
        case SymbolBound(sym, expr)                                   => bindingStep(sym, expr)
        case Literal(Constant(_)) | Ident(_) | Select(_, _) | This(_) => equalityTestStep()
        case Alternative(alts)                                        => alternativesStep(alts)
        case _                                                        => reporter.error(pos, unsupportedPatternMsg) ; noStep()
      }
      def translate(): List[TreeMaker] = nextStep() merge (_.translate())

      private def setInfo(paramType: Type): Boolean = {
        devWarning(s"resetting info of $this to $paramType")
        setVarInfo(binder, paramType)
        true
      }
      // If <:< but not =:=, no type test needed, but the tree maker relies on the binder having
      // exactly paramType (and not just some type compatible with it.) SI-6624 shows this is necessary
      // because apparently patBinder may have an unfortunate type (.decls don't have the case field
      // accessors) TODO: get to the bottom of this -- I assume it happens when type checking
      // infers a weird type for an unapply call. By going back to the parameterType for the
      // extractor call we get a saner type, so let's just do that for now.
      def ensureConformsTo(paramType: Type): Boolean = (
           (tpe =:= paramType)
        || (tpe <:< paramType) && setInfo(paramType)
      )

      private def concreteType = tpe.bounds.hi
      private def unbound = unbind(tree)
      private def tpe_s = if (pt <:< concreteType) "" + pt else s"$pt (binder: $tpe)"
      private def at_s = unbound match {
        case WildcardPattern() => ""
        case pat               => s" @ $pat"
      }
      override def toString = s"${binder.name}: $tpe_s$at_s"
    }

    // a list of TreeMakers that encode `patTree`, and a list of arguments for recursive invocations of `translatePattern` to encode its subpatterns
    final case class TranslationStep(makers: List[TreeMaker], subpatterns: List[BoundTree]) {
      def merge(f: BoundTree => List[TreeMaker]): List[TreeMaker] = makers ::: (subpatterns flatMap f)
      override def toString = if (subpatterns.isEmpty) "" else subpatterns.mkString("(", ", ", ")")
    }

    /** Implement a pattern match by turning its cases (including the implicit failure case)
      * into the corresponding (monadic) extractors, and combining them with the `orElse` combinator.
      *
      * For `scrutinee match { case1 ... caseN }`, the resulting tree has the shape
      * `runOrElse(scrutinee)(x => translateCase1(x).orElse(translateCase2(x)).....orElse(zero))`
      *
      * NOTE: the resulting tree is not type checked, nor are nested pattern matches transformed
      *   thus, you must typecheck the result (and that will in turn translate nested matches)
      *   this could probably optimized... (but note that the matchStrategy must be solved for each nested patternmatch)
      */
    def translateMatch(match_ : Match): Tree = {
      val Match(selector, cases) = match_

      val (nonSyntheticCases, defaultOverride) = cases match {
        case init :+ last if treeInfo isSyntheticDefaultCase last => (init, Some(((scrut: Tree) => last.body)))
        case _                                                    => (cases, None)
      }

      if (!settings.XnoPatmatAnalysis) checkMatchVariablePatterns(nonSyntheticCases)

      // we don't transform after uncurry
      // (that would require more sophistication when generating trees,
      //  and the only place that emits Matches after typers is for exception handling anyway)
      if (phase.id >= currentRun.uncurryPhase.id)
        devWarning(s"running translateMatch past uncurry (at $phase) on $selector match $cases")

      debug.patmat("translating "+ cases.mkString("{", "\n", "}"))

      val start = if (Statistics.canEnable) Statistics.startTimer(patmatNanos) else null

      val selectorTp = repeatedToSeq(elimAnonymousClass(selector.tpe.widen.withoutAnnotations))

      // when one of the internal cps-type-state annotations is present, strip all CPS annotations
      val origPt  = removeCPSFromPt(match_.tpe)
      // relevant test cases: pos/existentials-harmful.scala, pos/gadt-gilles.scala, pos/t2683.scala, pos/virtpatmat_exist4.scala
      // pt is the skolemized version
      val pt = repeatedToSeq(origPt)

      // val packedPt = repeatedToSeq(typer.packedType(match_, context.owner))
      val selectorSym = freshSym(selector.pos, pureType(selectorTp)) setFlag treeInfo.SYNTH_CASE_FLAGS

      // pt = Any* occurs when compiling test/files/pos/annotDepMethType.scala  with -Xexperimental
      val combined = combineCases(selector, selectorSym, nonSyntheticCases map translateCase(selectorSym, pt), pt, matchOwner, defaultOverride)

      if (Statistics.canEnable) Statistics.stopTimer(patmatNanos, start)
      combined
    }

    // return list of typed CaseDefs that are supported by the backend (typed/bind/wildcard)
    // we don't have a global scrutinee -- the caught exception must be bound in each of the casedefs
    // there's no need to check the scrutinee for null -- "throw null" becomes "throw new NullPointerException"
    // try to simplify to a type-based switch, or fall back to a catch-all case that runs a normal pattern match
    // unlike translateMatch, we type our result before returning it
    def translateTry(caseDefs: List[CaseDef], pt: Type, pos: Position): List[CaseDef] =
      // if they're already simple enough to be handled by the back-end, we're done
      if (caseDefs forall treeInfo.isCatchCase) caseDefs
      else {
        val swatches = { // switch-catches
          // SI-7459 must duplicate here as we haven't committed to switch emission, and just figuring out
          //         if we can ends up mutating `caseDefs` down in the use of `substituteSymbols` in
          //         `TypedSubstitution#Substitution`. That is called indirectly by `emitTypeSwitch`.
          val bindersAndCases = caseDefs.map(_.duplicate) map { caseDef =>
            // generate a fresh symbol for each case, hoping we'll end up emitting a type-switch (we don't have a global scrut there)
            // if we fail to emit a fine-grained switch, have to do translateCase again with a single scrutSym (TODO: uniformize substitution on treemakers so we can avoid this)
            val caseScrutSym = freshSym(pos, pureType(ThrowableTpe))
            (caseScrutSym, propagateSubstitution(translateCase(caseScrutSym, pt)(caseDef), EmptySubstitution))
          }

          for(cases <- emitTypeSwitch(bindersAndCases, pt).toList
              if cases forall treeInfo.isCatchCase; // must check again, since it's not guaranteed -- TODO: can we eliminate this? e.g., a type test could test for a trait or a non-trivial prefix, which are not handled by the back-end
              cse <- cases) yield fixerUpper(matchOwner, pos)(cse).asInstanceOf[CaseDef]
        }

        val catches = if (swatches.nonEmpty) swatches else {
          val scrutSym = freshSym(pos, pureType(ThrowableTpe))
          val casesNoSubstOnly = caseDefs map { caseDef => (propagateSubstitution(translateCase(scrutSym, pt)(caseDef), EmptySubstitution))}

          val exSym = freshSym(pos, pureType(ThrowableTpe), "ex")

          List(
              atPos(pos) {
                CaseDef(
                  Bind(exSym, Ident(nme.WILDCARD)), // TODO: does this need fixing upping?
                  EmptyTree,
                  combineCasesNoSubstOnly(REF(exSym), scrutSym, casesNoSubstOnly, pt, matchOwner, Some(scrut => Throw(REF(exSym))))
                )
              })
        }

        typer.typedCases(catches, ThrowableTpe, WildcardType)
      }

    /**  The translation of `pat if guard => body` has two aspects:
      *     1) the substitution due to the variables bound by patterns
      *     2) the combination of the extractor calls using `flatMap`.
      *
      * 2) is easy -- it looks like: `translatePattern_1.flatMap(translatePattern_2....flatMap(translatePattern_N.flatMap(translateGuard.flatMap((x_i) => success(Xbody(x_i)))))...)`
      *     this must be right-leaning tree, as can be seen intuitively by considering the scope of bound variables:
      *     variables bound by pat_1 must be visible from the function inside the left-most flatMap right up to Xbody all the way on the right
      * 1) is tricky because translatePattern_i determines the shape of translatePattern_i+1:
      *    zoom in on `translatePattern_1.flatMap(translatePattern_2)` for example -- it actually looks more like:
      *      `translatePattern_1(x_scrut).flatMap((x_1) => {y_i -> x_1._i}translatePattern_2)`
      *
      *    `x_1` references the result (inside the monad) of the extractor corresponding to `pat_1`,
      *    this result holds the values for the constructor arguments, which translatePattern_1 has extracted
      *    from the object pointed to by `x_scrut`. The `y_i` are the symbols bound by `pat_1` (in order)
      *    in the scope of the remainder of the pattern, and they must thus be replaced by:
      *      - (for 1-ary unapply) x_1
      *      - (for n-ary unapply, n > 1) selection of the i'th tuple component of `x_1`
      *      - (for unapplySeq) x_1.apply(i)
      *
      *    in the treemakers,
      *
      *    Thus, the result type of `translatePattern_i`'s extractor must conform to `M[(T_1,..., T_n)]`.
      *
      *    Operationally, phase 1) is a foldLeft, since we must consider the depth-first-flattening of
      *    the transformed patterns from left to right. For every pattern ast node, it produces a transformed ast and
      *    a function that will take care of binding and substitution of the next ast (to the right).
      *
      */
    def translateCase(scrutSym: Symbol, pt: Type)(caseDef: CaseDef) = {
      val CaseDef(pattern, guard, body) = caseDef
      translatePattern(BoundTree(scrutSym, pattern)) ++ translateGuard(guard) :+ translateBody(body, pt)
    }

    def translatePattern(bound: BoundTree): List[TreeMaker] = bound.translate()

    def translateGuard(guard: Tree): List[TreeMaker] =
      if (guard == EmptyTree) Nil
      else List(GuardTreeMaker(guard))

    // TODO: 1) if we want to support a generalisation of Kotlin's patmat continue, must not hard-wire lifting into the monad (which is now done by codegen.one),
    // so that user can generate failure when needed -- use implicit conversion to lift into monad on-demand?
    // to enable this, probably need to move away from Option to a monad specific to pattern-match,
    // so that we can return Option's from a match without ambiguity whether this indicates failure in the monad, or just some result in the monad
    // 2) body.tpe is the type of the body after applying the substitution that represents the solution of GADT type inference
    // need the explicit cast in case our substitutions in the body change the type to something that doesn't take GADT typing into account
    def translateBody(body: Tree, matchPt: Type): TreeMaker =
      BodyTreeMaker(body, matchPt)

    // Some notes from the specification

    /*A constructor pattern is of the form c(p1, ..., pn) where n ≥ 0.
      It consists of a stable identifier c, followed by element patterns p1, ..., pn.
      The constructor c is a simple or qualified name which denotes a case class (§5.3.2).

      If the case class is monomorphic, then it must conform to the expected type of the pattern,
      and the formal parameter types of x’s primary constructor (§5.3) are taken as the expected
      types of the element patterns p1, ..., pn.

      If the case class is polymorphic, then its type parameters are instantiated so that the
      instantiation of c conforms to the expected type of the pattern.
      The instantiated formal parameter types of c’s primary constructor are then taken as the
      expected types of the component patterns p1, ..., pn.

      The pattern matches all objects created from constructor invocations c(v1, ..., vn)
      where each element pattern pi matches the corresponding value vi .
      A special case arises when c’s formal parameter types end in a repeated parameter.
      This is further discussed in (§8.1.9).
    **/

    /* A typed pattern x : T consists of a pattern variable x and a type pattern T.
       The type of x is the type pattern T, where each type variable and wildcard is replaced by a fresh, unknown type.
       This pattern matches any value matched by the type pattern T (§8.2); it binds the variable name to that value.
    */

    /* A pattern binder x@p consists of a pattern variable x and a pattern p.
       The type of the variable x is the static type T of the pattern p.
       This pattern matches any value v matched by the pattern p,
       provided the run-time type of v is also an instance of T,  <-- TODO! https://issues.scala-lang.org/browse/SI-1503
       and it binds the variable name to that value.
    */

    /* 8.1.4 Literal Patterns
         A literal pattern L matches any value that is equal (in terms of ==) to the literal L.
         The type of L must conform to the expected type of the pattern.

       8.1.5 Stable Identifier Patterns  (a stable identifier r (see §3.1))
         The pattern matches any value v such that r == v (§12.1).
         The type of r must conform to the expected type of the pattern.
    */


///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// helper methods: they analyze types and trees in isolation, but they are not (directly) concerned with the structure of the overall translation
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

    object ExtractorCall {
      // TODO: check unargs == args
      def apply(tree: Tree): ExtractorCall = tree match {
        case UnApply(unfun, args) => new ExtractorCallRegular(alignPatterns(context, tree), unfun, args) // extractor
        case Apply(fun, args)     => new ExtractorCallProd(alignPatterns(context, tree), fun, args)      // case class
      }
    }

    abstract class ExtractorCall(val aligner: PatternAligned) {
      import aligner._
      def fun: Tree
      def args: List[Tree]

      // don't go looking for selectors if we only expect one pattern
      def rawSubPatTypes = aligner.extractedTypes
      def resultInMonad  = if (isBool) UnitTpe else typeOfMemberNamedGet(resultType)
      def resultType     = fun.tpe.finalResultType

      /** Create the TreeMaker that embodies this extractor call
       *
       * `binder` has been casted to `paramType` if necessary
       * `binderKnownNonNull` indicates whether the cast implies `binder` cannot be null
       * when `binderKnownNonNull` is `true`, `ProductExtractorTreeMaker` does not do a (redundant) null check on binder
       */
      def treeMaker(binder: Symbol, binderKnownNonNull: Boolean, pos: Position): TreeMaker

      // `subPatBinders` are the variables bound by this pattern in the following patterns
      // subPatBinders are replaced by references to the relevant part of the extractor's result (tuple component, seq element, the result as-is)
      // must set infos to `subPatTypes`, which are provided by extractor's result,
      // as b.info may be based on a Typed type ascription, which has not been taken into account yet by the translation
      // (it will later result in a type test when `tp` is not a subtype of `b.info`)
      // TODO: can we simplify this, together with the Bound case?
      def subPatBinders = subBoundTrees map (_.binder)
      lazy val subBoundTrees = (args, subPatTypes).zipped map newBoundTree

      // never store these in local variables (for PreserveSubPatBinders)
      lazy val ignoredSubPatBinders: Set[Symbol] = subPatBinders zip args collect { case (b, PatternBoundToUnderscore()) => b } toSet

      // do repeated-parameter expansion to match up with the expected number of arguments (in casu, subpatterns)
      private def nonStarSubPatTypes = aligner.typedNonStarPatterns map (_.tpe)

      def subPatTypes: List[Type] = typedPatterns map (_.tpe)

      // there are `productArity` non-seq elements in the tuple.
      protected def firstIndexingBinder = productArity
      protected def expectedLength      = elementArity
      protected def lastIndexingBinder  = totalArity - starArity - 1

      private def productElemsToN(binder: Symbol, n: Int): List[Tree] = 1 to n map tupleSel(binder) toList
      private def genTake(binder: Symbol, n: Int): List[Tree]         = (0 until n).toList map (codegen index seqTree(binder))
      private def genDrop(binder: Symbol, n: Int): List[Tree]         = codegen.drop(seqTree(binder))(expectedLength) :: Nil

      // codegen.drop(seqTree(binder))(nbIndexingIndices)))).toList
      protected def seqTree(binder: Symbol)                = tupleSel(binder)(firstIndexingBinder + 1)
      protected def tupleSel(binder: Symbol)(i: Int): Tree = codegen.tupleSel(binder)(i)

      // the trees that select the subpatterns on the extractor's result,
      // referenced by `binder`
      protected def subPatRefsSeq(binder: Symbol): List[Tree] = {
        def lastTrees: List[Tree] = (
          if (!aligner.isStar) Nil
          else if (expectedLength == 0) seqTree(binder) :: Nil
          else genDrop(binder, expectedLength)
        )
        // this error-condition has already been checked by checkStarPatOK:
        //   if(isSeq) assert(firstIndexingBinder + nbIndexingIndices + (if(lastIsStar) 1 else 0) == totalArity, "(resultInMonad, ts, subPatTypes, subPats)= "+(resultInMonad, ts, subPatTypes, subPats))

        // [1] there are `firstIndexingBinder` non-seq tuple elements preceding the Seq
        // [2] then we have to index the binder that represents the sequence for the remaining subpatterns, except for...
        // [3] the last one -- if the last subpattern is a sequence wildcard:
        //       drop the prefix (indexed by the refs on the preceding line), return the remainder
        (    productElemsToN(binder, firstIndexingBinder)
          ++ genTake(binder, expectedLength)
          ++ lastTrees
        ).toList
      }

      // the trees that select the subpatterns on the extractor's result, referenced by `binder`
      // require (nbSubPats > 0 && (!lastIsStar || isSeq))
      protected def subPatRefs(binder: Symbol): List[Tree] = (
        if (totalArity > 0 && isSeq) subPatRefsSeq(binder)
        else productElemsToN(binder, totalArity)
      )

      private def compareInts(t1: Tree, t2: Tree) =
        gen.mkMethodCall(termMember(ScalaPackage, "math"), TermName("signum"), Nil, (t1 INT_- t2) :: Nil)

      protected def lengthGuard(binder: Symbol): Option[Tree] =
        // no need to check unless it's an unapplySeq and the minimal length is non-trivially satisfied
        checkedLength map { expectedLength =>
          // `binder.lengthCompare(expectedLength)`
          // ...if binder has a lengthCompare method, otherwise
          // `scala.math.signum(binder.length - expectedLength)`
          def checkExpectedLength = sequenceType member nme.lengthCompare match {
            case NoSymbol => compareInts(Select(seqTree(binder), nme.length), LIT(expectedLength))
            case lencmp   => (seqTree(binder) DOT lencmp)(LIT(expectedLength))
          }

          // the comparison to perform
          // when the last subpattern is a wildcard-star the expectedLength is but a lower bound
          // (otherwise equality is required)
          def compareOp: (Tree, Tree) => Tree =
            if (aligner.isStar) _ INT_>= _
            else         _ INT_== _

          // `if (binder != null && $checkExpectedLength [== | >=] 0) then else zero`
          (seqTree(binder) ANY_!= NULL) AND compareOp(checkExpectedLength, ZERO)
        }

      def checkedLength: Option[Int] =
        // no need to check unless it's an unapplySeq and the minimal length is non-trivially satisfied
        if (!isSeq || expectedLength < starArity) None
        else Some(expectedLength)
    }

    // TODO: to be called when there's a def unapplyProd(x: T): U
    // U must have N members _1,..., _N -- the _i are type checked, call their type Ti,
    // for now only used for case classes -- pretending there's an unapplyProd that's the identity (and don't call it)
    class ExtractorCallProd(aligner: PatternAligned, val fun: Tree, val args: List[Tree]) extends ExtractorCall(aligner) {
      /** Create the TreeMaker that embodies this extractor call
       *
       * `binder` has been casted to `paramType` if necessary
       * `binderKnownNonNull` indicates whether the cast implies `binder` cannot be null
       * when `binderKnownNonNull` is `true`, `ProductExtractorTreeMaker` does not do a (redundant) null check on binder
       */
      def treeMaker(binder: Symbol, binderKnownNonNull: Boolean, pos: Position): TreeMaker = {
        val paramAccessors = binder.constrParamAccessors
        val numParams = paramAccessors.length
        def paramAccessorAt(subPatIndex: Int) = paramAccessors(math.min(subPatIndex, numParams - 1))
        // binders corresponding to mutable fields should be stored (SI-5158, SI-6070)
        // make an exception for classes under the scala package as they should be well-behaved,
        // to optimize matching on List
        val hasRepeated = paramAccessors.lastOption match {
          case Some(x) => definitions.isRepeated(x)
          case _ => false
        }
        val mutableBinders = (
          if (!binder.info.typeSymbol.hasTransOwner(ScalaPackageClass) &&
              (paramAccessors exists (x => x.isMutable || definitions.isRepeated(x)))) {

            subPatBinders.zipWithIndex.flatMap {
              case (binder, idx) =>
                val param = paramAccessorAt(idx)
                if (param.isMutable || (definitions.isRepeated(param) && !aligner.isStar)) binder :: Nil
                else Nil
            }
          } else Nil
        )

        // checks binder ne null before chaining to the next extractor
        ProductExtractorTreeMaker(binder, lengthGuard(binder))(subPatBinders, subPatRefs(binder), mutableBinders, binderKnownNonNull, ignoredSubPatBinders)
      }

      // reference the (i-1)th case accessor if it exists, otherwise the (i-1)th tuple component
      override protected def tupleSel(binder: Symbol)(i: Int): Tree = {
        val accessors = binder.caseFieldAccessors
        if (accessors isDefinedAt (i-1)) gen.mkAttributedStableRef(binder) DOT accessors(i-1)
        else codegen.tupleSel(binder)(i) // this won't type check for case classes, as they do not inherit ProductN
      }
    }

    class ExtractorCallRegular(aligner: PatternAligned, extractorCallIncludingDummy: Tree, val args: List[Tree]) extends ExtractorCall(aligner) {
      val Unapplied(fun) = extractorCallIncludingDummy

      /** Create the TreeMaker that embodies this extractor call
       *
       *  `binder` has been casted to `paramType` if necessary
       *  `binderKnownNonNull` is not used in this subclass
       *
       *  TODO: implement review feedback by @retronym:
       *    Passing the pair of values around suggests:
       *       case class Binder(sym: Symbol, knownNotNull: Boolean).
       *    Perhaps it hasn't reached critical mass, but it would already clean things up a touch.
       */
      def treeMaker(patBinderOrCasted: Symbol, binderKnownNonNull: Boolean, pos: Position): TreeMaker = {
        // the extractor call (applied to the binder bound by the flatMap corresponding
        // to the previous (i.e., enclosing/outer) pattern)
        val extractorApply = atPos(pos)(spliceApply(patBinderOrCasted))
        // can't simplify this when subPatBinders.isEmpty, since UnitTpe is definitely
        // wrong when isSeq, and resultInMonad should always be correct since it comes
        // directly from the extractor's result type
        val binder         = freshSym(pos, pureType(resultInMonad))
        val potentiallyMutableBinders: Set[Symbol] =
          if (extractorApply.tpe.typeSymbol.isNonBottomSubClass(OptionClass) && !aligner.isSeq)
            Set.empty
          else
            // Ensures we capture unstable bound variables eagerly. These can arise under name based patmat or by indexing into mutable Seqs. See run t9003.scala
            subPatBinders.toSet

        ExtractorTreeMaker(extractorApply, lengthGuard(binder), binder)(
          subPatBinders,
          subPatRefs(binder),
          potentiallyMutableBinders,
          aligner.isBool,
          checkedLength,
          patBinderOrCasted,
          ignoredSubPatBinders
        )
      }

      override protected def seqTree(binder: Symbol): Tree =
        if (firstIndexingBinder == 0) REF(binder)
        else super.seqTree(binder)

      // the trees that select the subpatterns on the extractor's result, referenced by `binder`
      // require (totalArity > 0 && (!lastIsStar || isSeq))
      override protected def subPatRefs(binder: Symbol): List[Tree] =
        if (aligner.isSingle) REF(binder) :: Nil // special case for extractors
        else super.subPatRefs(binder)

      protected def spliceApply(binder: Symbol): Tree = {
        object splice extends Transformer {
          def binderRef(pos: Position): Tree =
            REF(binder) setPos pos
          override def transform(t: Tree) = t match {
            // duplicated with the extractor Unapplied
            case Apply(x, List(i @ Ident(nme.SELECTOR_DUMMY))) =>
              treeCopy.Apply(t, x, binderRef(i.pos) :: Nil)
            // SI-7868 Account for numeric widening, e.g. <unapplySelector>.toInt
            case Apply(x, List(i @ (sel @ Select(Ident(nme.SELECTOR_DUMMY), name)))) =>
              treeCopy.Apply(t, x, treeCopy.Select(sel, binderRef(i.pos), name) :: Nil)
            case _ =>
              super.transform(t)
          }
        }
        splice transform extractorCallIncludingDummy
      }

      override def rawSubPatTypes = aligner.extractor.varargsTypes
    }
  }
}