summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/RefChecks.scala
blob: 486fe6b391a7d2d7b892b17f822b824bc86d266a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
/* NSC -- new Scala compiler
 * Copyright 2005-2007 LAMP/EPFL
 * @author  Martin Odersky
 */
// $Id$

package scala.tools.nsc.typechecker

import symtab.Flags._
import collection.mutable.{HashSet, HashMap}
import transform.InfoTransform
import scala.tools.nsc.util.{Position, NoPosition}
import scala.collection.mutable.ListBuffer

/** <p>
 *    Post-attribution checking and transformation.
 *  </p>
 *  <p>
 *    This phase performs the following checks.
 *  </p>
 *  <ul>
 *    <li>All overrides conform to rules.</li>
 *    <li>All type arguments conform to bounds.</li>
 *    <li>All type variable uses conform to variance annotations.</li>
 *    <li>No forward reference to a term symbol extends beyond a value definition.</li>
 *  </ul>
 *  <p>
 *    It performs the following transformations.
 *  </p>
 *  <ul>
 *   <li>Local modules are replaced by variables and classes</li>
 *   <li>Calls to case factory methods are replaced by new's.</li>
 *   <li>Eliminate branches in a conditional if the condition is a constant</li>
 *  </ul>
 *
 *  @author  Martin Odersky
 *  @version 1.0
 *
 *  @todo    Check whether we always check type parameter bounds.
 */
abstract class RefChecks extends InfoTransform {

  import global._
  import definitions._
  import typer.{typed, typedOperator, atOwner}
  import posAssigner.atPos

  /** the following two members override abstract members in Transform */
  val phaseName: String = "refchecks"
  override def phaseNewFlags: Long = lateMETHOD

  def newTransformer(unit: CompilationUnit): RefCheckTransformer =
    new RefCheckTransformer(unit)
  override def changesBaseClasses = false

  def transformInfo(sym: Symbol, tp: Type): Type =
    if (sym.isModule && !sym.isStatic) {
      sym setFlag (lateMETHOD | STABLE)
      PolyType(List(), tp)
    } else tp

  class RefCheckTransformer(unit: CompilationUnit) extends Transformer {

    var localTyper: analyzer.Typer = typer;
    var currentApplication: Tree = EmptyTree
    var inPattern: Boolean = false

// Override checking ------------------------------------------------------------

    /** 1. Check all members of class `clazz' for overriding conditions.
     *  That is for overriding member M and overridden member O:
     *
     *    1.1. M must have the same or stronger access privileges as O.
     *    1.2. O must not be final.
     *    1.3. O is deferred, or M has `override' modifier.
     *    1.4. If O is stable, then so is M.
     *     // @M: LIFTED 1.5. Neither M nor O are a parameterized type alias
     *    1.6. If O is a type alias, then M is an alias of O.
     *    1.7. If O is an abstract type then
     *       1.7.1 either M is an abstract type, and M's bounds are sharper than O's bounds.
     *             or M is a type alias or class which conforms to O's bounds.
     *       1.7.2 higher-order type arguments must respect bounds on higher-order type parameters  -- @M
     *              (explicit bounds and those implied by variance annotations) -- @see checkKindBounds
     *    1.8. If O and M are values, then
     *    1.8.1  M's type is a subtype of O's type, or
     *    1.8.2  M is of type []S, O is of type ()T and S <: T, or
     *    1.8.3  M is of type ()S, O is of type []T and S <: T, or
     *  2. Check that only abstract classes have deferred members
     *  3. Check that concrete classes do not have deferred definitions
     *     that are not implemented in a subclass.
     *  4. Check that every member with an `override' modifier
     *     overrides some other member.
     */
    private def checkAllOverrides(clazz: Symbol) {

      case class MixinOverrideError(member: Symbol, msg: String)

      var mixinOverrideErrors = new ListBuffer[MixinOverrideError]()

      def printMixinOverrideErrors() {
        mixinOverrideErrors.toList match {
          case List() =>
          case List(MixinOverrideError(_, msg)) =>
            unit.error(clazz.pos, msg)
          case MixinOverrideError(member, msg) :: others =>
            unit.error(clazz.pos, msg+";\n other members with override errors are: "+
                       (others.map(_.member.name).filter(member.name != _).removeDuplicates mkString ", "))
        }
      }

      val self = clazz.thisType

      def isAbstractTypeWithoutFBound(sym: Symbol) = // (part of DEVIRTUALIZE)
        sym.isAbstractType && !isFBounded(sym)

      def isFBounded(tsym: Symbol) =
        tsym.info.baseTypeSeq exists (_ contains tsym)

      def infoString(sym: Symbol) = infoString0(sym, sym.owner != clazz)
      def infoStringWithLocation(sym: Symbol) = infoString0(sym, true)

      def infoString0(sym: Symbol, showLocation: Boolean) = {
        val sym1 = analyzer.underlying(sym)
        sym1.toString() +
        (if (showLocation)
          sym1.locationString +
          (if (sym1.isAliasType) ", which equals "+self.memberInfo(sym1)
           else if (sym1.isAbstractType) " with bounds "+self.memberInfo(sym1)
           else if (sym1.isTerm) " of type "+self.memberInfo(sym1)
           else "")
         else "")
      }

      def overridesType(tp1: Type, tp2: Type): Boolean = (tp1.normalize, tp2.normalize) match {
        case (MethodType(List(), rtp1), PolyType(List(), rtp2)) =>
          rtp1 <:< rtp2
        case (PolyType(List(), rtp1), MethodType(List(), rtp2)) =>
          rtp1 <:< rtp2
        case (TypeRef(_, sym, _),  _) if (sym.isModuleClass) =>
          overridesType(PolyType(List(), tp1), tp2)
        case _ =>
          tp1 <:< tp2
      }

      /** Check that all conditions for overriding <code>other</code> by
       *  <code>member</code> are met.
       */
      def checkOverride(clazz: Symbol, member: Symbol, other: Symbol) {

        def overrideError(msg: String) {
          if (other.tpe != ErrorType && member.tpe != ErrorType) {
            val fullmsg =
              "overriding "+infoStringWithLocation(other)+";\n "+
              infoString(member)+" "+msg+
              (if ((other.owner isSubClass member.owner) && other.isDeferred && !member.isDeferred)
                ";\n (Note that "+infoStringWithLocation(other)+" is abstract,"+
               "\n  and is therefore overridden by concrete "+infoStringWithLocation(member)+")"
               else "")
            if (member.owner == clazz) unit.error(member.pos, fullmsg)
            else mixinOverrideErrors += new MixinOverrideError(member, fullmsg)
          }
        }

        def overrideTypeError() {
          if (other.tpe != ErrorType && member.tpe != ErrorType) {
            overrideError("has incompatible type")
          }
        }

        def overrideAccessError() {
          val pwString = if (other.privateWithin == NoSymbol) ""
                         else other.privateWithin.name.toString
          val otherAccess = flagsToString(other getFlag (PRIVATE | PROTECTED), pwString)
          overrideError("has weaker access privileges; it should be "+
                        (if (otherAccess == "") "public" else "at least "+otherAccess))
        }

        //Console.println(infoString(member) + " overrides " + infoString(other) + " in " + clazz);//DEBUG

        // return if we already checked this combination elsewhere
        if (member.owner != clazz) {
          if ((member.owner isSubClass other.owner) && (member.isDeferred || !other.isDeferred)) {
                //Console.println(infoString(member) + " shadows1 " + infoString(other) " in " + clazz);//DEBUG
                return;
              }
          if (clazz.info.parents exists (parent =>
            (parent.typeSymbol isSubClass other.owner) && (parent.typeSymbol isSubClass member.owner) &&
            (member.isDeferred || !other.isDeferred))) {
              //Console.println(infoString(member) + " shadows2 " + infoString(other) + " in " + clazz);//DEBUG
                return;
            }
          if (clazz.info.parents forall (parent =>
            (parent.typeSymbol isSubClass other.owner) == (parent.typeSymbol isSubClass member.owner))) {
              //Console.println(infoString(member) + " shadows " + infoString(other) + " in " + clazz);//DEBUG
              return;
            }
        }

        if (member hasFlag PRIVATE) { // (1.1)
          overrideError("has weaker access privileges; it should not be private")
        }
        val mb = member.accessBoundary(member.owner)
        val ob = other.accessBoundary(member.owner)
        if (mb != RootClass && mb != NoSymbol && // todo: change
            (ob == RootClass || ob == NoSymbol || !ob.hasTransOwner(mb) ||
             (other hasFlag PROTECTED) && !(member hasFlag PROTECTED))) {
          overrideAccessError()
        } else if (other hasFlag FINAL) { // (1.2)
          overrideError("cannot override final member");
        } else if (!other.isDeferred && !(member hasFlag (OVERRIDE | ABSOVERRIDE | SYNTHETIC))) { // (1.3), SYNTHETIC because of DEVIRTUALIZE
          overrideError("needs `override' modifier");
        } else if ((other hasFlag ABSOVERRIDE) && other.isIncompleteIn(clazz) && !(member hasFlag ABSOVERRIDE)) {
          overrideError("needs `abstract override' modifiers")
        } else if ((member hasFlag (OVERRIDE | ABSOVERRIDE)) &&
                   (other hasFlag ACCESSOR) && other.accessed.isVariable && !other.accessed.hasFlag(LAZY)) {
          overrideError("cannot override a mutable variable")
        } else if (other.isStable && !member.isStable) { // (1.4)
          overrideError("needs to be a stable, immutable value")
        } else if (member.isValue && (member hasFlag LAZY) &&
                   other.isValue && !other.isSourceMethod && !other.isDeferred && !(other hasFlag LAZY)) {
          overrideError("cannot override a concrete non-lazy value")
        } else if (other.isValue && (other hasFlag LAZY) && !other.isSourceMethod && !other.isDeferred &&
                   member.isValue && !(member hasFlag LAZY)) {
          overrideError("must be declared lazy to override a concrete lazy value")
        } else {
          if (other.isAliasType) {
            //if (!member.typeParams.isEmpty) // (1.5)  @MAT
            //  overrideError("may not be parameterized");
            //if (!other.typeParams.isEmpty) // (1.5)   @MAT
            //  overrideError("may not override parameterized type");
            // @M: substSym
            if (!(self.memberType(member).substSym(member.typeParams, other.typeParams) =:= self.memberType(other))) // (1.6)
              overrideTypeError();
          } else if (other.isAbstractType) {
            //if (!member.typeParams.isEmpty) // (1.7)  @MAT
            //  overrideError("may not be parameterized");
            var memberTp = self.memberType(member)
            val otherTp = self.memberInfo(other)
            if (!(otherTp.bounds containsType memberTp)) { // (1.7.1)
              overrideTypeError(); // todo: do an explaintypes with bounds here
              explainTypes(_.bounds containsType _, otherTp, memberTp)
            }

            // check overriding (abstract type --> abstract type or abstract type --> concrete type member (a type alias))
            // making an abstract type member concrete is like passing a type argument
            val kindErrors = typer.infer.checkKindBounds(List(other), List(memberTp), self, member.owner) // (1.7.2)

            if(!kindErrors.isEmpty)
              unit.error(member.pos,
                "The kind of "+member.keyString+" "+member.varianceString + member.nameString+
                " does not conform to the expected kind of " + other.defString + other.locationString + "." +
                kindErrors.toList.mkString("\n", ", ", ""))

            // check a type alias's RHS corresponds to its declaration
            // this overlaps somewhat with validateVariance
            if(member.isAliasType) {
              val kindErrors = typer.infer.checkKindBounds(List(member), List(memberTp.normalize), self, member.owner)

              if(!kindErrors.isEmpty)
                unit.error(member.pos,
                  "The kind of the right-hand side "+memberTp.normalize+" of "+member.keyString+" "+
                  member.varianceString + member.nameString+ " does not conform to its expected kind."+
                  kindErrors.toList.mkString("\n", ", ", ""))
            }
          } else if (other.isTerm) {
            if (!overridesType(self.memberInfo(member), self.memberInfo(other))) { // 8
              overrideTypeError()
              explainTypes(self.memberInfo(member), self.memberInfo(other))
            }
          }
        }
      }

      val opc = new overridingPairs.Cursor(clazz)
      while (opc.hasNext) {
        //Console.println("overrides " + opc.overriding/* + ":" + opc.overriding.tpe*/ + opc.overriding.locationString + " " + opc.overridden/* + ":" + opc.overridden.tpe*/ + opc.overridden.locationString + opc.overridden.hasFlag(DEFERRED));//DEBUG
        if (!opc.overridden.isClass) checkOverride(clazz, opc.overriding, opc.overridden);

        opc.next
      }
      printMixinOverrideErrors()

      // 2. Check that only abstract classes have deferred members
      if (clazz.isClass && !clazz.isTrait) {
        def abstractClassError(mustBeMixin: Boolean, msg: String) {
          unit.error(clazz.pos,
            (if (clazz.isAnonymousClass || clazz.isModuleClass) "object creation impossible"
             else if (mustBeMixin) clazz.toString() + " needs to be a mixin"
             else clazz.toString() + " needs to be abstract") + ", since " + msg);
          clazz.setFlag(ABSTRACT)
        }
        // Find a concrete Java method that overrides `sym' under the erasure model.
        // Bridge symbols qualify.
        // Used as a fall back if no overriding symbol of a Java abstract method can be found
        def javaErasedOverridingSym(sym: Symbol): Symbol =
          clazz.tpe.findMember(sym.name, PRIVATE, 0, false)(NoSymbol).filter(other =>
            !other.isDeferred &&
            (other hasFlag JAVA) && {
              val tp1 = erasure.erasure(clazz.thisType.memberType(sym))
              val tp2 = erasure.erasure(clazz.thisType.memberType(other))
              atPhase(currentRun.erasurePhase.next)(tp1 matches tp2)
            })
        for (val member <- clazz.tpe.nonPrivateMembers)
          if (member.isDeferred && !(clazz hasFlag ABSTRACT) &&
              !isAbstractTypeWithoutFBound(member) &&
              !((member hasFlag JAVA) && javaErasedOverridingSym(member) != NoSymbol)) {
            abstractClassError(
              false, infoString(member) + " is not defined" + analyzer.varNotice(member))
          } else if ((member hasFlag ABSOVERRIDE) && member.isIncompleteIn(clazz)) {
            val other = member.superSymbol(clazz);
            abstractClassError(true,
              infoString(member) + " is marked `abstract' and `override'" +
              (if (other != NoSymbol)
                " and overrides incomplete superclass member " + infoString(other)
               else ""))
          }
        // 3. Check that concrete classes do not have deferred definitions
        // that are not implemented in a subclass.
        // Note that this is not the same as (2); In a situation like
        //
        // class C { def m: Int = 0}
        // class D extends C { def m: Int }
        //
        // (3) is violated but not (2).
        def checkNoAbstractDecls(bc: Symbol) {
          for (val decl <- bc.info.decls.elements) {
            if (decl.isDeferred && !isAbstractTypeWithoutFBound(decl)) {
              val impl = decl.matchingSymbol(clazz.thisType)
              if (impl == NoSymbol || (decl.owner isSubClass impl.owner)) {
                abstractClassError(false, "there is a deferred declaration of "+infoString(decl)+
                                   " which is not implemented in a subclass"+analyzer.varNotice(decl))
              }
            }
          }
          val parents = bc.info.parents
          if (!parents.isEmpty && parents.head.typeSymbol.hasFlag(ABSTRACT))
            checkNoAbstractDecls(parents.head.typeSymbol)
        }
        if (!(clazz hasFlag ABSTRACT)) checkNoAbstractDecls(clazz)
      }

      // 4. Check that every defined member with an `override' modifier overrides some other member.
      for (val member <- clazz.info.decls.toList)
        if ((member hasFlag (OVERRIDE | ABSOVERRIDE)) &&
            (clazz.info.baseClasses.tail forall {
               bc => member.matchingSymbol(bc, clazz.thisType) == NoSymbol
            })) {
          // for (val bc <- clazz.info.baseClasses.tail) Console.println("" + bc + " has " + bc.info.decl(member.name) + ":" + bc.info.decl(member.name).tpe);//DEBUG
          unit.error(member.pos, member.toString() + " overrides nothing");
          member resetFlag OVERRIDE
        }
    }

  // Basetype Checking --------------------------------------------------------

    /** <ol>
     *    <li> <!-- 1 -->
     *      Check that later type instances in the base-type sequence
     *      are subtypes of earlier type instances of the same mixin.
     *    </li>
     *  </ol>
     */
    private def validateBaseTypes(clazz: Symbol) {
      val seenTypes = new Array[List[Type]](clazz.info.baseTypeSeq.length)
      for (i <- 0 until seenTypes.length) seenTypes(i) = Nil

      /** validate all base types of a class in reverse linear order. */
      def register(tp: Type) {
//        if (clazz.fullNameString.endsWith("Collection.Projection"))
//            println("validate base type "+tp)
        val baseClass = tp.typeSymbol
        if (baseClass.isClass) {
          val index = clazz.info.baseTypeIndex(baseClass)
          if (index >= 0) {
            if (seenTypes(index) forall (tp1 => !(tp1 <:< tp)))
              seenTypes(index) =
                tp :: (seenTypes(index) filter (tp1 => !(tp <:< tp1)))
          }
        }
        tp.parents foreach register
      }
      register(clazz.tpe)
      for (i <- 0 until seenTypes.length) {
        val baseClass = clazz.info.baseTypeSeq(i).typeSymbol
        seenTypes(i) match {
          case List() =>
            println("??? base "+baseClass+" not found in basetypes of "+clazz)
          case List(_) =>
            ;// OK
          case tp1 :: tp2 :: _ =>
            unit.error(clazz.pos, "illegal inheritance;\n " + clazz +
                       " inherits different type instances of " + baseClass +
                       ":\n" + tp1 + " and " + tp2);
            explainTypes(tp1, tp2)
            explainTypes(tp2, tp1)
        }
      }
    }

  // Variance Checking --------------------------------------------------------

    private val ContraVariance = -1
    private val NoVariance = 0
    private val CoVariance = 1
    private val AnyVariance = 2

    private val escapedPrivateLocals = new HashSet[Symbol]

    val varianceValidator = new Traverser {

      private def validateVariance(base: Symbol) {

        def varianceString(variance: Int): String =
          if (variance == 1) "covariant"
          else if (variance == -1) "contravariant"
          else "invariant";

        def relativeVariance(tvar: Symbol): Int = {
          val clazz = tvar.owner
          var sym = base
          var state = CoVariance
          while (sym != clazz && state != AnyVariance) {
            //Console.println("flip: " + sym + " " + sym.isParameter());//DEBUG
            if ((sym hasFlag PARAM) && !sym.owner.isConstructor && !sym.owner.isCaseApplyOrUnapply &&
                !(tvar.isTypeParameterOrSkolem && sym.isTypeParameterOrSkolem &&
                  tvar.owner == sym.owner)) state = -state;
            else if (!sym.owner.isClass ||
                     ((sym.isPrivateLocal || sym.isProtectedLocal) && !(escapedPrivateLocals contains sym)))
              state = AnyVariance
            else if (sym.isAliasType)
              state = NoVariance
            sym = sym.owner
          }
          state
        }

        def validateVariance(tp: Type, variance: Int): Unit = tp match {
          case ErrorType => ;
          case WildcardType => ;
          case NoType => ;
          case NoPrefix => ;
          case ThisType(_) => ;
          case ConstantType(_) => ;
          case DeBruijnIndex(_, _) => ;
          case SingleType(pre, sym) =>
            validateVariance(pre, variance)
          case TypeRef(pre, sym, args) =>
            if (sym.variance != NoVariance) {
              val v = relativeVariance(sym);
              if (v != AnyVariance && sym.variance != v * variance) {
                //Console.println("relativeVariance(" + base + "," + sym + ") = " + v);//DEBUG
                def tpString(tp: Type) = tp match {
                  case ClassInfoType(parents, _, clazz) => "supertype "+intersectionType(parents, clazz.owner)
                  case _ => "type "+tp
                }
                unit.error(base.pos,
                           varianceString(sym.variance) + " " + sym +
                           " occurs in " + varianceString(v * variance) +
                           " position in " + tpString(base.info) + " of " + base);
              }
            }
            validateVariance(pre, variance)
            validateVarianceArgs(args, variance, sym.typeParams) //@M for higher-kinded typeref, args.isEmpty
            // However, these args respect variances by construction anyway
            // -- the interesting case is in type application, see checkKindBounds in Infer
          case ClassInfoType(parents, decls, symbol) =>
            validateVariances(parents, variance)
          case RefinedType(parents, decls) =>
            validateVariances(parents, variance)
          case TypeBounds(lo, hi) =>
            validateVariance(lo, -variance)
            validateVariance(hi, variance)
          case MethodType(formals, result) =>
            validateVariance(result, variance)
          case PolyType(tparams, result) =>
            // type parameters will be validated separately, because they are defined explicitly.
            validateVariance(result, variance)
          case ExistentialType(tparams, result) =>
            validateVariances(tparams map (_.info), variance)
            validateVariance(result, variance)
          case AnnotatedType(annots, tp, selfsym) =>
            if (!(annots exists (_.atp.typeSymbol.isNonBottomSubClass(uncheckedVarianceClass))))
              validateVariance(tp, variance)
        }

        def validateVariances(tps: List[Type], variance: Int) {
          tps foreach (tp => validateVariance(tp, variance))
        }

        def validateVarianceArgs(tps: List[Type], variance: Int, tparams: List[Symbol]) {
          (tps zip tparams) foreach {
            case (tp, tparam) => validateVariance(tp, variance * tparam.variance)
          }
        }

        validateVariance(base.info, CoVariance)
      }

      override def traverse(tree: Tree) {
        tree match {
          case ClassDef(_, _, _, _) | TypeDef(_, _, _, _) =>
            validateVariance(tree.symbol)
            super.traverse(tree)
          // ModuleDefs need not be considered because they have been eliminated already
          case ValDef(_, _, _, _) =>
            validateVariance(tree.symbol)
          case DefDef(_, _, tparams, vparamss, tpt, rhs) =>
            validateVariance(tree.symbol)
            traverseTrees(tparams); traverseTreess(vparamss)
          case Template(_, _, _) =>
            super.traverse(tree)
          case _ =>
        }
      }
    }

// Forward reference checking ---------------------------------------------------

    class LevelInfo(val outer: LevelInfo) {
      val scope: Scope = if (outer eq null) newScope else newScope(outer.scope)
      var maxindex: Int = Math.MIN_INT
      var refpos: Position = _
      var refsym: Symbol = _
    }

    private var currentLevel: LevelInfo = null
    private val symIndex = new HashMap[Symbol, Int]

    private def pushLevel() {
      currentLevel = new LevelInfo(currentLevel)
    }

    private def popLevel() {
      currentLevel = currentLevel.outer
    }

    private def enterSyms(stats: List[Tree]) {
      var index = -1
      for (val stat <- stats) {
        index = index + 1;
        stat match {
          case ClassDef(_, _, _, _) | DefDef(_, _, _, _, _, _) | ModuleDef(_, _, _) | ValDef(_, _, _, _) =>
            assert(stat.symbol != NoSymbol, stat);//debug
            if (stat.symbol.isLocal) {
              currentLevel.scope.enter(newScopeEntry(stat.symbol, currentLevel.scope));
              symIndex(stat.symbol) = index;
            }
          case _ =>
        }
      }
    }

    private def enterReference(pos: Position, sym: Symbol) {
      if (sym.isLocal) {
        val e = currentLevel.scope.lookupEntry(sym.name)
        if ((e ne null) && sym == e.sym) {
          var l = currentLevel
          while (l.scope != e.owner) l = l.outer;
          val symindex = symIndex(sym)
          if (l.maxindex < symindex) {
            l.refpos = pos
            l.refsym = sym
            l.maxindex = symindex
          }
        }
      }
    }

// Comparison checking -------------------------------------------------------
    object normalizeAll extends TypeMap {
      def apply(tp: Type) = mapOver(tp).normalize
    }

    def checkSensible(pos: Position, fn: Tree, args: List[Tree]) = fn match {
      case Select(qual, name) if (args.length == 1) =>
        def isNew(tree: Tree) = tree match {
          case Function(_, _)
             | Apply(Select(New(_), nme.CONSTRUCTOR), _) => true
          case _ => false
        }
        name match {
          case nme.EQ | nme.NE | nme.LT | nme.GT | nme.LE | nme.GE =>
            def underlyingClass(tp: Type): Symbol = {
              var sym = tp.widen.typeSymbol
              while (sym.isAbstractType)
                sym = sym.info.bounds.hi.widen.typeSymbol
              sym
            }
            val formal = underlyingClass(fn.tpe.paramTypes.head)
            val actual = underlyingClass(args.head.tpe)
            val receiver = underlyingClass(qual.tpe)
            def nonSensibleWarning(what: String, alwaysEqual: Boolean) =
              unit.warning(pos, "comparing "+what+" using `"+name.decode+"' will always yield "+
                           (alwaysEqual == (name == nme.EQ || name == nme.LE || name == nme.GE)))
            def nonSensible(pre: String, alwaysEqual: Boolean) =
              nonSensibleWarning(pre+"values of types "+normalizeAll(qual.tpe.widen)+" and "+normalizeAll(args.head.tpe.widen),
                                 alwaysEqual) // @MAT normalize for consistency in error message, otherwise part is normalized due to use of `typeSymbol', but the rest isn't
            def hasObjectEquals = receiver.info.member(nme.equals_) == Object_equals
            if (formal == UnitClass && actual == UnitClass)
              nonSensible("", true)
            else if ((receiver == BooleanClass || receiver == UnitClass) &&
                     !(receiver isSubClass actual))
              nonSensible("", false)
            else if (isNumericValueClass(receiver) &&
                     !isNumericValueClass(actual) &&
                     !(forMSIL || forCLDC|| (actual isSubClass BoxedNumberClass)) &&
                     !(receiver isSubClass actual))
              nonSensible("", false)
            else if ((receiver hasFlag FINAL) && hasObjectEquals && !isValueClass(receiver) &&
                     !(receiver isSubClass actual) && receiver != NullClass && actual != NullClass &&
                     (name == nme.EQ || name == nme.LE))
              nonSensible("non-null ", false)
            else if ((isNew(qual) || isNew(args.head)) && hasObjectEquals &&
                     (name == nme.EQ || name == nme.NE))
              nonSensibleWarning("a fresh object", false)
          case _ =>
        }
      case _ =>
    }

// Transformation ------------------------------------------------------------

    /* Convert a reference to a case factory of type `tpe' to a new of the class it produces. */
    def toConstructor(pos: Position, tpe: Type): Tree = {
      var rtpe = tpe.finalResultType
      assert(rtpe.typeSymbol hasFlag CASE, tpe);
      localTyper.typedOperator {
        atPos(pos) {
          Select(New(TypeTree(rtpe)), rtpe.typeSymbol.primaryConstructor)
        }
      }
    }

    override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = {
      pushLevel()
      enterSyms(stats)
      var index = -1
      val stats1 = stats flatMap { stat => index += 1; transformStat(stat, index) }
      popLevel()
      stats1
    }

    /** Implements lazy value accessors:
     *    - for lazy values of type Unit and all lazy fields inside traits,
     *      the rhs is the initializer itself
     *    - for all other lazy values z the accessor is a block of this form:
     *      { z = <rhs>; z } where z can be an identifier or a field.
     */
    def transformStat(tree: Tree, index: Int): List[Tree] = tree match {
      case ModuleDef(mods, name, impl) =>
        val sym = tree.symbol
        val cdef = ClassDef(mods | MODULE, name, List(), impl)
          .setPos(tree.pos)
          .setSymbol(sym.moduleClass)
          .setType(NoType);
        if (sym.isStatic) {
          if (!sym.allOverriddenSymbols.isEmpty) {
            val factory = sym.owner.newMethod(sym.pos, sym.name)
              .setFlag(sym.flags | STABLE).resetFlag(MODULE)
              .setInfo(PolyType(List(), sym.moduleClass.tpe))
            sym.owner.info.decls.enter(factory)
            val ddef =
              atPhase(phase.next) {
                localTyper.typed {
                  gen.mkModuleAccessDef(factory, sym.tpe)
                }
              }
            transformTrees(List(cdef, ddef))
          } else {
            List(transform(cdef))
          }
        } else {
          val vdef =
            localTyper.typed {
              atPos(tree.pos) {
                gen.mkModuleVarDef(sym)
              }
            }

          val ddef =
            atPhase(phase.next) {
              localTyper.typed {
                if (sym.owner.isTrait) gen.mkModuleAccessDcl(sym)
                else gen.mkCachedModuleAccessDef(sym, vdef.symbol)
              }
            }

          if (sym.owner.isTrait) transformTrees(List(cdef, ddef))
          else transformTrees(List(cdef, vdef, ddef))
        }

      case ValDef(_, _, _, _) =>
        val tree1 = transform(tree); // important to do before forward reference check
        val ValDef(_, _, _, rhs) = tree1
        if (tree.symbol.hasFlag(LAZY)) {
          assert(tree.symbol.isTerm, tree.symbol)
          val vsym = tree.symbol
          val hasUnitType = (tree.symbol.tpe.typeSymbol == definitions.UnitClass)
          val lazyDefSym = vsym.lazyAccessor
          assert(lazyDefSym != NoSymbol, vsym)
          val ownerTransformer = new ChangeOwnerTraverser(vsym, lazyDefSym)
          val lazyDef = atPos(tree.pos)(
              DefDef(lazyDefSym, vparamss => ownerTransformer(
                if (tree.symbol.owner.isTrait // for traits, this is further tranformed in mixins
                    || hasUnitType) rhs
                else Block(List(
                       Assign(gen.mkAttributedRef(vsym), rhs)),
                       gen.mkAttributedRef(vsym)))))
          log("Made lazy def: " + lazyDef)
          if (hasUnitType)
            typed(lazyDef) :: Nil
          else
            typed(ValDef(vsym, EmptyTree)) :: typed(lazyDef) :: Nil
        } else {
          if (tree.symbol.isLocal && index <= currentLevel.maxindex && !tree.symbol.hasFlag(LAZY)) {
            if (settings.debug.value) Console.println(currentLevel.refsym);
            unit.error(currentLevel.refpos, "forward reference extends over definition of " + tree.symbol);
          }
          List(tree1)
        }

      case Import(_, _) =>
        List()

      case _ =>
        List(transform(tree))
    }

    override def transform(tree: Tree): Tree = try {

      /* Check whether argument types conform to bounds of type parameters */
      def checkBounds(pre: Type, owner: Symbol, tparams: List[Symbol], argtps: List[Type]): Unit = try {
        typer.infer.checkBounds(tree.pos, pre, owner, tparams, argtps, "");
      } catch {
        case ex: TypeError =>
          unit.error(tree.pos, ex.getMessage());
          if (settings.explaintypes.value) {
            val bounds = tparams map (tp => tp.info.instantiateTypeParams(tparams, argtps).bounds)
            List.map2(argtps, bounds)((targ, bound) => explainTypes(bound.lo, targ))
            List.map2(argtps, bounds)((targ, bound) => explainTypes(targ, bound.hi))
            ()
          }
      }

      def isIrrefutable(pat: Tree, seltpe: Type): Boolean = {
        val result = pat match {
          case Apply(_, args) =>
            val clazz = pat.tpe.typeSymbol;
            clazz == seltpe.typeSymbol &&
            clazz.isClass && (clazz hasFlag CASE) &&
            List.forall2(
              args,
              clazz.primaryConstructor.tpe.asSeenFrom(seltpe, clazz).paramTypes)(isIrrefutable)
          case Typed(pat, tpt) =>
            seltpe <:< tpt.tpe
          case Ident(nme.WILDCARD) =>
            true
          case Bind(_, pat) =>
            isIrrefutable(pat, seltpe)
          case _ =>
            false
        }
        //Console.println("is irefutable? " + pat + ":" + pat.tpe + " against " + seltpe + ": " + result);//DEBUG
        result
      }

      /** If symbol is deprecated and is not contained in a deprecated definition,
       *  issue a deprecated warning
       */
      def checkDeprecated(sym: Symbol, pos: Position) {
        if (sym.isDeprecated && !currentOwner.ownerChain.exists(_.isDeprecated)) {
          unit.deprecationWarning(pos, sym+sym.locationString+" is deprecated")
        }
      }

      /** Check that a deprecated val or def does not override a
        * concrete, non-deprecated method.  If it does, then
        * deprecation is meaningless.
        */
      def checkDeprecatedOvers() {
        val symbol = tree.symbol
        if (symbol.isDeprecated) {
          val concrOvers =
            symbol.allOverriddenSymbols.filter(sym =>
              !sym.isDeprecated && !sym.isDeferred)
          if(!concrOvers.isEmpty)
            unit.deprecationWarning(
              tree.pos,
              symbol.toString + " overrides concrete, non-deprecated symbol(s):" +
              concrOvers.map(_.fullNameString).mkString("    ", ", ", ""))
        }
      }

      def isRepeatedParamArg(tree: Tree) = currentApplication match {
        case Apply(fn, args) =>
          !args.isEmpty && (args.last eq tree) &&
          fn.tpe.paramTypes.length == args.length &&
          fn.tpe.paramTypes.last.typeSymbol == RepeatedParamClass
        case _ =>
          false
      }

      def isCaseApply(sym : Symbol) = sym.isSourceMethod && sym.hasFlag(CASE) && sym.name == nme.apply

      val savedLocalTyper = localTyper
      val savedCurrentApplication = currentApplication
      val sym = tree.symbol
      var result = tree
      tree match {
        case DefDef(mods, name, tparams, vparams, tpt, EmptyTree) if tree.symbol.hasAttribute(definitions.NativeAttr) =>
          tree.symbol.resetFlag(DEFERRED)
          result = transform(copy.DefDef(tree, mods, name, tparams, vparams, tpt,
                typed(Apply(gen.mkAttributedRef(definitions.Predef_error), List(Literal("native method stub"))))))

        case DefDef(_, _, _, _, _, _) =>
          checkDeprecatedOvers()

        case ValDef(_, _, _, _) =>
          checkDeprecatedOvers()

        case Template(_, _, _) =>
          localTyper = localTyper.atOwner(tree, currentOwner)
          validateBaseTypes(currentOwner)
          checkAllOverrides(currentOwner)

        case TypeTree() =>
          if (!inPattern) {
            new TypeTraverser {
              def traverse(tp: Type) {
                tp match {
                  case TypeRef(pre, sym, args) =>
                    checkDeprecated(sym, tree.pos)
                    if (!tp.isHigherKinded) checkBounds(pre, sym.owner, sym.typeParams, args)
                  case _ =>
                }
              }
            } traverse tree.tpe
          }
        case TypeApply(fn, args) =>
          checkBounds(NoPrefix, NoSymbol, fn.tpe.typeParams, args map (_.tpe))
          if (isCaseApply(sym)) result = toConstructor(tree.pos, tree.tpe)

        case Apply(
          Select(qual, nme.filter),
          List(Function(
            List(ValDef(_, pname, tpt, _)),
            Match(_, CaseDef(pat1, _, _) :: _))))
          if ((pname startsWith nme.CHECK_IF_REFUTABLE_STRING) &&
              isIrrefutable(pat1, tpt.tpe)) =>
            result = qual

        case Apply(fn, args) =>
          checkSensible(tree.pos, fn, args)
          currentApplication = tree

        case If(cond, thenpart, elsepart) =>
          cond.tpe match {
            case ConstantType(value) =>
              result = if (value.booleanValue) thenpart else elsepart;
              if (result == EmptyTree) result = Literal(()).setPos(tree.pos).setType(UnitClass.tpe)
            case _ =>
          }

        case New(tpt) =>
          enterReference(tree.pos, tpt.tpe.typeSymbol)

        case Typed(expr, tpt @ Ident(name)) if (name == nme.WILDCARD_STAR.toTypeName) =>
          if (!isRepeatedParamArg(tree))
            unit.error(tree.pos, "no `: _*' annotation allowed here\n"+
              "(such annotations are only allowed in arguments to *-parameters)")

        case Ident(name) =>
          if (isCaseApply(sym))
            result = toConstructor(tree.pos, tree.tpe)
          else if (name != nme.WILDCARD && name != nme.WILDCARD_STAR.toTypeName) {
            assert(sym != NoSymbol, tree)//debug
            enterReference(tree.pos, sym)
          }

        case Select(qual, name) =>
          checkDeprecated(sym, tree.pos)
          if (currentClass != sym.owner && (sym hasFlag LOCAL)) {
            var o = currentClass
            var hidden = false
            while (!hidden && o != sym.owner && o != sym.owner.moduleClass && !o.isPackage) {
              hidden = o.isTerm || o.isPrivateLocal
              o = o.owner
            }
            if (!hidden) escapedPrivateLocals += sym
          }
          if (isCaseApply(sym))
            result = toConstructor(tree.pos, tree.tpe)
          else qual match {
            case Super(qualifier, mix) =>
              val base = qual.symbol;
              //Console.println("super: " + tree + " in " + base);//DEBUG
              assert(!(base.isTrait && sym.isTerm && mix == nme.EMPTY.toTypeName)) // term should have been eliminated by super accessors
            case _ =>
          }
        case _ =>
      }
      result = result match {
        case CaseDef(pat, guard, body) =>
          inPattern = true
          val pat1 = transform(pat)
          inPattern = false
          copy.CaseDef(tree, pat1, transform(guard), transform(body))
        case _ =>
          super.transform(result)
      }
      result match {
        case ClassDef(_, _, _, _)
           | TypeDef(_, _, _, _) =>
          if (result.symbol.isLocal || result.symbol.owner.isPackageClass)
            varianceValidator.traverse(result)
        case _ =>
      }
      localTyper = savedLocalTyper
      currentApplication = savedCurrentApplication
      result
    } catch {
      case ex: TypeError =>
        if (settings.debug.value) ex.printStackTrace();
        unit.error(tree.pos, ex.getMessage())
        tree
    }
  }
}