summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/Implicits.scala
blob: 3b90eaeed7c53d203e1f8d40230994892ca00e26 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
/* NSC -- new Scala compiler
 * Copyright 2005-2011 LAMP/EPFL
 * @author  Martin Odersky
 */

//todo: rewrite or disllow new T where T is a mixin (currently: <init> not a member of T)
//todo: use inherited type info also for vars and values
//todo: disallow C#D in superclass
//todo: treat :::= correctly

package scala.tools.nsc
package typechecker

import annotation.tailrec
import scala.collection.{ mutable, immutable }
import mutable.{ LinkedHashMap, ListBuffer }
import scala.util.matching.Regex
import symtab.Flags._
import util.Statistics._

/** This trait provides methods to find various kinds of implicits.
 *
 *  @author  Martin Odersky
 *  @version 1.0
 */
trait Implicits {
  self: Analyzer =>

  import global._
  import definitions._
  import typeDebug.{ ptTree, ptBlock, ptLine }
  import global.typer.{ printTyping, deindentTyping, indentTyping, printInference }

  /** Search for an implicit value. See the comment on `result` at the end of class `ImplicitSearch`
   *  for more info how the search is conducted.
   *  @param tree             The tree for which the implicit needs to be inserted.
   *                          (the inference might instantiate some of the undetermined
   *                          type parameters of that tree.
   *  @param pt               The expected type of the implicit.
   *  @param reportAmbiguous  Should ambiguous implicit errors be reported?
   *                          False iff we search for a view to find out
   *                          whether one type is coercible to another.
   *  @param isView           We are looking for a view
   *  @param context          The current context
   *  @return                 A search result
   */
  def inferImplicit(tree: Tree, pt: Type, reportAmbiguous: Boolean, isView: Boolean, context: Context): SearchResult = {
    printInference("[inferImplicit%s] pt = %s".format(
      if (isView) " view" else "", pt)
    )
    printTyping(
      ptBlock("infer implicit" + (if (isView) " view" else ""),
        "tree"        -> tree,
        "pt"          -> pt,
        "undetparams" -> context.outer.undetparams
      )
    )
    indentTyping()

    val rawTypeStart    = startCounter(rawTypeImpl)
    val findMemberStart = startCounter(findMemberImpl)
    val subtypeStart    = startCounter(subtypeImpl)
    val start = startTimer(implicitNanos)
    if (printInfers && !tree.isEmpty && !context.undetparams.isEmpty)
      printTyping("typing implicit: %s %s".format(tree, context.undetparamsString))

    val result = new ImplicitSearch(tree, pt, isView, context.makeImplicit(reportAmbiguous)).bestImplicit
    printInference("[inferImplicit] result: " + result)
    context.undetparams = context.undetparams filterNot result.subst.from.contains

    stopTimer(implicitNanos, start)
    stopCounter(rawTypeImpl, rawTypeStart)
    stopCounter(findMemberImpl, findMemberStart)
    stopCounter(subtypeImpl, subtypeStart)
    deindentTyping()
    printTyping("Implicit search yielded: "+ result)
    result
  }

  private final val sizeLimit = 50000
  private type Infos = List[ImplicitInfo]
  private type Infoss = List[List[ImplicitInfo]]
  private type InfoMap = LinkedHashMap[Symbol, List[ImplicitInfo]] // A map from class symbols to their associated implicits
  private val implicitsCache = new LinkedHashMap[Type, Infoss]
  private val infoMapCache = new LinkedHashMap[Symbol, InfoMap]
  private val improvesCache = perRunCaches.newMap[(ImplicitInfo, ImplicitInfo), Boolean]()

  def resetImplicits() {
    implicitsCache.clear()
    infoMapCache.clear()
    improvesCache.clear()
  }

  private val ManifestSymbols = Set(PartialManifestClass, FullManifestClass, OptManifestClass)

  /** Map all type params in given list to WildcardType
   *  @param   tparams  The list of type parameters to map
   *  @param   tp  The type in which to do the mapping
   */
  private def tparamsToWildcards(tparams: List[Symbol], tp: Type) =
    if (tparams.isEmpty) tp
    else tp.instantiateTypeParams(tparams, tparams map (_ => WildcardType))

  /* Map a polytype to one in which all type parameters and argument-dependent types are replaced by wildcards.
   * Consider `implicit def b(implicit x: A): x.T = error("")`. We need to approximate DebruijnIndex types
   * when checking whether `b` is a valid implicit, as we haven't even searched a value for the implicit arg `x`,
   * so we have to approximate (otherwise it is excluded a priori).
   */
  private def depoly(tp: Type): Type = tp match {
    case PolyType(tparams, restpe) => tparamsToWildcards(tparams, ApproximateDependentMap(restpe))
    case _                         => ApproximateDependentMap(tp)
  }

  /** The result of an implicit search
   *  @param  tree    The tree representing the implicit
   *  @param  subst   A substituter that represents the undetermined type parameters
   *                  that were instantiated by the winning implicit.
   */
  class SearchResult(val tree: Tree, val subst: TreeTypeSubstituter) {
    override def toString = "SearchResult(%s, %s)".format(tree,
      if (subst.isEmpty) "" else subst)
  }

  lazy val SearchFailure = new SearchResult(EmptyTree, EmptyTreeTypeSubstituter)

  /** A class that records an available implicit
   *  @param   name   The name of the implicit
   *  @param   pre    The prefix type of the implicit
   *  @param   sym    The symbol of the implicit
   */
  class ImplicitInfo(val name: Name, val pre: Type, val sym: Symbol) {
    private var tpeCache: Type = null

    /** Computes member type of implicit from prefix `pre` (cached). */
    def tpe: Type = {
      if (tpeCache eq null) tpeCache = pre.memberType(sym)
      tpeCache
    }

    def isCyclicOrErroneous =
      try containsError(tpe)
      catch { case _: CyclicReference => true }

    var useCountArg: Int = 0
    var useCountView: Int = 0

    /** Does type `tp` contain an Error type as parameter or result?
     */
    private def containsError(tp: Type): Boolean = tp match {
      case PolyType(tparams, restpe) =>
        containsError(restpe)
      case NullaryMethodType(restpe) =>
        containsError(restpe)
      case MethodType(params, restpe) =>
        params.exists(_.tpe.isError) || containsError(restpe)
      case _ =>
        tp.isError
    }

    /** Todo reconcile with definition of stability given in Types.scala */
    private def isStable(tp: Type): Boolean = tp match {
     case TypeRef(pre, sym, _) =>
       sym.isPackageClass ||
       sym.isModuleClass && isStable(pre) /*||
       sym.isAliasType && isStable(tp.normalize)*/
     case _ => tp.isStable
    }
    def isStablePrefix = isStable(pre)

    override def equals(other: Any) = other match {
      case that: ImplicitInfo =>
          this.name == that.name &&
          this.pre =:= that.pre &&
          this.sym == that.sym
      case _ => false
    }
    override def hashCode = name.## + pre.## + sym.##
    override def toString = name + ": " + tpe
  }

  /** A sentinel indicating no implicit was found */
  val NoImplicitInfo = new ImplicitInfo(null, NoType, NoSymbol) {
    // equals used to be implemented in ImplicitInfo with an `if(this eq NoImplicitInfo)`
    // overriding the equals here seems cleaner and benchmarks show no difference in performance
    override def equals(other: Any) = other match { case that: AnyRef => that eq this  case _ => false }
    override def hashCode = 1
  }

  /** A constructor for types ?{ name: tp }, used in infer view to member
   *  searches.
   */
  def memberWildcardType(name: Name, tp: Type) = {
    val result = refinedType(List(WildcardType), NoSymbol)
    var psym = name match {
      case x: TypeName  => result.typeSymbol.newAbstractType(NoPosition, x)
      case x: TermName  => result.typeSymbol.newValue(NoPosition, x)
    }
    psym setInfo tp
    result.decls enter psym
    result
  }

  /** An extractor for types of the form ? { name: ? }
   */
  object HasMember {
    private val hasMemberCache = perRunCaches.newMap[Name, Type]()
    def apply(name: Name): Type = hasMemberCache.getOrElseUpdate(name, memberWildcardType(name, WildcardType))
    def unapply(pt: Type): Option[Name] = pt match {
      case RefinedType(List(WildcardType), Scope(sym)) if sym.tpe == WildcardType => Some(sym.name)
      case _ => None
    }
  }

  /** An extractor for types of the form ? { name: (? >: argtpe <: Any*)restp }
   */
  object HasMethodMatching {
    val dummyMethod = new TermSymbol(NoSymbol, NoPosition, newTermName("typer$dummy"))
    def templateArgType(argtpe: Type) = new BoundedWildcardType(TypeBounds.lower(argtpe))
    
    def apply(name: Name, argtpes: List[Type], restpe: Type): Type = {
      val mtpe = MethodType(dummyMethod.newSyntheticValueParams(argtpes map templateArgType), restpe)
      memberWildcardType(name, mtpe)
    }
    def unapply(pt: Type): Option[(Name, List[Type], Type)] = pt match {
      case RefinedType(List(WildcardType), decls) =>
        decls.toList match {
          case List(sym) =>
            sym.tpe match {
              case MethodType(params, restpe)
              if (params forall (_.tpe.isInstanceOf[BoundedWildcardType])) =>
                Some((sym.name, params map (_.tpe.bounds.lo), restpe))
              case _ => None
            }
          case _ => None
        }
      case _ => None
    }
  }

  /** An extractor for unary function types arg => res
   */
  object Function1 {
    val Sym = FunctionClass(1)
    def unapply(tp: Type) = tp match {
      case TypeRef(_, Sym, arg1 :: arg2 :: _) => Some((arg1, arg2))
      case _                                  => None
    }
  }

  /** A class that sets up an implicit search. For more info, see comments for `inferImplicit`.
   *  @param tree             The tree for which the implicit needs to be inserted.
   *  @param pt               The original expected type of the implicit.
   *  @param isView           We are looking for a view
   *  @param context0         The context used for the implicit search
   */
  class ImplicitSearch(tree: Tree, pt: Type, isView: Boolean, context0: Context) extends Typer(context0) {
      printTyping(
        ptBlock("new ImplicitSearch",
          "tree"        -> tree,
          "pt"          -> pt,
          "isView"      -> isView,
          "context0"    -> context0,
          "undetparams" -> context.outer.undetparams
        )
      )
//    assert(tree.isEmpty || tree.pos.isDefined, tree)

    import infer._
    /** Is implicit info `info1` better than implicit info `info2`?
     */
    def improves(info1: ImplicitInfo, info2: ImplicitInfo) = {
      incCounter(improvesCount)
      (info2 == NoImplicitInfo) ||
      (info1 != NoImplicitInfo) && {
        if (info1.sym.isStatic && info2.sym.isStatic) {
          improvesCache get (info1, info2) match {
            case Some(b) => incCounter(improvesCachedCount); b
            case None =>
              val result = isStrictlyMoreSpecific(info1.tpe, info2.tpe, info1.sym, info2.sym)
              improvesCache((info1, info2)) = result
              result
          }
        } else isStrictlyMoreSpecific(info1.tpe, info2.tpe, info1.sym, info2.sym)
      }
    }
    def isPlausiblyCompatible(tp: Type, pt: Type) = checkCompatibility(fast = true, tp, pt)
    def normSubType(tp: Type, pt: Type) = checkCompatibility(fast = false, tp, pt)

    /** Does type `dtor` dominate type `dted`?
     *  This is the case if the stripped cores `dtor1` and `dted1` of both types are
     *  the same wrt `=:=`, or if they overlap and the complexity of `dtor1` is higher
     *  than the complexity of `dted1`.
     *  The _stripped core_ of a type is the type where
     *   - all refinements and annotations are dropped,
     *   - all universal and existential quantification is eliminated
     *     by replacing variables by their upper bounds,
     *   - all remaining free type parameters in the type are replaced by WildcardType.
     *  The _complexity_ of a stripped core type corresponds roughly to the number of
     *  nodes in its ast, except that singleton types are widened before taking the complexity.
     *  Two types overlap if they have the same type symbol, or
     *  if one or both are intersection types with a pair of overlapiing parent types.
     */
    private def dominates(dtor: Type, dted: Type): Boolean = {
      def core(tp: Type): Type = tp.normalize match {
        case RefinedType(parents, defs) => intersectionType(parents map core, tp.typeSymbol.owner)
        case AnnotatedType(annots, tp, selfsym) => core(tp)
        case ExistentialType(tparams, result) => core(result).subst(tparams, tparams map (t => core(t.info.bounds.hi)))
        case PolyType(tparams, result) => core(result).subst(tparams, tparams map (t => core(t.info.bounds.hi)))
        case _ => tp
      }
      def stripped(tp: Type): Type = {
        deriveTypeWithWildcards(freeTypeParametersNoSkolems.collect(tp))(tp)
      }
      def sum(xs: List[Int]) = (0 /: xs)(_ + _)
      def complexity(tp: Type): Int = tp.normalize match {
        case NoPrefix =>
          0
        case SingleType(pre, sym) =>
          if (sym.isPackage) 0 else complexity(tp.normalize.widen)
        case TypeRef(pre, sym, args) =>
          complexity(pre) + sum(args map complexity) + 1
        case RefinedType(parents, _) =>
          sum(parents map complexity) + 1
        case _ =>
          1
      }
      def overlaps(tp1: Type, tp2: Type): Boolean = (tp1, tp2) match {
        case (RefinedType(parents, _), _) => parents exists (overlaps(_, tp2))
        case (_, RefinedType(parents, _)) => parents exists (overlaps(tp1, _))
        case _ => tp1.typeSymbol == tp2.typeSymbol
      }
      val dtor1 = stripped(core(dtor))
      val dted1 = stripped(core(dted))
      overlaps(dtor1, dted1) && (dtor1 =:= dted1 || complexity(dtor1) > complexity(dted1))
    }

    incCounter(implicitSearchCount)

    /** Issues an error signalling ambiguous implicits */
    private def ambiguousImplicitError(info1: ImplicitInfo, info2: ImplicitInfo,
                               pre1: String, pre2: String, trailer: String) =
      if (!info1.tpe.isErroneous && !info2.tpe.isErroneous) {
        val coreMsg =
          pre1+" "+info1.sym.fullLocationString+" of type "+info1.tpe+"\n "+
          pre2+" "+info2.sym.fullLocationString+" of type "+info2.tpe+"\n "+
          trailer
        error(tree.pos,
          if (isView) {
            val found = pt.typeArgs(0)
            val req = pt.typeArgs(1)
            def defaultExplanation =
              "Note that implicit conversions are not applicable because they are ambiguous:\n "+
              coreMsg+"are possible conversion functions from "+ found+" to "+req

            def explanation = {
              val sym = found.typeSymbol
              // Explain some common situations a bit more clearly.
              if (AnyRefClass.tpe <:< req) {
                if (sym == AnyClass || sym == UnitClass) {
                  "Note: " + sym.name + " is not implicitly converted to AnyRef.  You can safely\n" +
                  "pattern match `x: AnyRef` or cast `x.asInstanceOf[AnyRef]` to do so."
                }
                else boxedClass get sym match {
                  case Some(boxed)  =>
                    "Note: an implicit exists from " + sym.fullName + " => " + boxed.fullName + ", but\n" +
                    "methods inherited from Object are rendered ambiguous.  This is to avoid\n" +
                    "a blanket implicit which would convert any " + sym.fullName + " to any AnyRef.\n" +
                    "You may wish to use a type ascription: `x: " + boxed.fullName + "`."
                  case _ =>
                    defaultExplanation
                }
              }
              else defaultExplanation
            }

            typeErrorMsg(found, req) + "\n" + explanation
          }
          else {
            "ambiguous implicit values:\n "+coreMsg + "match expected type "+pt
          })
        }

    /** The type parameters to instantiate */
    val undetParams = if (isView) List() else context.outer.undetparams

    /** The expected type with all undetermined type parameters replaced with wildcards. */
    def approximate(tp: Type) = deriveTypeWithWildcards(undetParams)(tp)
    val wildPt = approximate(pt)

    /** Try to construct a typed tree from given implicit info with given
     *  expected type.
     *  Detect infinite search trees for implicits.
     *
     *  @param info    The given implicit info describing the implicit definition
     *  @pre           `info.tpe` does not contain an error
     */
    private def typedImplicit(info: ImplicitInfo, ptChecked: Boolean): SearchResult = {
      printInference("[typedImplicit] " + info)
      (context.openImplicits find { case (tp, sym) => sym == tree.symbol && dominates(pt, tp)}) match {
         case Some(pending) =>
           // println("Pending implicit "+pending+" dominates "+pt+"/"+undetParams) //@MDEBUG
           throw DivergentImplicit
         case None =>
           try {
             context.openImplicits = (pt, tree.symbol) :: context.openImplicits
             // println("  "*context.openImplicits.length+"typed implicit "+info+" for "+pt) //@MDEBUG
             typedImplicit0(info, ptChecked)
           } catch {
             case ex: DivergentImplicit =>
               // println("DivergentImplicit for pt:"+ pt +", open implicits:"+context.openImplicits) //@MDEBUG
               if (context.openImplicits.tail.isEmpty) {
                 if (!(pt.isErroneous))
                   context.unit.error(
                     tree.pos, "diverging implicit expansion for type "+pt+"\nstarting with "+
                     info.sym.fullLocationString)
                 SearchFailure
               } else {
                 throw DivergentImplicit
               }
           } finally {
             context.openImplicits = context.openImplicits.tail
           }
       }
    }

    /** Does type `tp` match expected type `pt`
     *  This is the case if either `pt` is a unary function type with a
     *  HasMethodMatching type as result, and `tp` is a unary function
     *  or method type whose result type has a method whose name and type
     *  correspond to the HasMethodMatching type,
     *  or otherwise if `tp` is compatible with `pt`.
     *  This method is performance critical: 5-8% of typechecking time.
     */
    private def matchesPt(tp: Type, pt: Type, undet: List[Symbol]): Boolean = {
      val start = startTimer(matchesPtNanos)
      val result = normSubType(tp, pt) || isView && {
        pt match {
          case TypeRef(_, Function1.Sym, args) =>
            matchesPtView(tp, args.head, args.tail.head, undet)
          case _ =>
            false
        }
      }
      stopTimer(matchesPtNanos, start)
      result
    }
    private def matchesPt(info: ImplicitInfo): Boolean = (
      info.isStablePrefix && matchesPt(depoly(info.tpe), wildPt, Nil)
    )

    private def matchesPtView(tp: Type, ptarg: Type, ptres: Type, undet: List[Symbol]): Boolean = tp match {
      case MethodType(p :: _, restpe) if p.isImplicit => matchesPtView(restpe, ptarg, ptres, undet)
      case MethodType(p :: Nil, restpe)               => matchesArgRes(p.tpe, restpe, ptarg, ptres, undet)
      case ExistentialType(_, qtpe)                   => matchesPtView(normalize(qtpe), ptarg, ptres, undet)
      case Function1(arg1, res1)                      => matchesArgRes(arg1, res1, ptarg, ptres, undet)
      case _                                          => false
    }

    private def matchesArgRes(tparg: Type, tpres: Type, ptarg: Type, ptres: Type, undet: List[Symbol]): Boolean =
     (ptarg weak_<:< tparg) && {
       ptres match {
         case HasMethodMatching(name, argtpes, restpe) =>
           (tpres.member(name) filter (m =>
             isApplicableSafe(undet, m.tpe, argtpes, restpe))) != NoSymbol
         case _ =>
           tpres <:< ptres
       }
     }

    /** Capturing the overlap between isPlausiblyCompatible and normSubType.
     *  This is a faithful translation of the code which was there, but it
     *  seems likely the methods are intended to be even more similar than
     *  they are: perhaps someone more familiar with the intentional distinctions
     *  can examine the now much smaller concrete implementations below.
     */
    private def checkCompatibility(fast: Boolean, tp0: Type, pt0: Type): Boolean = {
      @tailrec def loop(tp: Type, pt: Type): Boolean = tp match {
        case mt @ MethodType(params, restpe) =>
          if (mt.isImplicit)
            loop(restpe, pt)
          else pt match {
            case tr @ TypeRef(pre, sym, args) =>
              if (sym.isAliasType) loop(tp, pt.normalize)
              else if (sym.isAbstractType) loop(tp, pt.bounds.lo)
              else {
                val len = args.length - 1
                hasLength(params, len) &&
                sym == FunctionClass(len) && {
                  var ps = params
                  var as = args
                  if (fast) {
                    while (ps.nonEmpty && as.nonEmpty) {
                      if (!isPlausiblySubType(as.head, ps.head.tpe))
                        return false
                      ps = ps.tail
                      as = as.tail
                    }
                  } else {
                    while (ps.nonEmpty && as.nonEmpty) {
                      if (!(as.head <:< ps.head.tpe))
                        return false
                      ps = ps.tail
                      as = as.tail
                    }
                  }
                  ps.isEmpty && as.nonEmpty && {
                    val lastArg = as.head
                    as.tail.isEmpty && loop(restpe, lastArg)
                  }
                }
              }

            case _            => if (fast) false else tp <:< pt
          }
        case NullaryMethodType(restpe)  => loop(restpe, pt)
        case PolyType(_, restpe)        => loop(restpe, pt)
        case ExistentialType(_, qtpe)   => if (fast) loop(qtpe, pt) else normalize(tp) <:< pt // is !fast case needed??
        case _                          => if (fast) isPlausiblySubType(tp, pt) else tp <:< pt
      }
      loop(tp0, pt0)
    }

    /** This expresses more cleanly in the negative: there's a linear path
     *  to a final true or false.
     */
    private def isPlausiblySubType(tp1: Type, tp2: Type) = !isImpossibleSubType(tp1, tp2)
    private def isImpossibleSubType(tp1: Type, tp2: Type) = tp1.normalize.widen match {
      case tr1 @ TypeRef(_, sym1, _) =>
        // We can only rule out a subtype relationship if the left hand
        // side is a class, else we may not know enough.
        sym1.isClass && (tp2.normalize.widen match {
          case TypeRef(_, sym2, _) =>
             sym2.isClass && !(sym1 isWeakSubClass sym2)
          case RefinedType(parents, decls) =>
            decls.nonEmpty &&
            tr1.member(decls.head.name) == NoSymbol
          case _ => false
        })
      case _ => false
    }

    private def typedImplicit0(info: ImplicitInfo, ptChecked: Boolean): SearchResult = {
      incCounter(plausiblyCompatibleImplicits)
      printTyping(
        ptBlock("typedImplicit0",
          "info.name" -> info.name,
          "ptChecked" -> ptChecked,
          "pt"        -> wildPt,
          "orig"      -> ptBlock("info",
            "undetParams"           -> undetParams,
            "info.pre"              -> info.pre
          ).replaceAll("\\n", "\n  ")
        )
      )

      if (ptChecked || matchesPt(info))
        typedImplicit1(info)
      else
        SearchFailure
    }

    private def typedImplicit1(info: ImplicitInfo): SearchResult = {
      incCounter(matchingImplicits)

      val itree = atPos(tree.pos.focus) {
        if (info.pre == NoPrefix) Ident(info.name)
        else Select(gen.mkAttributedQualifier(info.pre), info.name)
      }
      printTyping("typedImplicit1 %s, pt=%s, from implicit %s:%s".format(
        typeDebug.ptTree(itree), wildPt, info.name, info.tpe)
      )

      def fail(reason: String): SearchResult = {
        if (settings.XlogImplicits.value)
          inform(itree+" is not a valid implicit value for "+pt+" because:\n"+reason)
        SearchFailure
      }
      try {
        val itree1 =
          if (isView) {
            val arg1 :: arg2 :: _ = pt.typeArgs
            typed1(
              atPos(itree.pos)(Apply(itree, List(Ident("<argument>") setType approximate(arg1)))),
              EXPRmode,
              approximate(arg2)
            )
          }
          else
            typed1(itree, EXPRmode, wildPt)

        incCounter(typedImplicits)

        printTyping("typed implicit %s:%s, pt=%s".format(itree1, itree1.tpe, wildPt))
        val itree2 = if (isView) (itree1: @unchecked) match { case Apply(fun, _) => fun }
                     else adapt(itree1, EXPRmode, wildPt)

        printTyping("adapted implicit %s:%s to %s".format(
          itree1.symbol, itree2.tpe, wildPt)
        )

        def hasMatchingSymbol(tree: Tree): Boolean = (tree.symbol == info.sym) || {
          tree match {
            case Apply(fun, _)          => hasMatchingSymbol(fun)
            case TypeApply(fun, _)      => hasMatchingSymbol(fun)
            case Select(pre, nme.apply) => pre.symbol == info.sym
            case _                      => false
          }
        }

        if (itree2.tpe.isError)
          SearchFailure
        else if (!hasMatchingSymbol(itree1))
          fail("candidate implicit %s is shadowed by other implicit %s".format(
            info.sym.fullLocationString, itree1.symbol.fullLocationString))
        else {
          val tvars = undetParams map freshVar

          if (matchesPt(itree2.tpe, pt.instantiateTypeParams(undetParams, tvars), undetParams)) {
            printInference(
              ptBlock("matchesPt",
                "itree1"      -> itree1,
                "tvars"       -> tvars,
                "undetParams" -> undetParams
              )
            )

            if (tvars.nonEmpty)
              printTyping(ptLine("" + info.sym, "tvars" -> tvars, "tvars.constr" -> tvars.map(_.constr)))

            val targs = solvedTypes(tvars, undetParams, undetParams map varianceInType(pt),
                                    false, lubDepth(List(itree2.tpe, pt)))

            // #2421: check that we correctly instantiated type parameters outside of the implicit tree:
            checkBounds(itree2.pos, NoPrefix, NoSymbol, undetParams, targs, "inferred ")

            // filter out failures from type inference, don't want to remove them from undetParams!
            // we must be conservative in leaving type params in undetparams
            // prototype == WildcardType: want to remove all inferred Nothings
            val AdjustedTypeArgs(okParams, okArgs) = adjustTypeArgs(undetParams, tvars, targs)
            val subst: TreeTypeSubstituter =
              if (okParams.isEmpty) EmptyTreeTypeSubstituter
              else {
                val subst = new TreeTypeSubstituter(okParams, okArgs)
                subst traverse itree2
                subst
              }

            // #2421b: since type inference (which may have been
            // performed during implicit search) does not check whether
            // inferred arguments meet the bounds of the corresponding
            // parameter (see note in solvedTypes), must check again
            // here:
            // TODO: I would prefer to just call typed instead of
            // duplicating the code here, but this is probably a
            // hotspot (and you can't just call typed, need to force
            // re-typecheck)
            // TODO: the return tree is ignored.  This seems to make
            // no difference, but it's bad practice regardless.
            itree2 match {
              case TypeApply(fun, args)           => typedTypeApply(itree2, EXPRmode, fun, args)
              case Apply(TypeApply(fun, args), _) => typedTypeApply(itree2, EXPRmode, fun, args) // t2421c
              case t                              => t
            }
            val result = new SearchResult(itree2, subst)
            incCounter(foundImplicits)
            printInference("[typedImplicit1] SearchResult: " + result)
            result
          }
          else fail("incompatible: %s does not match expected type %s".format(
            itree2.tpe, pt.instantiateTypeParams(undetParams, tvars)))
        }
      }
      catch {
        case ex: TypeError => fail(ex.getMessage())
      }
    }

    // #3453: in addition to the implicit symbols that may shadow the implicit with
    // name `name`, this method tests whether there's a non-implicit symbol with name
    // `name` in scope.  Inspired by logic in typedIdent.
    private def nonImplicitSynonymInScope(name: Name) = {
      // the implicit ones are handled by the `shadowed` set above
      context.scope.lookupEntry(name) match {
        case x: ScopeEntry  => reallyExists(x.sym) && !x.sym.isImplicit
        case _              => false
      }
    }

    /** Should implicit definition symbol `sym` be considered for applicability testing?
     *  This is the case if one of the following holds:
     *   - the symbol's type is initialized
     *   - the symbol comes from a classfile
     *   - the symbol comes from a different sourcefile than the current one
     *   - the symbol and the accessed symbol's definitions come before, and do not contain the closest enclosing definition, // see #3373
     *   - the symbol's definition is a val, var, or def with an explicit result type
     *  The aim of this method is to prevent premature cyclic reference errors
     *  by computing the types of only those implicits for which one of these
     *  conditions is true.
     */
    def isValid(sym: Symbol) = {
      def hasExplicitResultType(sym: Symbol) = {
        def hasExplicitRT(tree: Tree) = tree match {
          case x: ValOrDefDef => !x.tpt.isEmpty
          case _              => false
        }
        sym.rawInfo match {
          case tc: TypeCompleter => hasExplicitRT(tc.tree)
          case PolyType(_, tc: TypeCompleter) => hasExplicitRT(tc.tree)
          case _ => true
        }
      }
      def comesBefore(sym: Symbol, owner: Symbol) = {
        val ownerPos = owner.pos.pointOrElse(Int.MaxValue)
        sym.pos.pointOrElse(0) < ownerPos && (
          if (sym hasAccessorFlag) {
            val symAcc = sym.accessed // #3373
            symAcc.pos.pointOrElse(0) < ownerPos &&
            !(owner.ownerChain exists (o => (o eq sym) || (o eq symAcc))) // probably faster to iterate only once, don't feel like duplicating hasTransOwner for this case
          } else !(owner hasTransOwner sym)) // faster than owner.ownerChain contains sym
      }

      sym.isInitialized ||
      sym.sourceFile == null ||
      (sym.sourceFile ne context.unit.source.file) ||
      hasExplicitResultType(sym) ||
      comesBefore(sym, context.owner)
    }

    /** Prune ImplicitInfos down to either all the eligible ones or the best one.
     *
     *  @param  iss       list of list of infos
     *  @param  shadowed  set in which to record names that are shadowed by implicit infos
     *                    If it is null, no shadowing.
     */
    class ImplicitComputation(iss: Infoss, shadowed: util.HashSet[Name]) {
      private var best: SearchResult = SearchFailure
      private def isShadowed(name: Name) = (
           (shadowed != null)
        && (shadowed(name) || nonImplicitSynonymInScope(name))
      )
      private def isIneligible(info: ImplicitInfo) = (
           info.isCyclicOrErroneous
        || isView && isPredefMemberNamed(info.sym, nme.conforms)
        || isShadowed(info.name)
      )

      /** True if a given ImplicitInfo (already known isValid) is eligible.
       */
      def survives(info: ImplicitInfo) = (
           !isIneligible(info)                      // cyclic, erroneous, shadowed, or specially excluded
        && isPlausiblyCompatible(info.tpe, wildPt)  // optimization to avoid matchesPt
        && matchesPt(info)                          // stable and matches expected type
      )
      /** The implicits that are not valid because they come later in the source and
       *  lack an explicit result type. Used for error diagnostics only.
       */
      val invalidImplicits = new ListBuffer[Symbol]

      /** Tests for validity and updates invalidImplicits by side effect when false.
       */
      private def checkValid(sym: Symbol) = isValid(sym) || { invalidImplicits += sym ; false }

      /** Preventing a divergent implicit from terminating implicit search,
       *  so that if there is a best candidate it can still be selected.
       */
      private var divergence = false
      private val MaxDiverges = 1   // not sure if this should be > 1
      private val divergenceHandler = util.Exceptional.expiringHandler(MaxDiverges) {
        case x: DivergentImplicit =>
          divergence = true
          log("discarding divergent implicit during implicit search")
          SearchFailure
      }

      /** Sorted list of eligible implicits.
       */
      val eligible = {
        val matches = iss flatMap { is =>
          val result = is filter (info => checkValid(info.sym) && survives(info))
          if (shadowed ne null)
            shadowed addEntries (is map (_.name))

          result
        }

        // most frequent one first
        matches sortBy (x => if (isView) -x.useCountView else -x.useCountArg)
      }
      def eligibleString = {
        val args = List(
          "search"   -> pt,
          "target"   -> tree,
          "isView"   -> isView
        ) ++ eligible.map("eligible" -> _)

        ptBlock("Implicit search in " + context, args: _*)
      }
      printInference(eligibleString)

      /** Faster implicit search.  Overall idea:
       *   - prune aggressively
       *   - find the most likely one
       *   - if it matches, forget about all others it improves upon
       */
      @tailrec private def rankImplicits(pending: Infos, acc: Infos): Infos = pending match {
        case Nil      => acc
        case i :: is  =>
          def tryImplicitInfo(i: ImplicitInfo) =
            try typedImplicit(i, true)
            catch divergenceHandler

          tryImplicitInfo(i) match {
            case SearchFailure  => rankImplicits(is, acc)
            case newBest        =>
              best = newBest
              val newPending = undoLog undo {
                is filterNot (alt => alt == i || {
                  try improves(i, alt)
                  catch { 
                    case e: CyclicReference => 
                      if (printInfers) {
                        println(i+" discarded because cyclic reference occurred")
                        e.printStackTrace()
                      }
                      true 
                  }
                })
              }
              rankImplicits(newPending, i :: acc)
          }
      }

      /** Returns all eligible ImplicitInfos and their SearchResults in a map.
       */
      def findAll() = eligible map (info => (info, typedImplicit(info, false))) toMap

      /** Returns the SearchResult of the best match.
       */
      def findBest(): SearchResult = {
        // After calling rankImplicits, the least frequent matching one is first and
        // earlier elems may improve on later ones, but not the other way.
        // So if there is any element not improved upon by the first it is an error.
        rankImplicits(eligible, Nil) match {
          case Nil            => ()
          case chosen :: rest =>
            rest find (alt => !improves(chosen, alt)) match {
              case Some(competing)  =>
                ambiguousImplicitError(chosen, competing, "both", "and", "")
              case _                =>
                if (isView) chosen.useCountView += 1
                else chosen.useCountArg += 1
            }
        }

        if (best == SearchFailure) {
          /** If there is no winner, and we witnessed and caught divergence,
           *  now we can throw it for the error message.
           */
          if (divergence)
            throw DivergentImplicit

          if (invalidImplicits.nonEmpty)
            setAddendum(tree.pos, () =>
              "\n Note: implicit "+invalidImplicits.head+" is not applicable here"+
              " because it comes after the application point and it lacks an explicit result type")
        }

        best
      }
    }

    /** Computes from a list of lists of implicit infos a map which takes
     *  infos which are applicable for given expected type `pt` to their attributed trees.
     *
     *  @param iss            The given list of lists of implicit infos
     *  @param isLocal        Is implicit definition visible without prefix?
     *                        If this is the case then symbols in preceding lists shadow
     *                        symbols of the same name in succeeding lists.
     *  @return               map from infos to search results
     */
    def applicableInfos(iss: Infoss, isLocal: Boolean): Map[ImplicitInfo, SearchResult] = {
      val start       = startCounter(subtypeAppInfos)
      val computation = new ImplicitComputation(iss, if (isLocal) util.HashSet[Name](512) else null) { }
      val applicable  = computation.findAll()

      stopCounter(subtypeAppInfos, start)
      applicable
    }

    /** Search list of implicit info lists for one matching prototype `pt`.
     *  If found return a search result with a tree from found implicit info
     *  which is typed with expected type `pt`. Otherwise return SearchFailure.
     *
     *  @param implicitInfoss The given list of lists of implicit infos
     *  @param isLocal        Is implicit definition visible without prefix?
     *                        If this is the case then symbols in preceding lists shadow
     *                        symbols of the same name in succeeding lists.
     */
    def searchImplicit(implicitInfoss: Infoss, isLocal: Boolean): SearchResult =
      if (implicitInfoss.forall(_.isEmpty)) SearchFailure
      else new ImplicitComputation(implicitInfoss, if (isLocal) util.HashSet[Name](128) else null) findBest()

    /** Produce an implicict info map, i.e. a map from the class symbols C of all parts of this type to
     *  the implicit infos in the companion objects of these class symbols C.
     * The parts of a type is the smallest set of types that contains
     *    - the type itself
     *    - the parts of its immediate components (prefix and argument)
     *    - the parts of its base types
     *    - for alias types and abstract types, we take instead the parts
     *    - of their upper bounds.
     *  @return For those parts that refer to classes with companion objects that
     *  can be accessed with unambiguous stable prefixes, the implicits infos
     *  which are members of these companion objects.
     */
    private def companionImplicitMap(tp: Type): InfoMap = {

      /** Populate implicit info map by traversing all parts of type `tp`.
       *  Parameters as for `getParts`.
       */
      def getClassParts(tp: Type)(implicit infoMap: InfoMap, seen: mutable.Set[Type], pending: Set[Symbol]) = tp match {
        case TypeRef(pre, sym, args) =>
          infoMap get sym match {
            case Some(infos1) =>
              if (infos1.nonEmpty && !(pre =:= infos1.head.pre.prefix)) {
                println("amb prefix: "+pre+"#"+sym+" "+infos1.head.pre.prefix+"#"+sym)
                infoMap(sym) = List() // ambiguous prefix - ignore implicit members
              }
            case None =>
              if (pre.isStable) {
                val companion = sym.companionModule
                companion.moduleClass match {
                  case mc: ModuleClassSymbol =>
                    val infos =
                      for (im <- mc.implicitMembers) yield new ImplicitInfo(im.name, singleType(pre, companion), im)
                    if (infos.nonEmpty)
                      infoMap += (sym -> infos)
                  case _ =>
                }
              }
              val bts = tp.baseTypeSeq
              var i = 1
              while (i < bts.length) {
                getParts(bts(i))
                i += 1
              }
              getParts(pre)
            }
      }

      /** Populate implicit info map by traversing all parts of type `tp`.
       *  This method is performance critical.
       *  @param tp   The type for which we want to traverse parts
       *  @param infoMap  The infoMap in which implicit infos corresponding to parts are stored
       *  @param seen     The types that were already visited previously when collecting parts for the given infoMap
       *  @param pending  The set of static symbols for which we are currently trying to collect their parts
       *                  in order to cache them in infoMapCache
       */
      def getParts(tp: Type)(implicit infoMap: InfoMap, seen: mutable.Set[Type], pending: Set[Symbol]) {
        if (seen(tp))
          return
        seen += tp
        tp match {
          case TypeRef(pre, sym, args) =>
            if (sym.isClass) {
              if (!((sym.name == tpnme.REFINE_CLASS_NAME) ||
                    (sym.name startsWith tpnme.ANON_CLASS_NAME) ||
                    (sym.name == tpnme.ROOT))) {
                if (sym.isStatic && !(pending contains sym))
                  infoMap ++= {
                    infoMapCache get sym match {
                      case Some(imap) => imap
                      case None =>
                        val result = new InfoMap
                        getClassParts(sym.tpe)(result, new mutable.HashSet(), pending + sym)
                        infoMapCache(sym) = result
                        result
                    }
                  }
                else
                  getClassParts(tp)
                args foreach (getParts(_))
              }
            } else if (sym.isAliasType) {
              getParts(tp.normalize)
            } else if (sym.isAbstractType) {
              getParts(tp.bounds.hi)
            }
          case ThisType(_) =>
            getParts(tp.widen)
          case _: SingletonType =>
            getParts(tp.widen)
          case HasMethodMatching(_, argtpes, restpe) =>
            for (tp <- argtpes) getParts(tp)
            getParts(restpe)
          case RefinedType(ps, _) =>
            for (p <- ps) getParts(p)
          case AnnotatedType(_, t, _) =>
            getParts(t)
          case ExistentialType(_, t) =>
            getParts(t)
          case PolyType(_, t) =>
            getParts(t)
          case _ =>
        }
      }

      val infoMap = new InfoMap
      getParts(tp)(infoMap, new mutable.HashSet(), Set())
      printInference(
        ptBlock("companionImplicitMap " + tp, infoMap.toSeq.map({ case (k, v) => ("" + k, v.mkString(", ")) }): _*)
      )
      infoMap
    }

    /** The parts of a type is the smallest set of types that contains
     *    - the type itself
     *    - the parts of its immediate components (prefix and argument)
     *    - the parts of its base types
     *    - for alias types and abstract types, we take instead the parts
     *    - of their upper bounds.
     *  @return For those parts that refer to classes with companion objects that
     *  can be accessed with unambiguous stable prefixes, the implicits infos
     *  which are members of these companion objects.

    private def companionImplicits(tp: Type): Infoss = {
      val partMap = new LinkedHashMap[Symbol, Type]
      val seen = mutable.HashSet[Type]()  // cycle detection

      /** Enter all parts of `tp` into `parts` set.
       *  This method is performance critical: about 2-4% of all type checking is spent here
       */
      def getParts(tp: Type) {
        if (seen(tp))
          return
        seen += tp
        tp match {
          case TypeRef(pre, sym, args) =>
            if (sym.isClass) {
              if (!((sym.name == tpnme.REFINE_CLASS_NAME) ||
                    (sym.name startsWith tpnme.ANON_CLASS_NAME) ||
                    (sym.name == tpnme.ROOT)))
                partMap get sym match {
                  case Some(pre1) =>
                    if (!(pre =:= pre1)) partMap(sym) = NoType // ambiguous prefix - ignore implicit members
                  case None =>
                    if (pre.isStable) partMap(sym) = pre
                    val bts = tp.baseTypeSeq
                    var i = 1
                    while (i < bts.length) {
                      getParts(bts(i))
                      i += 1
                    }
                    getParts(pre)
                    args foreach getParts
                }
            } else if (sym.isAliasType) {
              getParts(tp.normalize)
            } else if (sym.isAbstractType) {
              getParts(tp.bounds.hi)
            }
          case ThisType(_) =>
            getParts(tp.widen)
          case _: SingletonType =>
            getParts(tp.widen)
          case RefinedType(ps, _) =>
            for (p <- ps) getParts(p)
          case AnnotatedType(_, t, _) =>
            getParts(t)
          case ExistentialType(_, t) =>
            getParts(t)
          case PolyType(_, t) =>
            getParts(t)
          case _ =>
        }
      }

      getParts(tp)

      val buf = new ListBuffer[Infos]
      for ((clazz, pre) <- partMap) {
        if (pre != NoType) {
          val companion = clazz.companionModule
          companion.moduleClass match {
            case mc: ModuleClassSymbol =>
              buf += (mc.implicitMembers map (im =>
                new ImplicitInfo(im.name, singleType(pre, companion), im)))
            case _ =>
          }
        }
      }
      //println("companion implicits of "+tp+" = "+buf.toList) // DEBUG
      buf.toList
    }

*/

    /** The implicits made available by type `pt`.
     *  These are all implicits found in companion objects of classes C
     *  such that some part of `tp` has C as one of its superclasses.
     */
    private def implicitsOfExpectedType: Infoss = implicitsCache get pt match {
      case Some(implicitInfoss) =>
        incCounter(implicitCacheHits)
        implicitInfoss
      case None                 =>
        incCounter(implicitCacheMisses)
        val start = startTimer(subtypeETNanos)
//        val implicitInfoss = companionImplicits(pt)
        val implicitInfoss1 = companionImplicitMap(pt).valuesIterator.toList
//        val is1 = implicitInfoss.flatten.toSet
//        val is2 = implicitInfoss1.flatten.toSet
//        for (i <- is1)
//          if (!(is2 contains i)) println("!!! implicit infos of "+pt+" differ, new does not contain "+i+",\nold: "+implicitInfoss+",\nnew: "+implicitInfoss1)
//        for (i <- is2)
//          if (!(is1 contains i)) println("!!! implicit infos of "+pt+" differ, old does not contain "+i+",\nold: "+implicitInfoss+",\nnew: "+implicitInfoss1)
        stopTimer(subtypeETNanos, start)
        implicitsCache(pt) = implicitInfoss1
        if (implicitsCache.size >= sizeLimit)
          implicitsCache -= implicitsCache.keysIterator.next
        implicitInfoss1
    }

    /** Creates a tree that calls the relevant factory method in object
      * reflect.Manifest for type 'tp'. An EmptyTree is returned if
      * no manifest is found. todo: make this instantiate take type params as well?
      */
    private def manifestOfType(tp: Type, full: Boolean): SearchResult = {

      /** Creates a tree that calls the factory method called constructor in object reflect.Manifest */
      def manifestFactoryCall(constructor: String, tparg: Type, args: Tree*): Tree =
        if (args contains EmptyTree) EmptyTree
        else typedPos(tree.pos.focus)(gen.mkManifestFactoryCall(full, constructor, tparg, args.toList))

      /** Creates a tree representing one of the singleton manifests.*/
      def findSingletonManifest(name: String) = typedPos(tree.pos.focus) {
        Select(gen.mkAttributedRef(FullManifestModule), name)
      }

      /** Re-wraps a type in a manifest before calling inferImplicit on the result */
      def findManifest(tp: Type, manifestClass: Symbol = if (full) FullManifestClass else PartialManifestClass) =
        inferImplicit(tree, appliedType(manifestClass.typeConstructor, List(tp)), true, false, context).tree

      def findSubManifest(tp: Type) = findManifest(tp, if (full) FullManifestClass else OptManifestClass)
      def mot(tp0: Type, from: List[Symbol], to: List[Type]): SearchResult = {
        implicit def wrapResult(tree: Tree): SearchResult =
          if (tree == EmptyTree) SearchFailure else new SearchResult(tree, if (from.isEmpty) EmptyTreeTypeSubstituter else new TreeTypeSubstituter(from, to))

        val tp1 = tp0.normalize
        tp1 match {
          case ThisType(_) | SingleType(_, _) =>
            // can't generate a reference to a value that's abstracted over by an existential
            if (containsExistential(tp1)) EmptyTree
            else manifestFactoryCall("singleType", tp, gen.mkAttributedQualifier(tp1))
          case ConstantType(value) =>
            manifestOfType(tp1.deconst, full)
          case TypeRef(pre, sym, args) =>
            if (isValueClass(sym) || isPhantomClass(sym)) {
              findSingletonManifest(sym.name.toString)
            } else if (sym == ObjectClass || sym == AnyRefClass) {
              findSingletonManifest("Object")
            } else if (sym == RepeatedParamClass || sym == ByNameParamClass) {
              EmptyTree
            } else if (sym == ArrayClass && args.length == 1) {
              manifestFactoryCall("arrayType", args.head, findManifest(args.head))
            } else if (sym.isClass) {
              val classarg0 = gen.mkClassOf(tp1)
              val classarg = tp match {
                case _: ExistentialType => gen.mkCast(classarg0, ClassType(tp))
                case _                  => classarg0
              }
              val suffix = classarg :: (args map findSubManifest)
              manifestFactoryCall(
                "classType", tp,
                (if ((pre eq NoPrefix) || pre.typeSymbol.isStaticOwner) suffix
                 else findSubManifest(pre) :: suffix): _*)
            } else if (sym.isExistentiallyBound && full) {
              manifestFactoryCall("wildcardType", tp,
                                  findManifest(tp.bounds.lo), findManifest(tp.bounds.hi))
            }
            // looking for a manifest of a type parameter that hasn't been inferred by now,
            // can't do much, but let's not fail
            else if (undetParams contains sym) {
              // #3859: need to include the mapping from sym -> NothingClass.tpe in the SearchResult
              mot(NothingClass.tpe, sym :: from, NothingClass.tpe :: to)
            } else {
              // a manifest should have been found by normal searchImplicit
              EmptyTree
            }
          case RefinedType(parents, decls) => // !!! not yet: if !full || decls.isEmpty =>
            // refinement is not generated yet
            if (hasLength(parents, 1)) findManifest(parents.head)
            else if (full) manifestFactoryCall("intersectionType", tp, parents map findSubManifest: _*)
            else mot(erasure.intersectionDominator(parents), from, to)
          case ExistentialType(tparams, result) =>
            mot(tp1.skolemizeExistential, from, to)
          case _ =>
            EmptyTree
/*          !!! the following is almost right, but we have to splice nested manifest
 *          !!! types into this type. This requires a substantial extension of
 *          !!! reifiers.
            val reifier = new liftcode.Reifier()
            val rtree = reifier.reifyTopLevel(tp1)
            manifestFactoryCall("apply", tp, rtree)
*/
          }
      }

      mot(tp, Nil, Nil)
    }

    def wrapResult(tree: Tree): SearchResult =
      if (tree == EmptyTree) SearchFailure else new SearchResult(tree, EmptyTreeTypeSubstituter)

    /** The manifest corresponding to type `pt`, provided `pt` is an instance of Manifest.
     */
    private def implicitManifestOrOfExpectedType(pt: Type): SearchResult = pt.dealias match {
      case TypeRef(_, sym, args) if ManifestSymbols(sym) =>
        manifestOfType(args.head, sym == FullManifestClass) match {
          case SearchFailure if sym == OptManifestClass => wrapResult(gen.mkAttributedRef(NoManifest))
          case result                                   => result
        }
      case tp@TypeRef(_, sym, _) if sym.isAbstractType =>
        implicitManifestOrOfExpectedType(tp.bounds.lo) // #3977: use tp (==pt.dealias), not pt (if pt is a type alias, pt.bounds.lo == pt)
      case _ =>
        searchImplicit(implicitsOfExpectedType, false)
        // shouldn't we pass `pt` to `implicitsOfExpectedType`, or is the recursive case
        // for an abstract type really only meant for manifests?
    }

    /** The result of the implicit search:
     *  First search implicits visible in current context.
     *  If that fails, search implicits in expected type `pt`.
     *  If that fails, and `pt` is an instance of Manifest, try to construct a manifest.
     *  If all fails return SearchFailure
     */
    def bestImplicit: SearchResult = {
      val failstart = startTimer(inscopeFailNanos)
      val succstart = startTimer(inscopeSucceedNanos)

      var result = searchImplicit(context.implicitss, true)

      if (result == SearchFailure) {
        stopTimer(inscopeFailNanos, failstart)
      } else {
        stopTimer(inscopeSucceedNanos, succstart)
        incCounter(inscopeImplicitHits)
      }
      if (result == SearchFailure) {
        val failstart = startTimer(oftypeFailNanos)
        val succstart = startTimer(oftypeSucceedNanos)

        result = implicitManifestOrOfExpectedType(pt)

        if (result == SearchFailure) {
          stopTimer(oftypeFailNanos, failstart)
        } else {
          stopTimer(oftypeSucceedNanos, succstart)
          incCounter(oftypeImplicitHits)
        }
      }

      if (result == SearchFailure && settings.debug.value)
        log("no implicits found for "+pt+" "+pt.typeSymbol.info.baseClasses+" "+implicitsOfExpectedType)

      result
    }

    def allImplicits: List[SearchResult] = {
      def search(iss: Infoss, isLocal: Boolean) = applicableInfos(iss, isLocal).values
      (search(context.implicitss, true) ++ search(implicitsOfExpectedType, false)).toList.filter(_.tree ne EmptyTree)
    }
  }

  object ImplicitNotFoundMsg {
    def unapply(sym: Symbol): Option[(Message)] = sym.implicitNotFoundMsg map (m => (new Message(sym, m)))
    // check the message's syntax: should be a string literal that may contain occurrences of the string "${X}",
    // where `X` refers to a type parameter of `sym`
    def check(sym: Symbol): Option[String] =
      sym.getAnnotation(ImplicitNotFoundClass).flatMap(_.stringArg(0) match {
        case Some(m) => new Message(sym, m) validate
        case None => Some("Missing argument `msg` on implicitNotFound annotation.")
      })


    class Message(sym: Symbol, msg: String) {
      // http://dcsobral.blogspot.com/2010/01/string-interpolation-in-scala-with.html
      private def interpolate(text: String, vars: Map[String, String]) = {
        """\$\{([^}]+)\}""".r.replaceAllIn(text, (_: Regex.Match) match {
          case Regex.Groups(v) => java.util.regex.Matcher.quoteReplacement(vars.getOrElse(v, "")) // #3915: need to quote replacement string since it may include $'s (such as the interpreter's $iw)
        })}

      private lazy val typeParamNames: List[String] = sym.typeParams.map(_.decodedName)

      def format(paramName: Name, paramTp: Type): String = format(paramTp.typeArgs map (_.toString))
      def format(typeArgs: List[String]): String =
        interpolate(msg, Map((typeParamNames zip typeArgs): _*)) // TODO: give access to the name and type of the implicit argument, etc?

      def validate: Option[String] = {
        import scala.util.matching.Regex; import collection.breakOut
        // is there a shorter way to avoid the intermediate toList?
        val refs = """\$\{([^}]+)\}""".r.findAllIn(msg).matchData.map(_ group 1).toSet
        val decls = typeParamNames.toSet

        (refs &~ decls) match {
          case s if s isEmpty => None
          case unboundNames =>
            val singular = unboundNames.size == 1
            Some("The type parameter"+( if(singular) " " else "s " )+ unboundNames.mkString(", ")  +
                  " referenced in the message of the @implicitNotFound annotation "+( if(singular) "is" else "are" )+
                  " not defined by "+ sym +".")
        }
      }
    }
  }
}
class DivergentImplicit extends Exception
object DivergentImplicit extends DivergentImplicit