summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/Macros.scala
blob: c8bf70e9e0d5406113833263c6c752c0d59f9417 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
package scala.tools.nsc
package typechecker

import symtab.Flags._
import scala.tools.nsc.util._
import scala.tools.nsc.util.ClassPath._
import scala.reflect.runtime.ReflectionUtils
import scala.collection.mutable.ListBuffer
import scala.compat.Platform.EOL
import reflect.internal.util.Statistics
import scala.reflect.macros.util._
import java.lang.{Class => jClass}
import java.lang.reflect.{Array => jArray, Method => jMethod}
import scala.reflect.internal.util.Collections._

/**
 *  Code to deal with macros, namely with:
 *    * Compilation of macro definitions
 *    * Expansion of macro applications
 *
 *  Say we have in a class C:
 *
 *    def foo[T](xs: List[T]): T = macro fooBar
 *
 *  Then fooBar needs to point to a static method of the following form:
 *
 *    def fooBar[T: c.AbsTypeTag]
 *           (c: scala.reflect.macros.Context)
 *           (xs: c.Expr[List[T]])
 *           : c.Expr[T] = {
 *      ...
 *    }
 *
 *  Then, if foo is called in qual.foo[Int](elems), where qual: D,
 *  the macro application is expanded to a reflective invocation of fooBar with parameters
 *
 *    (simpleMacroContext{ type PrefixType = D; val prefix = qual })
 *    (Expr(elems))
 *    (TypeTag(Int))
 */
trait Macros extends scala.tools.reflect.FastTrack with Traces {
  self: Analyzer =>

  import global._
  import definitions._
  import MacrosStats._
  def globalSettings = global.settings

  val globalMacroCache = collection.mutable.Map[Any, Any]()
  val perRunMacroCache = perRunCaches.newMap[Symbol, collection.mutable.Map[Any, Any]]

  /** `MacroImplBinding` and its companion module are responsible for
   *  serialization/deserialization of macro def -> impl bindings.
   *
   *  The first officially released version of macros persisted these bindings across compilation runs
   *  using a neat trick. The right-hand side of a macro definition (which contains a reference to a macro impl)
   *  was typechecked and then put verbatim into an annotation on the macro definition.
   *
   *  This solution is very simple, but unfortunately it's also lacking. If we use it, then
   *  signatures of macro defs become transitively dependent on scala-reflect.jar
   *  (because they refer to macro impls, and macro impls refer to scala.reflect.macros.Context defined in scala-reflect.jar).
   *  More details can be found in comments to https://issues.scala-lang.org/browse/SI-5940.
   *
   *  Therefore we have to avoid putting macro impls into binding pickles and come up with our own serialization format.
   *  Situation is further complicated by the fact that it's not enough to just pickle macro impl's class name and method name,
   *  because macro expansion needs some knowledge about the shape of macro impl's signature (which we can't pickle).
   *  Hence we precompute necessary stuff (e.g. the layout of type parameters) when compiling macro defs.
   */

  /** Represents all the information that a macro definition needs to know about its implementation.
   *  Includes a path to load the implementation via Java reflection,
   *  and various accounting information necessary when composing an argument list for the reflective invocation.
   */
  private case class MacroImplBinding(
    // Java class name of the class that contains the macro implementation
    // is used to load the corresponding object with Java reflection
    val className: String,
    // method name of the macro implementation
    // `className` and `methName` are all we need to reflectively invoke a macro implementation
    // because macro implementations cannot be overloaded
    val methName: String,
    // flattens the macro impl's parameter lists having symbols replaced with metadata
    // currently metadata is an index of the type parameter corresponding to that type tag (if applicable)
    // f.ex. for: def impl[T: AbsTypeTag, U: AbsTypeTag, V](c: Context)(x: c.Expr[T]): (U, V) = ???
    // `signature` will be equal to List(-1, -1, 0, 1)
    val signature: List[Int],
    // type arguments part of a macro impl ref (the right-hand side of a macro definition)
    // these trees don't refer to a macro impl, so we can pickle them as is
    val targs: List[Tree])

  /** Macro def -> macro impl bindings are serialized into a `macroImpl` annotation
   *  with synthetic content that carries the payload described in `MacroImplBinding`.
   *
   *  For example, for a pair of macro definition and macro implementation:
   *    def impl(c: scala.reflect.macros.Context): c.Expr[Unit] = c.literalUnit;
   *    def foo: Unit = macro impl
   *
   *  We will have the following annotation added on the macro definition `foo`:
   *
   *    @scala.reflect.macros.internal.macroImpl(
   *      `macro`(
   *        "signature" = List(-1),
   *        "methodName" = "impl",
   *        "versionFormat" = 1,
   *        "className" = "Macros$"))
   */
  private object MacroImplBinding {
    val versionFormat = 1

    def pickleAtom(obj: Any): Tree =
      obj match {
        case list: List[_] => Apply(Ident(ListModule), list map pickleAtom)
        case s: String => Literal(Constant(s))
        case i: Int => Literal(Constant(i))
      }

    def unpickleAtom(tree: Tree): Any =
      tree match {
        case Apply(list @ Ident(_), args) if list.symbol == ListModule => args map unpickleAtom
        case Literal(Constant(s: String)) => s
        case Literal(Constant(i: Int)) => i
      }

    def pickle(macroImplRef: Tree): Tree = {
      val macroImpl = macroImplRef.symbol
      val paramss = macroImpl.paramss

      // this logic relies on the assumptions that were valid for the old macro prototype
      // namely that macro implementations can only be defined in top-level classes and modules
      // with the new prototype that materialized in a SIP, macros need to be statically accessible, which is different
      // for example, a macro def could be defined in a trait that is implemented by an object
      // there are some more clever cases when seemingly non-static method ends up being statically accessible
      // however, the code below doesn't account for these guys, because it'd take a look of time to get it right
      // for now I leave it as a todo and move along to more the important stuff
      // [Eugene] relies on the fact that macro implementations can only be defined in static classes
      // [Martin to Eugene++] There's similar logic buried in Symbol#flatname. Maybe we can refactor?
      // [Eugene] we will refactor once I get my hands on https://issues.scala-lang.org/browse/SI-5498
      def className: String = {
        def loop(sym: Symbol): String = sym match {
          case sym if sym.owner.isPackageClass =>
            val suffix = if (sym.isModuleClass) "$" else ""
            sym.fullName + suffix
          case sym =>
            val separator = if (sym.owner.isModuleClass) "" else "$"
            loop(sym.owner) + separator + sym.javaSimpleName.toString
        }

        loop(macroImpl.owner.enclClass)
      }

      def signature: List[Int] = {
        val transformed = transformTypeTagEvidenceParams(paramss, (param, tparam) => tparam)
        transformed.flatten map (p => if (p.isTerm) -1 else p.paramPos)
      }

      val payload = List[(String, Any)](
        "versionFormat" -> versionFormat,
        "className"     -> className,
        "methodName"    -> macroImpl.name.toString,
        "signature"     -> signature
      )

      // the shape of the nucleus is chosen arbitrarily. it doesn't carry any payload.
      // it's only necessary as a stub `fun` for an Apply node that carries metadata in its `args`
      // so don't try to find a program element named "macro" that corresponds to the nucleus
      // I just named it "macro", because it's macro-related, but I could as well name it "foobar"
      val nucleus = Ident(newTermName("macro"))
      val wrapped = Apply(nucleus, payload map { case (k, v) => Assign(pickleAtom(k), pickleAtom(v)) })
      val pickle = gen.mkTypeApply(wrapped, treeInfo.typeArguments(macroImplRef.duplicate))

      // assign NoType to all freshly created AST nodes
      // otherwise pickler will choke on tree.tpe being null
      // there's another gotcha
      // if you don't assign a ConstantType to a constant
      // then pickling will crash
      new Transformer {
        override def transform(tree: Tree) = {
          tree match {
            case Literal(const @ Constant(x)) if tree.tpe == null => tree setType ConstantType(const)
            case _ if tree.tpe == null => tree setType NoType
            case _ => ;
          }
          super.transform(tree)
        }
      }.transform(pickle)
    }

    def unpickle(pickle: Tree): MacroImplBinding = {
      val (wrapped, targs) =
        pickle match {
          case TypeApply(wrapped, targs) => (wrapped, targs)
          case wrapped => (wrapped, Nil)
        }
      val Apply(_, pickledPayload) = wrapped
      val payload = pickledPayload.map{ case Assign(k, v) => (unpickleAtom(k), unpickleAtom(v)) }.toMap

      val pickleVersionFormat = payload("versionFormat").asInstanceOf[Int]
      if (versionFormat != pickleVersionFormat) throw new Error("macro impl binding format mismatch: expected $versionFormat, actual $pickleVersionFormat")

      val className = payload("className").asInstanceOf[String]
      val methodName = payload("methodName").asInstanceOf[String]
      val signature = payload("signature").asInstanceOf[List[Int]]
      MacroImplBinding(className, methodName, signature, targs)
    }
  }

  private def bindMacroImpl(macroDef: Symbol, macroImplRef: Tree): Unit = {
    val pickle = MacroImplBinding.pickle(macroImplRef)
    macroDef withAnnotation AnnotationInfo(MacroImplAnnotation.tpe, List(pickle), Nil)
  }

  private def loadMacroImplBinding(macroDef: Symbol): MacroImplBinding = {
    val Some(AnnotationInfo(_, List(pickle), _)) = macroDef.getAnnotation(MacroImplAnnotation)
    MacroImplBinding.unpickle(pickle)
  }

  /** A list of compatible macro implementation signatures.
   *
   *  In the example above:
   *    (c: scala.reflect.macros.Context)(xs: c.Expr[List[T]]): c.Expr[T]
   *
   *  @param macroDef The macro definition symbol
   *  @param tparams  The type parameters of the macro definition
   *  @param vparamss The value parameters of the macro definition
   *  @param retTpe   The return type of the macro definition
   */
  private def macroImplSigs(macroDef: Symbol, tparams: List[TypeDef], vparamss: List[List[ValDef]], retTpe: Type): (List[List[List[Symbol]]], Type) = {
    // had to move method's body to an object because of the recursive dependencies between sigma and param
    object SigGenerator {
      val hasThis = macroDef.owner.isClass
      val ownerTpe = macroDef.owner match {
        case owner if owner.isModuleClass => new UniqueThisType(macroDef.owner)
        case owner if owner.isClass => macroDef.owner.tpe
        case _ => NoType
      }
      val hasTparams = !tparams.isEmpty

      def sigma(tpe: Type): Type = {
        class SigmaTypeMap extends TypeMap {
          def apply(tp: Type): Type = tp match {
            case TypeRef(pre, sym, args) =>
              val pre1 = pre match {
                case ThisType(sym) if sym == macroDef.owner =>
                  SingleType(SingleType(SingleType(NoPrefix, paramsCtx(0)), MacroContextPrefix), ExprValue)
                case SingleType(NoPrefix, sym) =>
                  mfind(vparamss)(_.symbol == sym) match {
                    case Some(macroDefParam) =>
                      SingleType(SingleType(NoPrefix, param(macroDefParam)), ExprValue)
                    case _ =>
                      pre
                  }
                case _ =>
                  pre
              }
              val args1 = args map mapOver
              TypeRef(pre1, sym, args1)
            case _ =>
              mapOver(tp)
          }
        }

        new SigmaTypeMap() apply tpe
      }

      def makeParam(name: Name, pos: Position, tpe: Type, flags: Long = 0L) =
        macroDef.newValueParameter(name, pos, flags) setInfo tpe
      val ctxParam = makeParam(nme.macroContext, macroDef.pos, MacroContextClass.tpe, SYNTHETIC)
      def implType(isType: Boolean, origTpe: Type): Type =
        if (isRepeatedParamType(origTpe))
          appliedType(
            RepeatedParamClass.typeConstructor,
            List(implType(isType, sigma(origTpe.typeArgs.head))))
        else {
          val tsym = getMember(MacroContextClass, if (isType) tpnme.AbsTypeTag else tpnme.Expr)
          typeRef(singleType(NoPrefix, ctxParam), tsym, List(sigma(origTpe)))
        }
      val paramCache = collection.mutable.Map[Symbol, Symbol]()
      def param(tree: Tree): Symbol =
        paramCache.getOrElseUpdate(tree.symbol, {
          // [Eugene] deskolemization became necessary once I implemented inference of macro def return type
          // please, verify this solution, but for now I'll leave it here - cargo cult for the win
          val sym = tree.symbol.deSkolemize
          val sigParam = makeParam(sym.name, sym.pos, implType(sym.isType, sym.tpe))
          if (sym.isSynthetic) sigParam.flags |= SYNTHETIC
          sigParam
        })

      val paramsCtx = List(ctxParam)
      val paramsThis = List(makeParam(nme.macroThis, macroDef.pos, implType(false, ownerTpe), SYNTHETIC))
      val paramsTparams = tparams map param
      val paramssParams = mmap(vparamss)(param)

      var paramsss = List[List[List[Symbol]]]()
      // tparams are no longer part of a signature, they get into macro implementations via context bounds
//      if (hasTparams && hasThis) paramsss :+= paramsCtx :: paramsThis :: paramsTparams :: paramssParams
//      if (hasTparams) paramsss :+= paramsCtx :: paramsTparams :: paramssParams
      // _this params are no longer part of a signature, its gets into macro implementations via Context.prefix
//      if (hasThis) paramsss :+= paramsCtx :: paramsThis :: paramssParams
      paramsss :+= paramsCtx :: paramssParams

      val tsym = getMember(MacroContextClass, tpnme.Expr)
      val implRetTpe = typeRef(singleType(NoPrefix, ctxParam), tsym, List(sigma(retTpe)))
    }

    import SigGenerator._
    macroTraceVerbose("generating macroImplSigs for: ")(macroDef)
    macroTraceVerbose("tparams are: ")(tparams)
    macroTraceVerbose("vparamss are: ")(vparamss)
    macroTraceVerbose("retTpe is: ")(retTpe)
    macroTraceVerbose("macroImplSigs are: ")(paramsss, implRetTpe)
  }

  private def transformTypeTagEvidenceParams(paramss: List[List[Symbol]], transform: (Symbol, Symbol) => Symbol): List[List[Symbol]] = {
    import definitions.{ AbsTypeTagClass, MacroContextClass }
    if (paramss.isEmpty || paramss.last.isEmpty)
      return paramss

    val ContextParam = paramss.head match {
      case p :: Nil => p filter (_.tpe <:< definitions.MacroContextClass.tpe)
      case _        => NoSymbol
    }
    def isTag(sym: Symbol): Boolean = (sym == AbsTypeTagClass) || (sym.isAliasType && isTag(sym.info.typeSymbol))
    def transformTag(param: Symbol): Symbol = param.tpe match {
      case TypeRef(SingleType(NoPrefix, ContextParam), sym, tp :: Nil) if isTag(sym) => transform(param, tp.typeSymbol)
      case _                                                                         => param
    }
    val last = paramss.last map transformTag filterNot (_ eq NoSymbol)
    if (last.isEmpty) paramss.init else paramss.init :+ last
  }

  /** As specified above, body of a macro definition must reference its implementation.
   *  This function verifies that the body indeed refers to a method, and that
   *  the referenced macro implementation is compatible with the given macro definition.
   *
   *  This means that macro implementation (fooBar in example above) must:
   *    1) Refer to a statically accessible, non-overloaded method.
   *    2) Have the right parameter lists as outlined in the SIP / in the doc comment of this class.
   *
   *  @return typechecked rhs of the given macro definition
   */
  def typedMacroBody(typer: Typer, ddef: DefDef): Tree = {
    import typer.context
    macroLogVerbose("typechecking macro def %s at %s".format(ddef.symbol, ddef.pos))

    val macroDef = ddef.symbol
    val defpos = macroDef.pos
    val implpos = ddef.rhs.pos
    assert(macroDef.isTermMacro, ddef)

    if (fastTrack contains ddef.symbol) {
      macroLogVerbose("typecheck terminated unexpectedly: macro is hardwired")
      assert(!ddef.tpt.isEmpty, "hardwired macros must provide result type")
      return EmptyTree
    }

    if (!typer.checkFeature(ddef.pos, MacrosFeature, immediate = true)) {
      macroLogVerbose("typecheck terminated unexpectedly: language.experimental.macros feature is not enabled")
      ddef.symbol setFlag IS_ERROR
      return EmptyTree
    }

    implicit class AugmentedString(s: String) {
      def abbreviateCoreAliases: String = { // hack!
        var result = s
        result = result.replace("c.universe.AbsTypeTag", "c.AbsTypeTag")
        result = result.replace("c.universe.Expr", "c.Expr")
        result
      }
    }

    var _hasError = false
    def hasError = _hasError
    def setError(): Unit = {
      _hasError = true
      macroDef setFlag IS_ERROR
    }
    def reportError(pos: Position, msg: String) = {
      setError()
      context.error(pos, msg)
      macroDef setFlag IS_ERROR
    }

    def invalidBodyError() =
      reportError(defpos,
        "macro body has wrong shape:" +
        "\n required: macro <reference to implementation object>.<implementation method name>" +
        "\n or      : macro <implementation method name>")
    def validatePreTyper(rhs: Tree): Unit = rhs match {
      // we do allow macro invocations inside macro bodies
      // personally I don't mind if pre-typer tree is a macro invocation
      // that later resolves to a valid reference to a macro implementation
      // however, I don't think that invalidBodyError() should hint at that
      // let this be an Easter Egg :)
      case Apply(_, _) => ;
      case TypeApply(_, _) => ;
      case Super(_, _) => ;
      case This(_) => ;
      case Ident(_) => ;
      case Select(_, _) => ;
      case _ => invalidBodyError()
    }
    def validatePostTyper(rhs1: Tree): Unit = {
      def loop(tree: Tree): Unit = {
        def errorNotStatic() =
          reportError(implpos, "macro implementation must be in statically accessible object")

        def ensureRoot(sym: Symbol) =
          if (!sym.isModule && !sym.isModuleClass) errorNotStatic()

        def ensureModule(sym: Symbol) =
          if (!sym.isModule) errorNotStatic()

        tree match {
          case TypeApply(fun, _) =>
            loop(fun)
          case Super(qual, _) =>
            ensureRoot(macroDef.owner)
            loop(qual)
          case This(_) =>
            ensureRoot(tree.symbol)
          case Select(qual, name) if name.isTypeName =>
            loop(qual)
          case Select(qual, name) if name.isTermName =>
            if (tree.symbol != rhs1.symbol) ensureModule(tree.symbol)
            loop(qual)
          case Ident(name) if name.isTypeName =>
            ;
          case Ident(name) if name.isTermName =>
            if (tree.symbol != rhs1.symbol) ensureModule(tree.symbol)
          case _ =>
            invalidBodyError()
        }
      }

      loop(rhs1)
    }

    val rhs = ddef.rhs
    validatePreTyper(rhs)
    if (hasError) macroTraceVerbose("macro def failed to satisfy trivial preconditions: ")(macroDef)

    // we use typed1 instead of typed, because otherwise adapt is going to mess us up
    // if adapt sees <qualifier>.<method>, it will want to perform eta-expansion and will fail
    // unfortunately, this means that we have to manually trigger macro expansion
    // because it's adapt which is responsible for automatic expansion during typechecking
    def typecheckRhs(rhs: Tree): Tree = {
      try {
        val prevNumErrors = reporter.ERROR.count // [Eugene] funnily enough, the isErroneous check is not enough
        var rhs1 = if (hasError) EmptyTree else typer.typed1(rhs, EXPRmode, WildcardType)
        def typecheckedWithErrors = (rhs1 exists (_.isErroneous)) || reporter.ERROR.count != prevNumErrors
        def rhsNeedsMacroExpansion = rhs1.symbol != null && rhs1.symbol.isTermMacro && !rhs1.symbol.isErroneous
        while (!typecheckedWithErrors && rhsNeedsMacroExpansion) {
          rhs1 = macroExpand1(typer, rhs1) match {
            case Success(expanded) =>
              try {
                val typechecked = typer.typed1(expanded, EXPRmode, WildcardType)
                macroLogVerbose("typechecked1:%n%s%n%s".format(typechecked, showRaw(typechecked)))
                typechecked
              } finally {
                openMacros = openMacros.tail
              }
            case Fallback(fallback) =>
              typer.typed1(fallback, EXPRmode, WildcardType)
            case Other(result) =>
              result
          }
        }
        rhs1
      } catch {
        case ex: TypeError =>
          typer.reportTypeError(context, rhs.pos, ex)
          typer.infer.setError(rhs)
      }
    }

    val prevNumErrors = reporter.ERROR.count // funnily enough, the isErroneous check is not enough
    var rhs1 = typecheckRhs(rhs)
    val macroImpl = rhs1.symbol
    def typecheckedWithErrors = (rhs1 exists (_.isErroneous)) || reporter.ERROR.count != prevNumErrors
    if (typecheckedWithErrors) {
      setError()
      macroTraceVerbose("body of a macro def failed to typecheck: ")(ddef)
    } else {
      if (!hasError) {
        if (macroImpl == null) {
           invalidBodyError()
        } else {
          if (!macroImpl.isMethod)
             invalidBodyError()
          if (!macroImpl.isPublic)
            reportError(implpos, "macro implementation must be public")
          if (macroImpl.isOverloaded)
            reportError(implpos, "macro implementation cannot be overloaded")
          if (!macroImpl.typeParams.isEmpty && (!rhs1.isInstanceOf[TypeApply]))
            reportError(implpos, "macro implementation reference needs type arguments")
          if (!hasError)
            validatePostTyper(rhs1)
        }
        if (hasError)
          macroTraceVerbose("macro def failed to satisfy trivial preconditions: ")(macroDef)
      }
      if (!hasError) {
        bindMacroImpl(macroDef, rhs1) // we must bind right over here, because return type inference needs this info
      }
    }

    if (!hasError) {
      def checkCompatibility(reqparamss: List[List[Symbol]], actparamss: List[List[Symbol]], reqres: Type, actres: Type): List[String] = {
        var hasError = false
        var errors = List[String]()
        def compatibilityError(msg: String) {
          hasError = true
          errors :+= msg
        }

        val flatreqparams = reqparamss.flatten
        val flatactparams = actparamss.flatten
        val tparams = macroImpl.typeParams
        val tvars = tparams map freshVar
        def lengthMsg(which: String, extra: Symbol) =
          "parameter lists have different length, "+which+" extra parameter "+extra.defString
        if (actparamss.length != reqparamss.length)
          compatibilityError("number of parameter sections differ")

        def checkSubType(slot: String, reqtpe: Type, acttpe: Type): Unit = {
          val ok = if (macroDebugVerbose) {
            if (reqtpe eq acttpe) println(reqtpe + " <: " + acttpe + "?" + EOL + "true")
            withTypesExplained(reqtpe <:< acttpe)
          } else reqtpe <:< acttpe
          if (!ok) {
            compatibilityError("type mismatch for %s: %s does not conform to %s".format(slot, reqtpe.toString.abbreviateCoreAliases, acttpe.toString.abbreviateCoreAliases))
          }
        }

        if (!hasError) {
          try {
            for ((rparams, aparams) <- reqparamss zip actparamss) {
              if (rparams.length < aparams.length)
                compatibilityError(lengthMsg("found", aparams(rparams.length)))
              if (aparams.length < rparams.length)
                compatibilityError(lengthMsg("required", rparams(aparams.length)).abbreviateCoreAliases)
            }
            // if the implementation signature is already deemed to be incompatible, we bail out
            // otherwise, high-order type magic employed below might crash in weird ways
            if (!hasError) {
              for ((rparams, aparams) <- reqparamss zip actparamss) {
                for ((rparam, aparam) <- rparams zip aparams) {
                  def isRepeated(param: Symbol) = param.tpe.typeSymbol == RepeatedParamClass
                  if (rparam.name != aparam.name && !rparam.isSynthetic) {
                    val rparam1 = rparam
                    val aparam1 = aparam
                    compatibilityError("parameter names differ: "+rparam.name+" != "+aparam.name)
                  }
                  if (isRepeated(rparam) && !isRepeated(aparam))
                    compatibilityError("types incompatible for parameter "+rparam.name+": corresponding is not a vararg parameter")
                  if (!isRepeated(rparam) && isRepeated(aparam))
                    compatibilityError("types incompatible for parameter "+aparam.name+": corresponding is not a vararg parameter")
                  if (!hasError) {
                    var atpe = aparam.tpe.substSym(flatactparams, flatreqparams).instantiateTypeParams(tparams, tvars)
                    atpe = atpe.dealias // SI-5706
                    // strip the { type PrefixType = ... } refinement off the Context or otherwise we get compatibility errors
                    atpe = atpe match {
                      case RefinedType(List(tpe), Scope(sym)) if tpe == MacroContextClass.tpe && sym.allOverriddenSymbols.contains(MacroContextPrefixType) => tpe
                      case _ => atpe
                    }
                    checkSubType("parameter " + rparam.name, rparam.tpe, atpe)
                  }
                }
              }
            }
            if (!hasError) {
              val atpe = actres.substSym(flatactparams, flatreqparams).instantiateTypeParams(tparams, tvars)
              checkSubType("return type", atpe, reqres)
            }
            if (!hasError) {
              val targs = solvedTypes(tvars, tparams, tparams map varianceInType(actres), false,
                lubDepth(flatactparams map (_.tpe)) max lubDepth(flatreqparams map (_.tpe)))
              val boundsOk = typer.silent(_.infer.checkBounds(ddef, NoPrefix, NoSymbol, tparams, targs, ""))
              boundsOk match {
                case SilentResultValue(true) => ;
                case SilentResultValue(false) | SilentTypeError(_) =>
                  val bounds = tparams map (tp => tp.info.instantiateTypeParams(tparams, targs).bounds)
                  compatibilityError("type arguments " + targs.mkString("[", ",", "]") +
                                     " do not conform to " + tparams.head.owner + "'s type parameter bounds " +
                                     (tparams map (_.defString)).mkString("[", ",", "]"))
              }
            }
          } catch {
            case ex: NoInstance =>
              compatibilityError(
                "type parameters "+(tparams map (_.defString) mkString ", ")+" cannot be instantiated\n"+
                ex.getMessage)
          }
        }

        errors.toList
      }

      var actparamss = macroImpl.paramss
      actparamss = transformTypeTagEvidenceParams(actparamss, (param, tparam) => NoSymbol)

      val rettpe = if (!ddef.tpt.isEmpty) typer.typedType(ddef.tpt).tpe else computeMacroDefTypeFromMacroImpl(ddef, macroDef, macroImpl)
      val (reqparamsss0, reqres0) = macroImplSigs(macroDef, ddef.tparams, ddef.vparamss, rettpe)
      var reqparamsss = reqparamsss0

      // prohibit implicit params on macro implementations
      // we don't have to do this, but it appears to be more clear than allowing them
      val implicitParams = actparamss.flatten filter (_.isImplicit)
      if (implicitParams.length > 0) {
        reportError(implicitParams.head.pos, "macro implementations cannot have implicit parameters other than AbsTypeTag evidences")
        macroTraceVerbose("macro def failed to satisfy trivial preconditions: ")(macroDef)
      }

      if (!hasError) {
        val reqres = reqres0
        val actres = macroImpl.tpe.finalResultType
        def showMeth(pss: List[List[Symbol]], restpe: Type, abbreviate: Boolean) = {
          var argsPart = (pss map (ps => ps map (_.defString) mkString ("(", ", ", ")"))).mkString
          if (abbreviate) argsPart = argsPart.abbreviateCoreAliases
          var retPart = restpe.toString
          if (abbreviate || ddef.tpt.tpe == null) retPart = retPart.abbreviateCoreAliases
          argsPart + ": " + retPart
        }
        def compatibilityError(addendum: String) =
          reportError(implpos,
            "macro implementation has wrong shape:"+
            "\n required: "+showMeth(reqparamsss.head, reqres, true) +
            (reqparamsss.tail map (paramss => "\n or      : "+showMeth(paramss, reqres, true)) mkString "")+
            "\n found   : "+showMeth(actparamss, actres, false)+
            "\n"+addendum)

        macroTraceVerbose("considering " + reqparamsss.length + " possibilities of compatible macro impl signatures for macro def: ")(ddef.name)
        val results = reqparamsss map (checkCompatibility(_, actparamss, reqres, actres))
        if (macroDebugVerbose) (reqparamsss zip results) foreach { case (reqparamss, result) =>
          println("%s %s".format(if (result.isEmpty) "[  OK  ]" else "[FAILED]", reqparamss))
          result foreach (errorMsg => println("  " + errorMsg))
        }

        if (results forall (!_.isEmpty)) {
          var index = reqparamsss indexWhere (_.length == actparamss.length)
          if (index == -1) index = 0
          val mostRelevantMessage = results(index).head
          compatibilityError(mostRelevantMessage)
        } else {
          assert((results filter (_.isEmpty)).length == 1, results)
          if (macroDebugVerbose) (reqparamsss zip results) filter (_._2.isEmpty) foreach { case (reqparamss, result) =>
            println("typechecked macro impl as: " + reqparamss)
          }
        }
      }
    }

    rhs1
  }

  def computeMacroDefTypeFromMacroImpl(macroDdef: DefDef, macroDef: Symbol, macroImpl: Symbol): Type = {
    // get return type from method type
    def unwrapRet(tpe: Type): Type = {
      def loop(tpe: Type) = tpe match {
        case NullaryMethodType(ret) => ret
        case mtpe @ MethodType(_, ret) => unwrapRet(ret)
        case _ => tpe
      }

      tpe match {
        case PolyType(_, tpe) => loop(tpe)
        case _ => loop(tpe)
      }
    }
    var metaType = unwrapRet(macroImpl.tpe)

    // downgrade from metalevel-0 to metalevel-1
    def inferRuntimeType(metaType: Type): Type = metaType match {
      case TypeRef(pre, sym, args) if sym.name == tpnme.Expr && args.length == 1 =>
        args.head
      case _ =>
        AnyClass.tpe
    }
    var runtimeType = inferRuntimeType(metaType)

    // transform type parameters of a macro implementation into type parameters of a macro definition
    runtimeType = runtimeType map {
      case TypeRef(pre, sym, args) =>
        // [Eugene] not sure which of these deSkolemizes are necessary
        // sym.paramPos is unreliable (see another case below)
        val tparams = macroImpl.typeParams map (_.deSkolemize)
        val paramPos = tparams indexOf sym.deSkolemize
        val sym1 =
          if (paramPos == -1) sym
          else loadMacroImplBinding(macroDef).targs(paramPos).tpe.typeSymbol
        TypeRef(pre, sym1, args)
      case tpe =>
        tpe
    }

    // as stated in the spec, before being matched to macroimpl, type and value parameters of macrodef
    // undergo a special transformation, sigma, that adapts them to the different metalevel macroimpl lives in
    // as a result, we need to reverse this transformation when inferring macrodef ret from macroimpl ret
    def unsigma(tpe: Type): Type = {
      // unfortunately, we cannot dereference ``paramss'', because we're in the middle of inferring a type for ``macroDef''
//      val defParamss = macroDef.paramss
      val defParamss = mmap(macroDdef.vparamss)(_.symbol)
      var implParamss = macroImpl.paramss
      implParamss = transformTypeTagEvidenceParams(implParamss, (param, tparam) => NoSymbol)

      val implCtxParam = if (implParamss.length > 0 && implParamss(0).length > 0) implParamss(0)(0) else null
      def implParamToDefParam(implParam: Symbol): Symbol = {
        val indices = (((implParamss drop 1).zipWithIndex) map { case (implParams, index) => (index, implParams indexOf implParam) } filter (_._2 != -1)).headOption
        val defParam = indices flatMap {
          case (plistIndex, pIndex) =>
            if (defParamss.length <= plistIndex) None
            else if (defParamss(plistIndex).length <= pIndex) None
            else Some(defParamss(plistIndex)(pIndex))
        }
        defParam.orNull
      }

      class UnsigmaTypeMap extends TypeMap {
        def apply(tp: Type): Type = tp match {
          case TypeRef(pre, sym, args) =>
            val pre1 = pre match {
              case SingleType(SingleType(SingleType(NoPrefix, param), prefix), value) if param == implCtxParam && prefix == MacroContextPrefix && value == ExprValue =>
                ThisType(macroDef.owner)
              case SingleType(SingleType(NoPrefix, param), value) if implParamToDefParam(param) != null && value == ExprValue =>
                val macroDefParam = implParamToDefParam(param)
                SingleType(NoPrefix, macroDefParam)
              case _ =>
                pre
            }
            val args1 = args map mapOver
            TypeRef(pre1, sym, args1)
          case _ =>
            mapOver(tp)
        }
      }

      new UnsigmaTypeMap() apply tpe
    }
    runtimeType = unsigma(runtimeType)

    runtimeType
  }

  /** Macro classloader that is used to resolve and run macro implementations.
   *  Loads classes from from -cp (aka the library classpath).
   *  Is also capable of detecting REPL and reusing its classloader.
   */
  private lazy val macroClassloader: ClassLoader = {
    if (global.forMSIL)
      throw new UnsupportedOperationException("Scala reflection not available on this platform")

    val classpath = global.classPath.asURLs
    macroLogVerbose("macro classloader: initializing from -cp: %s".format(classpath))
    val loader = ScalaClassLoader.fromURLs(classpath, self.getClass.getClassLoader)

    // [Eugene] a heuristic to detect the REPL
    if (global.settings.exposeEmptyPackage.value) {
      macroLogVerbose("macro classloader: initializing from a REPL classloader".format(global.classPath.asURLs))
      import scala.tools.nsc.interpreter._
      val virtualDirectory = global.settings.outputDirs.getSingleOutput.get
      new AbstractFileClassLoader(virtualDirectory, loader) {}
    } else {
      loader
    }
  }

  /** Produces a function that can be used to invoke macro implementation for a given macro definition:
   *    1) Looks up macro implementation symbol in this universe.
   *    2) Loads its enclosing class from the macro classloader.
   *    3) Loads the companion of that enclosing class from the macro classloader.
   *    4) Resolves macro implementation within the loaded companion.
   *
   *  @return Requested runtime if macro implementation can be loaded successfully from either of the mirrors,
   *          null otherwise.
   */
  type MacroRuntime = List[Any] => Any
  private val macroRuntimesCache = perRunCaches.newWeakMap[Symbol, MacroRuntime]
  private def macroRuntime(macroDef: Symbol): MacroRuntime = {
    macroTraceVerbose("looking for macro implementation: ")(macroDef)
    if (fastTrack contains macroDef) {
      macroLogVerbose("macro expansion is serviced by a fast track")
      fastTrack(macroDef)
    } else {
      macroRuntimesCache.getOrElseUpdate(macroDef, {
        val binding = loadMacroImplBinding(macroDef)
        val className = binding.className
        val methName = binding.methName
        macroLogVerbose(s"resolved implementation as $className.$methName")

        // [Eugene++] I don't use Scala reflection here, because it seems to interfere with JIT magic
        // whenever you instantiate a mirror (and not do anything with in, just instantiate), performance drops by 15-20%
        // I'm not sure what's the reason - for me it's pure voodoo
        try {
          macroTraceVerbose("loading implementation class: ")(className)
          macroTraceVerbose("classloader is: ")(ReflectionUtils.show(macroClassloader))
          val implObj = ReflectionUtils.staticSingletonInstance(macroClassloader, className)
          // relies on the fact that macro impls cannot be overloaded
          // so every methName can resolve to at maximum one method
          val implMeths = implObj.getClass.getDeclaredMethods.find(_.getName == methName)
          val implMeth = implMeths getOrElse { throw new NoSuchMethodException(s"$className.$methName") }
          macroLogVerbose("successfully loaded macro impl as (%s, %s)".format(implObj, implMeth))
          (args: List[Any]) => implMeth.invoke(implObj, (args map (_.asInstanceOf[AnyRef])): _*)
        } catch {
          case ex: Exception =>
            macroTraceVerbose(s"macro runtime failed to load: ")(ex.toString)
            macroDef setFlag IS_ERROR
            null
        }
      })
    }
  }

  private def macroContext(typer: Typer, prefixTree: Tree, expandeeTree: Tree): MacroContext =
    new {
      val universe: self.global.type = self.global
      val callsiteTyper: universe.analyzer.Typer = typer.asInstanceOf[global.analyzer.Typer]
      val expandee = expandeeTree
    } with UnaffiliatedMacroContext {
      // todo. infer precise typetag for this Expr, namely the PrefixType member of the Context refinement
      val prefix = Expr[Nothing](prefixTree)(TypeTag.Nothing)
      override def toString = "MacroContext(%s@%s +%d)".format(expandee.symbol.name, expandee.pos, enclosingMacros.length - 1 /* exclude myself */)
    }

  /** Calculate the arguments to pass to a macro implementation when expanding the provided tree.
   *
   *  This includes inferring the exact type and instance of the macro context to pass, and also
   *  allowing for missing parameter sections in macro implementation (see ``macroImplParamsss'' for more info).
   *
   *  @return list of runtime objects to pass to the implementation obtained by ``macroRuntime''
   */
  private def macroArgs(typer: Typer, expandee: Tree): Option[List[Any]] = {
    val macroDef   = expandee.symbol
    val prefixTree = expandee.collect{ case Select(qual, name) => qual }.headOption.getOrElse(EmptyTree)
    val context    = expandee.attachments.get[MacroRuntimeAttachment].flatMap(_.macroContext).getOrElse(macroContext(typer, prefixTree, expandee))
    var typeArgs   = List[Tree]()
    val exprArgs   = ListBuffer[List[Expr[_]]]()
    def collectMacroArgs(tree: Tree): Unit = tree match {
      case Apply(fn, args) =>
        // todo. infer precise typetag for this Expr, namely the declared type of the corresponding macro impl argument
        exprArgs.prepend(args map (arg => context.Expr[Nothing](arg)(TypeTag.Nothing)))
        collectMacroArgs(fn)
      case TypeApply(fn, args) =>
        typeArgs = args
        collectMacroArgs(fn)
      case _ =>
    }
    collectMacroArgs(expandee)

    val argcDoesntMatch = macroDef.paramss.length != exprArgs.length
    val nullaryArgsEmptyParams = exprArgs.isEmpty && macroDef.paramss == List(List())
    if (argcDoesntMatch && !nullaryArgsEmptyParams) { typer.TyperErrorGen.MacroPartialApplicationError(expandee); return None }

    var argss: List[List[Any]] = List(context) :: exprArgs.toList
    macroTraceVerbose("argss: ")(argss)
    val rawArgss =
      if (fastTrack contains macroDef) {
        if (fastTrack(macroDef) validate argss) argss
        else {
          // if you're getting here, it's not necessarily partial application that is at fault
          // for example, if a signature of a hardwired macro has been changed without updated FastTrack
          // then the corresponding partial function in FastTrack will refuse to process the expandee
          // validation will return false, and control flow will end up here
          // however, for simplicity sake, I didn't introduce the notion of error handling to FastTrack
          // so all kinds of validation errors produce `MacroPartialApplicationError`
          typer.TyperErrorGen.MacroPartialApplicationError(expandee)
          return None
        }
      } else {
        val binding = loadMacroImplBinding(macroDef)
        macroTraceVerbose("binding: ")(binding)

        // if paramss have typetag context bounds, add an arglist to argss if necessary and instantiate the corresponding evidences
        // consider the following example:
        //
        //   class D[T] {
        //     class C[U] {
        //       def foo[V] = macro Impls.foo[T, U, V]
        //     }
        //   }
        //
        //   val outer1 = new D[Int]
        //   val outer2 = new outer1.C[String]
        //   outer2.foo[Boolean]
        //
        // then T and U need to be inferred from the lexical scope of the call using ``asSeenFrom''
        // whereas V won't be resolved by asSeenFrom and need to be loaded directly from ``expandee'' which needs to contain a TypeApply node
        // also, macro implementation reference may contain a regular type as a type argument, then we pass it verbatim
        val tags = binding.signature filter (_ != -1) map (paramPos => {
          val targ = binding.targs(paramPos).tpe.typeSymbol
          val tpe = if (targ.isTypeParameterOrSkolem) {
            if (targ.owner == macroDef) {
              // [Eugene] doesn't work when macro def is compiled separately from its usages
              // then targ is not a skolem and isn't equal to any of macroDef.typeParams
              // val argPos = targ.deSkolemize.paramPos
              val argPos = macroDef.typeParams.indexWhere(_.name == targ.name)
              typeArgs(argPos).tpe
            } else
              targ.tpe.asSeenFrom(
                if (prefixTree == EmptyTree) macroDef.owner.tpe else prefixTree.tpe,
                macroDef.owner)
          } else
            targ.tpe
          if (tpe.isConcrete) context.TypeTag(tpe) else context.AbsTypeTag(tpe)
        })
        val hasImplicitParams = macroDef.paramss.flatten.lastOption exists (_.isImplicit)
        argss = if (hasImplicitParams) argss.dropRight(1) :+ (tags ++ argss.last) else argss :+ tags

        // transforms argss taking into account varargness of paramss
        // not all argument lists in argss map to macroDef.paramss, so we need to apply extra care
        // namely:
        // 1) the first argument list represents (c: Context) in macroImpl, so it doesn't have correspondence in macroDef
        // 2) typetag context bounds are only declared on macroImpls, so this optional arglist also doesn't match macroDef
        // nb! varargs can apply to any parameter section, not necessarily to the last one
        mapWithIndex(argss)((as, i_argss) => {
          val i_paramss = i_argss - 1
          val mapsToParamss = 0 <= i_paramss && i_paramss < macroDef.paramss.length
          if (mapsToParamss) {
            val ps = macroDef.paramss(i_paramss)
            if (isVarArgsList(ps)) as.take(ps.length - 1) :+ as.drop(ps.length - 1)
            else as
          } else as
        })
      }
    val rawArgs = rawArgss.flatten
    macroTraceVerbose("rawArgs: ")(rawArgs)
    Some(rawArgs)
  }

  /** Keeps track of macros in-flight.
   *  See more informations in comments to ``openMacros'' in ``scala.reflect.macros.Context''.
   */
  var openMacros = List[MacroContext]()
  def enclosingMacroPosition = openMacros map (_.macroApplication.pos) find (_ ne NoPosition) getOrElse NoPosition

  /** Performs macro expansion:
   *    1) Checks whether the expansion needs to be delayed (see ``mustDelayMacroExpansion'')
   *    2) Loads macro implementation using ``macroMirror''
   *    3) Synthesizes invocation arguments for the macro implementation
   *    4) Checks that the result is a tree bound to this universe
   *    5) Typechecks the result against the return type of the macro definition
   *
   *  If -Ymacro-debug-lite is enabled, you will get basic notifications about macro expansion
   *  along with macro expansions logged in the form that can be copy/pasted verbatim into REPL.
   *
   *  If -Ymacro-debug-verbose is enabled, you will get detailed log of how exactly this function
   *  performs class loading and method resolution in order to load the macro implementation.
   *  The log will also include other non-trivial steps of macro expansion.
   *
   *  @return
   *    the expansion result                    if the expansion has been successful,
   *    the fallback method invocation          if the expansion has been unsuccessful, but there is a fallback,
   *    the expandee unchanged                  if the expansion has been delayed,
   *    the expandee fully expanded             if the expansion has been delayed before and has been expanded now,
   *    the expandee with an error marker set   if the expansion has been cancelled due malformed arguments or implementation
   *    the expandee with an error marker set   if there has been an error
   */
  def macroExpand(typer: Typer, expandee: Tree, mode: Int = EXPRmode, pt: Type = WildcardType): Tree = {
    def fail(what: String, tree: Tree): Tree = {
      val err = typer.context.errBuffer.head
      this.fail(typer, tree, err.errPos, "failed to %s: %s".format(what, err.errMsg))
      return expandee
    }
    val start = Statistics.startTimer(macroExpandNanos)
    Statistics.incCounter(macroExpandCount)
    try {
      macroExpand1(typer, expandee) match {
        case Success(expanded0) =>
          try {
            val expanded = expanded0 // virtpatmat swallows the local for expandee from the match
                                     // so I added this dummy local for the ease of debugging
            var expectedTpe = expandee.tpe

            // [Eugene] weird situation. what's the conventional way to deal with it?
            val isNullaryInvocation = expandee match {
              case TypeApply(Select(_, _), _) => true
              case TypeApply(Ident(_), _) => true
              case Select(_, _) => true
              case Ident(_) => true
              case _ => false
            }
            if (isNullaryInvocation) expectedTpe match {
              case NullaryMethodType(restpe) =>
                macroTraceVerbose("nullary invocation of a nullary method. unwrapping expectedTpe from " + expectedTpe + " to: ")(restpe)
                expectedTpe = restpe
              case MethodType(Nil, restpe) =>
                macroTraceVerbose("nullary invocation of a method with an empty parameter list. unwrapping expectedTpe from " + expectedTpe + " to: ")(restpe)
                expectedTpe = restpe
              case _ => ;
            }

            macroLogVerbose("typechecking1 against %s: %s".format(expectedTpe, expanded))
            var typechecked = typer.context.withImplicitsEnabled(typer.typed(expanded, EXPRmode, expectedTpe))
            if (typer.context.hasErrors) fail("typecheck against macro def return type", expanded)
            macroLogVerbose("typechecked1:%n%s%n%s".format(typechecked, showRaw(typechecked)))

            macroLogVerbose("typechecking2 against %s: %s".format(pt, expanded))
            typechecked = typer.context.withImplicitsEnabled(typer.typed(typechecked, EXPRmode, pt))
            if (typer.context.hasErrors) fail("typecheck against expected type", expanded)
            macroLogVerbose("typechecked2:%n%s%n%s".format(typechecked, showRaw(typechecked)))

            typechecked addAttachment MacroExpansionAttachment(expandee)
          } finally {
            openMacros = openMacros.tail
          }
        case Fallback(fallback) =>
          typer.context.withImplicitsEnabled(typer.typed(fallback, EXPRmode, pt))
        case Other(result) =>
          result
      }
    } finally {
      Statistics.stopTimer(macroExpandNanos, start)
    }
  }

  private sealed abstract class MacroExpansionResult extends Product with Serializable
  private case class Success(expanded: Tree) extends MacroExpansionResult
  private case class Fallback(fallback: Tree) extends MacroExpansionResult
  private case class Other(result: Tree) extends MacroExpansionResult
  private def Delay(expanded: Tree) = Other(expanded)
  private def Skip(expanded: Tree) = Other(expanded)
  private def Cancel(expandee: Tree) = Other(expandee)
  private def Failure(expandee: Tree) = Other(expandee)
  private def fail(typer: Typer, expandee: Tree, pos: Position = NoPosition, msg: String = null) = {
    def msgForLog = if (msg != null && (msg contains "exception during macro expansion")) msg.split(EOL).drop(1).headOption.getOrElse("?") else msg
    macroLogLite("macro expansion has failed: %s".format(msgForLog))
    val errorPos = if (pos != NoPosition) pos else (if (expandee.pos != NoPosition) expandee.pos else enclosingMacroPosition)
    if (msg != null) typer.context.error(errorPos, msg)
    typer.infer.setError(expandee)
    Failure(expandee)
  }

  /** Does the same as ``macroExpand'', but without typechecking the expansion
   *  Meant for internal use within the macro infrastructure, don't use it elsewhere.
   */
  private def macroExpand1(typer: Typer, expandee: Tree): MacroExpansionResult =
    // InfoLevel.Verbose examines and prints out infos of symbols
    // by the means of this'es these symbols can climb up the lexical scope
    // when these symbols will be examined by a node printer
    // they will enumerate and analyze their children (ask for infos and tpes)
    // if one of those children involves macro expansion, things might get nasty
    // that's why I'm temporarily turning this behavior off
    withInfoLevel(nodePrinters.InfoLevel.Quiet) {
      // if a macro implementation is incompatible or any of the arguments are erroneous
      // there is no sense to expand the macro itself => it will only make matters worse
      if (expandee.symbol.isErroneous || (expandee exists (_.isErroneous))) {
        val reason = if (expandee.symbol.isErroneous) "not found or incompatible macro implementation" else "erroneous arguments"
        macroTraceVerbose("cancelled macro expansion because of %s: ".format(reason))(expandee)
        return Cancel(typer.infer.setError(expandee))
      }

      val runtime = macroRuntime(expandee.symbol)
      if (runtime != null) macroExpandWithRuntime(typer, expandee, runtime)
      else macroExpandWithoutRuntime(typer, expandee)
    }

  /** Expands a macro when a runtime (i.e. the macro implementation) can be successfully loaded
   *  Meant for internal use within the macro infrastructure, don't use it elsewhere.
   */
  private def macroExpandWithRuntime(typer: Typer, expandee: Tree, runtime: MacroRuntime): MacroExpansionResult = {
    def issueFreeError(sym: FreeSymbol) = {
      val template = (
          "Macro expansion contains free @kind@ variable %s. Have you forgotten to use %s? "
        + "If you have troubles tracking free @kind@ variables, consider using -Xlog-free-@kind@s"
      )
      val forgotten = (
        if (sym.isTerm) "splice when splicing this variable into a reifee"
        else "c.AbsTypeTag annotation for this type parameter"
      )
      typer.context.error(expandee.pos,
        template.replaceAllLiterally("@kind@", sym.name.nameKind).format(
          sym.name + " " + sym.origin, forgotten)
      )
    }
    def macroExpandInternal = {
      val wasDelayed  = isDelayed(expandee)
      val undetparams = calculateUndetparams(expandee)
      val nowDelayed  = !typer.context.macrosEnabled || undetparams.nonEmpty

      def failExpansion(msg: String = null) = fail(typer, expandee, msg = msg)
      def performExpansion(args: List[Any]): MacroExpansionResult = {
        val numErrors    = reporter.ERROR.count
        def hasNewErrors = reporter.ERROR.count > numErrors

        val expanded = runtime(args)

        if (hasNewErrors)
          failExpansion() // errors have been reported by the macro itself
        else expanded match {
          case expanded: Expr[_] =>
            macroLogVerbose("original:")
            macroLogLite("" + expanded.tree + "\n" + showRaw(expanded.tree))

            expanded.tree.freeTerms foreach issueFreeError
            expanded.tree.freeTypes foreach issueFreeError
            if (hasNewErrors) failExpansion()

            // inherit the position from the first position-ful expandee in macro callstack
            // this is essential for sane error messages
            // now macro expansion gets typechecked against the macro definition return type
            // however, this happens in macroExpand, not here in macroExpand1
            else Success(atPos(enclosingMacroPosition.focus)(expanded.tree))
          case _ =>
            failExpansion(
              "macro must return a compiler-specific expr; returned value is " + (
                if (expanded.isInstanceOf[Expr[_]]) " Expr, but it doesn't belong to this compiler's universe"
                else " of " + expanded.getClass
              )
            )
        }
      }

      if (wasDelayed) {
        if (nowDelayed) Delay(expandee)
        else Skip(macroExpandAll(typer, expandee))
      }
      else {
        macroLogLite("typechecking macro expansion %s at %s".format(expandee, expandee.pos))
        macroArgs(typer, expandee).fold(failExpansion(): MacroExpansionResult) {
          args => (args: @unchecked) match {
            // [Eugene++] crashes virtpatmat:
            // case args @ ((context: MacroContext) :: _) =>
            case args @ (context0 :: _) =>
              val context = context0.asInstanceOf[MacroContext]
              if (nowDelayed) {
                macroLogLite("macro expansion is delayed: %s".format(expandee))
                delayed += expandee -> undetparams
                // need to save typer context for `macroExpandAll`
                // need to save macro context to preserve enclosures
                expandee addAttachment MacroRuntimeAttachment(delayed = true, typerContext = typer.context, macroContext = Some(context.asInstanceOf[MacroContext]))
                Delay(expandee)
              }
              else {
                // adding stuff to openMacros is easy, but removing it is a nightmare
                // it needs to be sprinkled over several different code locations
                // why? https://github.com/scala/scala/commit/bd3eacbae21f39b1ac7fe8ade4ed71fa98e1a28d#L2R1137
                // todo. will be improved
                openMacros ::= context
                var isSuccess = false
                try performExpansion(args) match {
                  case x: Success => isSuccess = true ; x
                  case x          => x
                }
                finally {
                  expandee.removeAttachment[MacroRuntimeAttachment]
                  if (!isSuccess) openMacros = openMacros.tail
                }
              }
          }
        }
      }
    }

    try macroExpandInternal
    catch { case ex: Throwable => handleMacroExpansionException(typer, expandee, ex) }
  }

  private def macroExpandWithoutRuntime(typer: Typer, expandee: Tree): MacroExpansionResult = {
    val macroDef = expandee.symbol
    def notFound() = {
      typer.context.error(expandee.pos, "macro implementation not found: " + macroDef.name + " " +
        "(the most common reason for that is that you cannot use macro implementations in the same compilation run that defines them)")
      None
    }
    def fallBackToOverridden(tree: Tree): Option[Tree] = {
      tree match {
        case Select(qual, name) if (macroDef.isTermMacro) =>
          macroDef.allOverriddenSymbols match {
            case first :: _ =>
              Some(Select(qual, name) setPos tree.pos setSymbol first)
            case _ =>
              macroTraceVerbose("macro is not overridden: ")(tree)
              notFound()
          }
        case Apply(fn, args) =>
          fallBackToOverridden(fn) match {
            case Some(fn1) => Some(Apply(fn1, args) setPos tree.pos)
            case _         => None
          }
        case TypeApply(fn, args) =>
          fallBackToOverridden(fn) match {
            case Some(fn1) => Some(TypeApply(fn1, args) setPos tree.pos)
            case _         => None
          }
        case _ =>
          macroTraceVerbose("unexpected tree in fallback: ")(tree)
          notFound()
      }
    }
    fallBackToOverridden(expandee) match {
      case Some(tree1) =>
        macroTraceLite("falling back to: ")(tree1)
        currentRun.macroExpansionFailed = true
        Fallback(tree1)
      case None =>
        fail(typer, expandee)
    }
  }

  private def handleMacroExpansionException(typer: Typer, expandee: Tree, ex: Throwable): MacroExpansionResult = {
    // [Eugene] any ideas about how to improve this one?
    val realex = ReflectionUtils.unwrapThrowable(ex)
    realex match {
      case realex: reflect.macros.runtime.AbortMacroException =>
        macroLogVerbose("macro expansion has failed: %s".format(realex.msg))
        fail(typer, expandee) // error has been reported by abort
      case err: TypeError =>
        macroLogLite("macro expansion has failed: %s at %s".format(err.msg, err.pos))
        throw err // error should be propagated, don't report
      case _ =>
        val message = {
          try {
            // [Eugene] is there a better way?
            // [Paul] See Exceptional.scala and Origins.scala.
            val relevancyThreshold = realex.getStackTrace().indexWhere(este => este.getMethodName == "macroExpand1")
            if (relevancyThreshold == -1) None
            else {
              var relevantElements = realex.getStackTrace().take(relevancyThreshold + 1)
              def isMacroInvoker(este: StackTraceElement) = este.isNativeMethod || (este.getClassName != null && (este.getClassName contains "fastTrack"))
              var threshold = relevantElements.reverse.indexWhere(isMacroInvoker) + 1
              while (threshold != relevantElements.length && isMacroInvoker(relevantElements(relevantElements.length - threshold - 1))) threshold += 1
              relevantElements = relevantElements dropRight threshold

              realex.setStackTrace(relevantElements)
              val message = new java.io.StringWriter()
              realex.printStackTrace(new java.io.PrintWriter(message))
              Some(EOL + message)
            }
          } catch {
            // if the magic above goes boom, just fall back to uninformative, but better than nothing, getMessage
            case ex: Throwable =>
              None
          }
        } getOrElse {
          val msg = realex.getMessage
          if (msg != null) msg else realex.getClass.getName
        }
        fail(typer, expandee, msg = "exception during macro expansion: " + message)
    }
  }

  /** Without any restrictions on macro expansion, macro applications will expand at will,
   *  and when type inference is involved, expansions will end up using yet uninferred type params.
   *
   *  For some macros this might be ok (thanks to TreeTypeSubstituter that replaces
   *  the occurrences of undetparams with their inferred values), but in general case this won't work.
   *  E.g. for reification simple substitution is not enough - we actually need to re-reify inferred types.
   *
   *  Luckily, there exists a very simple way to fix the problem: delay macro expansion until everything is inferred.
   *  Here are the exact rules. Macro application gets delayed if any of its subtrees contain:
   *    1) type vars (tpe.isInstanceOf[TypeVar]) // [Eugene] this check is disabled right now, because TypeVars seem to be created from undetparams anyways
   *    2) undetparams (sym.isTypeParameter && !sym.isSkolem)
   */
  var hasPendingMacroExpansions = false
  private val delayed = perRunCaches.newWeakMap[Tree, collection.mutable.Set[Int]]
  private def isDelayed(expandee: Tree) = delayed contains expandee
  private def calculateUndetparams(expandee: Tree): collection.mutable.Set[Int] =
    delayed.get(expandee).getOrElse {
      val calculated = collection.mutable.Set[Symbol]()
      expandee foreach (sub => {
        def traverse(sym: Symbol) = if (sym != null && (undetparams contains sym.id)) calculated += sym
        if (sub.symbol != null) traverse(sub.symbol)
        if (sub.tpe != null) sub.tpe foreach (sub => traverse(sub.typeSymbol))
      })
      macroLogVerbose("calculateUndetparams: %s".format(calculated))
      calculated map (_.id)
    }
  private val undetparams = perRunCaches.newSet[Int]
  def notifyUndetparamsAdded(newUndets: List[Symbol]): Unit = {
    undetparams ++= newUndets map (_.id)
    if (macroDebugVerbose) newUndets foreach (sym => println("undetParam added: %s".format(sym)))
  }
  def notifyUndetparamsInferred(undetNoMore: List[Symbol], inferreds: List[Type]): Unit = {
    undetparams --= undetNoMore map (_.id)
    if (macroDebugVerbose) (undetNoMore zip inferreds) foreach { case (sym, tpe) => println("undetParam inferred: %s as %s".format(sym, tpe))}
    if (!delayed.isEmpty)
      delayed.toList foreach {
        case (expandee, undetparams) if !undetparams.isEmpty =>
          undetparams --= undetNoMore map (_.id)
          if (undetparams.isEmpty) {
            hasPendingMacroExpansions = true
            macroTraceVerbose("macro expansion is pending: ")(expandee)
          }
        case _ =>
          // do nothing
      }
  }

  /** Performs macro expansion on all subtrees of a given tree.
   *  Innermost macros are expanded first, outermost macros are expanded last.
   *  See the documentation for ``macroExpand'' for more information.
   */
  def macroExpandAll(typer: Typer, expandee: Tree): Tree =
    new Transformer {
      override def transform(tree: Tree) = super.transform(tree match {
        // todo. expansion should work from the inside out
        case wannabe if (delayed contains wannabe) && calculateUndetparams(wannabe).isEmpty =>
          val context = wannabe.attachments.get[MacroRuntimeAttachment].get.typerContext
          delayed -= wannabe
          context.implicitsEnabled = typer.context.implicitsEnabled
          context.enrichmentEnabled = typer.context.enrichmentEnabled
          context.macrosEnabled = typer.context.macrosEnabled
          macroExpand(newTyper(context), wannabe, EXPRmode, WildcardType)
        case _ =>
          tree
      })
    }.transform(expandee)
}

object MacrosStats {
  import reflect.internal.TypesStats.typerNanos
  val macroExpandCount    = Statistics.newCounter ("#macro expansions", "typer")
  val macroExpandNanos    = Statistics.newSubTimer("time spent in macroExpand", typerNanos)
}