summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/RefChecks.scala
blob: a434af117551491bf57219e769bdf5089284819f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
/* NSC -- new Scala compiler
 * Copyright 2005-2011 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.tools.nsc
package typechecker

import symtab.Flags._
import collection.{ mutable, immutable }
import transform.InfoTransform
import scala.collection.mutable.ListBuffer

/** <p>
 *    Post-attribution checking and transformation.
 *  </p>
 *  <p>
 *    This phase performs the following checks.
 *  </p>
 *  <ul>
 *    <li>All overrides conform to rules.</li>
 *    <li>All type arguments conform to bounds.</li>
 *    <li>All type variable uses conform to variance annotations.</li>
 *    <li>No forward reference to a term symbol extends beyond a value definition.</li>
 *  </ul>
 *  <p>
 *    It performs the following transformations.
 *  </p>
 *  <ul>
 *   <li>Local modules are replaced by variables and classes</li>
 *   <li>Calls to case factory methods are replaced by new's.</li>
 *   <li>Eliminate branches in a conditional if the condition is a constant</li>
 *  </ul>
 *
 *  @author  Martin Odersky
 *  @version 1.0
 *
 *  @todo    Check whether we always check type parameter bounds.
 */
abstract class RefChecks extends InfoTransform {

  import global._
  import definitions._
  import typer.{typed, typedOperator, atOwner}

  /** the following two members override abstract members in Transform */
  val phaseName: String = "refchecks"
  override def phaseNewFlags: Long = lateMETHOD

  def newTransformer(unit: CompilationUnit): RefCheckTransformer =
    new RefCheckTransformer(unit)
  override def changesBaseClasses = false

  def transformInfo(sym: Symbol, tp: Type): Type =
    if (sym.isModule && !sym.isStatic) {
      sym setFlag (lateMETHOD | STABLE)
      NullaryMethodType(tp)
    } else tp

  val toJavaRepeatedParam = new TypeMap {
    def apply(tp: Type) = tp match {
      case TypeRef(pre, RepeatedParamClass, args) =>
        typeRef(pre, JavaRepeatedParamClass, args)
      case _ =>
        mapOver(tp)
    }
  }

  val toScalaRepeatedParam = new TypeMap {
    def apply(tp: Type): Type = tp match {
      case TypeRef(pre, JavaRepeatedParamClass, args) =>
        typeRef(pre, RepeatedParamClass, args)
      case _ =>
        mapOver(tp)
    }
  }

  class RefCheckTransformer(unit: CompilationUnit) extends Transformer {

    var localTyper: analyzer.Typer = typer;
    var currentApplication: Tree = EmptyTree
    var inPattern: Boolean = false
    var checkedCombinations = Set[List[Type]]()

    // only one overloaded alternative is allowed to define default arguments
    private def checkOverloadedRestrictions(clazz: Symbol): Unit = {
      // Using the default getters (such as methodName$default$1) as a cheap way of
      // finding methods with default parameters. This way, we can limit the members to
      // those with the DEFAULTPARAM flag, and infer the methods. Looking for the methods
      // directly requires inspecting the parameter list of every one. That modification
      // shaved 95% off the time spent in this method.
      val defaultGetters     = clazz.info.findMember(nme.ANYNAME, 0L, DEFAULTPARAM, false).alternatives
      val defaultMethodNames = defaultGetters map (sym => nme.defaultGetterToMethod(sym.name))

      defaultMethodNames.distinct foreach { name =>
        val methods      = clazz.info.findMember(name, 0L, METHOD, false).alternatives
        val haveDefaults = methods filter (sym => sym.hasParamWhich(_.hasDefaultFlag) && !nme.isProtectedAccessorName(sym.name))

        if (haveDefaults.lengthCompare(1) > 0) {
          val owners = haveDefaults map (_.owner)
           // constructors of different classes are allowed to have defaults
          if (haveDefaults.exists(x => !x.isConstructor) || owners.distinct.size < haveDefaults.size) {
            unit.error(clazz.pos,
              "in "+ clazz +
              ", multiple overloaded alternatives of "+ haveDefaults.head +
              " define default arguments" + (
                if (owners.forall(_ == clazz)) "."
                else ".\nThe members with defaults are defined in "+owners.map(_.fullLocationString).mkString("", " and ", ".")
              )
            )
          }
        }
      }
      clazz.info.decls filter (x => x.isImplicit && x.typeParams.nonEmpty) foreach { sym =>
        val alts = clazz.info.decl(sym.name).alternatives
        if (alts.size > 1)
          alts foreach (x => unit.warning(x.pos, "parameterized overloaded implicit methods are not visible as view bounds"))
      }
    }

// Override checking ------------------------------------------------------------

    def hasRepeatedParam(tp: Type): Boolean = tp match {
      case MethodType(formals, restpe) => isScalaVarArgs(formals) || hasRepeatedParam(restpe)
      case PolyType(_, restpe)         => hasRepeatedParam(restpe)
      case _                           => false
    }

    /** Add bridges for vararg methods that extend Java vararg methods
     */
    def addVarargBridges(clazz: Symbol): List[Tree] = {
      val self = clazz.thisType
      val bridges = new ListBuffer[Tree]

      def varargBridge(member: Symbol, bridgetpe: Type): Tree = {
        val bridge = member.cloneSymbolImpl(clazz)
          .setPos(clazz.pos).setFlag(member.flags | VBRIDGE)
        bridge.setInfo(bridgetpe.cloneInfo(bridge))
        clazz.info.decls enter bridge
        val List(params) = bridge.paramss
        val TypeRef(_, JavaRepeatedParamClass, List(elemtp)) = params.last.tpe
        val (initargs, List(lastarg0)) = (params map Ident) splitAt (params.length - 1)
        val lastarg = gen.wildcardStar(gen.mkWrapArray(lastarg0, elemtp))
        val body = Apply(Select(This(clazz), member), initargs ::: List(lastarg))
        localTyper.typed {
          /*util.trace("generating varargs bridge")*/(DefDef(bridge, body))
        }
      }

      // For all concrete non-private members that have a (Scala) repeated parameter:
      //   compute the corresponding method type `jtpe` with a Java repeated parameter
      //   if a method with type `jtpe` exists and that method is not a varargs bridge
      //   then create a varargs bridge of type `jtpe` that forwards to the
      //   member method with the Scala vararg type.
      for (member <- clazz.info.nonPrivateMembers) {
        if (!(member hasFlag DEFERRED) && hasRepeatedParam(member.info)) {
          val jtpe = toJavaRepeatedParam(self.memberType(member))
          val inherited = clazz.info.nonPrivateMemberAdmitting(member.name, VBRIDGE) filter (
            sym => (self.memberType(sym) matches jtpe) && !(sym hasFlag VBRIDGE)
            // this is a bit tortuous: we look for non-private members or bridges
            // if we find a bridge everything is OK. If we find another member,
            // we need to create a bridge
          )
          if (inherited.exists) {
            bridges += varargBridge(member, jtpe)
          }
        }
      }

      bridges.toList
    }

    /** 1. Check all members of class `clazz` for overriding conditions.
     *  That is for overriding member M and overridden member O:
     *
     *    1.1. M must have the same or stronger access privileges as O.
     *    1.2. O must not be final.
     *    1.3. O is deferred, or M has `override` modifier.
     *    1.4. If O is stable, then so is M.
     *     // @M: LIFTED 1.5. Neither M nor O are a parameterized type alias
     *    1.6. If O is a type alias, then M is an alias of O.
     *    1.7. If O is an abstract type then
     *       1.7.1 either M is an abstract type, and M's bounds are sharper than O's bounds.
     *             or M is a type alias or class which conforms to O's bounds.
     *       1.7.2 higher-order type arguments must respect bounds on higher-order type parameters  -- @M
     *              (explicit bounds and those implied by variance annotations) -- @see checkKindBounds
     *    1.8. If O and M are values, then
     *    1.8.1  M's type is a subtype of O's type, or
     *    1.8.2  M is of type []S, O is of type ()T and S <: T, or
     *    1.8.3  M is of type ()S, O is of type []T and S <: T, or
     *  2. Check that only abstract classes have deferred members
     *  3. Check that concrete classes do not have deferred definitions
     *     that are not implemented in a subclass.
     *  4. Check that every member with an `override` modifier
     *     overrides some other member.
     */
    private def checkAllOverrides(clazz: Symbol, typesOnly: Boolean = false) {

      case class MixinOverrideError(member: Symbol, msg: String)

      var mixinOverrideErrors = new ListBuffer[MixinOverrideError]()

      def printMixinOverrideErrors() {
        mixinOverrideErrors.toList match {
          case List() =>
          case List(MixinOverrideError(_, msg)) =>
            unit.error(clazz.pos, msg)
          case MixinOverrideError(member, msg) :: others =>
            val others1 = others.map(_.member.name.decode).filter(member.name.decode != _).distinct
            unit.error(
              clazz.pos,
              msg+(if (others1.isEmpty) ""
                   else ";\n other members with override errors are: "+(others1 mkString ", ")))
        }
      }

      val self = clazz.thisType

      def isAbstractTypeWithoutFBound(sym: Symbol) = // (part of DEVIRTUALIZE)
        sym.isAbstractType && !isFBounded(sym)

      def isFBounded(tsym: Symbol) =
        tsym.info.baseTypeSeq exists (_ contains tsym)

      def infoString(sym: Symbol) = infoString0(sym, sym.owner != clazz)
      def infoStringWithLocation(sym: Symbol) = infoString0(sym, true)

      def infoString0(sym: Symbol, showLocation: Boolean) = {
        val sym1 = analyzer.underlying(sym)
        sym1.toString() +
        (if (showLocation)
          sym1.locationString +
          (if (sym1.isAliasType) ", which equals "+self.memberInfo(sym1)
           else if (sym1.isAbstractType) " with bounds "+self.memberInfo(sym1)
           else if (sym1.isTerm) " of type "+self.memberInfo(sym1)
           else "")
         else "")
      }

      def overridesType(tp1: Type, tp2: Type): Boolean = (tp1.normalize, tp2.normalize) match {
        case (MethodType(List(), rtp1), NullaryMethodType(rtp2)) =>
          rtp1 <:< rtp2
        case (NullaryMethodType(rtp1), MethodType(List(), rtp2)) =>
          rtp1 <:< rtp2
        case (TypeRef(_, sym, _),  _) if (sym.isModuleClass) =>
          overridesType(NullaryMethodType(tp1), tp2)
        case _ =>
          tp1 <:< tp2
      }

      /** Check that all conditions for overriding `other` by `member`
       *  of class `clazz` are met.
       */
      def checkOverride(clazz: Symbol, member: Symbol, other: Symbol) {
        def noErrorType = other.tpe != ErrorType && member.tpe != ErrorType
        def isRootOrNone(sym: Symbol) = sym == RootClass || sym == NoSymbol

        def overrideError(msg: String) {
          if (noErrorType) {
            val fullmsg =
              "overriding "+infoStringWithLocation(other)+";\n "+
              infoString(member)+" "+msg+
              (if ((other.owner isSubClass member.owner) && other.isDeferred && !member.isDeferred)
                ";\n (Note that "+infoStringWithLocation(other)+" is abstract,"+
               "\n  and is therefore overridden by concrete "+infoStringWithLocation(member)+")"
               else "")
            if (member.owner == clazz) unit.error(member.pos, fullmsg)
            else mixinOverrideErrors += new MixinOverrideError(member, fullmsg)
          }
        }

        def overrideTypeError() {
          if (noErrorType) {
            overrideError("has incompatible type")
          }
        }

        def accessFlagsToString(sym: Symbol) = flagsToString(
          sym getFlag (PRIVATE | PROTECTED),
          if (sym.hasAccessBoundary) "" + sym.privateWithin.name else ""
        )

        def overrideAccessError() {
          val otherAccess = accessFlagsToString(other)
          overrideError("has weaker access privileges; it should be "+ (if (otherAccess == "") "public" else "at least "+otherAccess))
        }

        //Console.println(infoString(member) + " overrides " + infoString(other) + " in " + clazz);//DEBUG

        // return if we already checked this combination elsewhere
        if (member.owner != clazz) {
          if ((member.owner isSubClass other.owner) && (member.isDeferred || !other.isDeferred)) {
            //Console.println(infoString(member) + " shadows1 " + infoString(other) " in " + clazz);//DEBUG
            return;
          }
          if (clazz.info.parents exists (parent =>
            (parent.typeSymbol isSubClass other.owner) && (parent.typeSymbol isSubClass member.owner) &&
            (member.isDeferred || !other.isDeferred))) {
              //Console.println(infoString(member) + " shadows2 " + infoString(other) + " in " + clazz);//DEBUG
                return;
            }
          if (clazz.info.parents forall (parent =>
            (parent.typeSymbol isSubClass other.owner) == (parent.typeSymbol isSubClass member.owner))) {
              //Console.println(infoString(member) + " shadows " + infoString(other) + " in " + clazz);//DEBUG
              return;
            }
        }

        /** Is the intersection between given two lists of overridden symbols empty?
         */
        def intersectionIsEmpty(syms1: List[Symbol], syms2: List[Symbol]) =
          !(syms1 exists (syms2 contains))

        if (typesOnly) checkOverrideTypes()
        else {
          // o: public | protected        | package-protected  (aka java's default access)
          // ^-may be overridden by member with access privileges-v
          // m: public | public/protected | public/protected/package-protected-in-same-package-as-o

          if (member.isPrivate) // (1.1)
            overrideError("has weaker access privileges; it should not be private")

          // todo: align accessibility implication checking with isAccessible in Contexts
          val ob = other.accessBoundary(member.owner)
          val mb = member.accessBoundary(member.owner)
          def isOverrideAccessOK = member.isPublic || {      // member is public, definitely same or relaxed access
            (!other.isProtected || member.isProtected) &&    // if o is protected, so is m
            ((!isRootOrNone(ob) && ob.hasTransOwner(mb)) ||  // m relaxes o's access boundary
              other.isJavaDefined)                           // overriding a protected java member, see #3946
          }
          if (!isOverrideAccessOK) {
            overrideAccessError()
          } else if (other.isClass || other.isModule) {
            overrideError("cannot be used here - classes and objects cannot be overridden");
          } else if (!other.isDeferred && (member.isClass || member.isModule)) {
            overrideError("cannot be used here - classes and objects can only override abstract types");
          } else if (other hasFlag FINAL) { // (1.2)
            overrideError("cannot override final member");
          } else if (!other.isDeferred && !(member hasFlag (OVERRIDE | ABSOVERRIDE | SYNTHETIC))) { // (1.3), SYNTHETIC because of DEVIRTUALIZE
            overrideError("needs `override' modifier");
          } else if ((other hasFlag ABSOVERRIDE) && other.isIncompleteIn(clazz) && !(member hasFlag ABSOVERRIDE)) {
            overrideError("needs `abstract override' modifiers")
          } else if ((member hasFlag (OVERRIDE | ABSOVERRIDE)) &&
                     (other hasFlag ACCESSOR) && other.accessed.isVariable && !other.accessed.isLazy) {
            overrideError("cannot override a mutable variable")
          } else if ((member hasFlag (OVERRIDE | ABSOVERRIDE)) &&
                     !(member.owner.thisType.baseClasses exists (_ isSubClass other.owner)) &&
                     !member.isDeferred && !other.isDeferred &&
                     intersectionIsEmpty(member.extendedOverriddenSymbols, other.extendedOverriddenSymbols)) {
            overrideError("cannot override a concrete member without a third member that's overridden by both "+
                          "(this rule is designed to prevent ``accidental overrides'')")
          } else if (other.isStable && !member.isStable) { // (1.4)
            overrideError("needs to be a stable, immutable value")
          } else if (member.isValue && (member hasFlag LAZY) &&
                     other.isValue && !other.isSourceMethod && !other.isDeferred && !(other hasFlag LAZY)) {
            overrideError("cannot override a concrete non-lazy value")
          } else if (other.isValue && (other hasFlag LAZY) && !other.isSourceMethod && !other.isDeferred &&
                     member.isValue && !(member hasFlag LAZY)) {
            overrideError("must be declared lazy to override a concrete lazy value")
          } else {
            checkOverrideTypes()
          }
        }

        def checkOverrideTypes() {
          if (other.isAliasType) {
            //if (!member.typeParams.isEmpty) (1.5)  @MAT
            //  overrideError("may not be parameterized");
            //if (!other.typeParams.isEmpty)  (1.5)   @MAT
            //  overrideError("may not override parameterized type");
            // @M: substSym

            if( !(sameLength(member.typeParams, other.typeParams) && (self.memberType(member).substSym(member.typeParams, other.typeParams) =:= self.memberType(other))) ) // (1.6)
              overrideTypeError();
          } else if (other.isAbstractType) {
            //if (!member.typeParams.isEmpty) // (1.7)  @MAT
            //  overrideError("may not be parameterized");

            val memberTp = self.memberType(member)
            val otherTp = self.memberInfo(other)
            if (!(otherTp.bounds containsType memberTp)) { // (1.7.1)
              overrideTypeError(); // todo: do an explaintypes with bounds here
              explainTypes(_.bounds containsType _, otherTp, memberTp)
            }

            // check overriding (abstract type --> abstract type or abstract type --> concrete type member (a type alias))
            // making an abstract type member concrete is like passing a type argument
            val kindErrors = typer.infer.checkKindBounds(List(other), List(memberTp), self, member.owner) // (1.7.2)

            if(!kindErrors.isEmpty)
              unit.error(member.pos,
                "The kind of "+member.keyString+" "+member.varianceString + member.nameString+
                " does not conform to the expected kind of " + other.defString + other.locationString + "." +
                kindErrors.toList.mkString("\n", ", ", ""))

            // check a type alias's RHS corresponds to its declaration
            // this overlaps somewhat with validateVariance
            if(member.isAliasType) {
              val kindErrors = typer.infer.checkKindBounds(List(member), List(memberTp.normalize), self, member.owner)

              if(!kindErrors.isEmpty)
                unit.error(member.pos,
                  "The kind of the right-hand side "+memberTp.normalize+" of "+member.keyString+" "+
                  member.varianceString + member.nameString+ " does not conform to its expected kind."+
                  kindErrors.toList.mkString("\n", ", ", ""))
            } else if (member.isAbstractType) {
              if (memberTp.isVolatile && !otherTp.bounds.hi.isVolatile)
                overrideError("is a volatile type; cannot override a type with non-volatile upper bound")
            }
          } else if (other.isTerm) {
            other.cookJavaRawInfo() // #2454
            val memberTp = self.memberType(member)
            val otherTp = self.memberType(other)
            if (!overridesType(memberTp, otherTp)) { // 8
              overrideTypeError()
              explainTypes(memberTp, otherTp)
            }

            if (member.isStable && !otherTp.isVolatile) {
	          if (memberTp.isVolatile)
                overrideError("has a volatile type; cannot override a member with non-volatile type")
              else memberTp.normalize.resultType match {
                case rt: RefinedType if !(rt =:= otherTp) && !(checkedCombinations contains rt.parents) =>
                  // might mask some inconsistencies -- check overrides
                  checkedCombinations += rt.parents
                  val tsym = rt.typeSymbol;
                  if (tsym.pos == NoPosition) tsym setPos member.pos
                  checkAllOverrides(tsym, typesOnly = true)
                case _ =>
              }
            }
          }
        }
      }

      val opc = new overridingPairs.Cursor(clazz)
      while (opc.hasNext) {
        //Console.println(opc.overriding/* + ":" + opc.overriding.tpe*/ + " in "+opc.overriding.fullName + " overrides " + opc.overridden/* + ":" + opc.overridden.tpe*/ + " in "+opc.overridden.fullName + "/"+ opc.overridden.hasFlag(DEFERRED));//debug
        if (!opc.overridden.isClass) checkOverride(clazz, opc.overriding, opc.overridden);

        opc.next
      }
      printMixinOverrideErrors()

      // Verifying a concrete class has nothing unimplemented.
      if (clazz.isClass && !clazz.isTrait && !(clazz hasFlag ABSTRACT) && !typesOnly) {
        val abstractErrors = new ListBuffer[String]
        def abstractErrorMessage =
          // a little formatting polish
          if (abstractErrors.size <= 2) abstractErrors mkString " "
          else abstractErrors.tail.mkString(abstractErrors.head + ":\n", "\n", "")

        def abstractClassError(mustBeMixin: Boolean, msg: String) {
          def prelude = (
            if (clazz.isAnonymousClass || clazz.isModuleClass) "object creation impossible"
            else if (mustBeMixin) clazz + " needs to be a mixin"
            else clazz + " needs to be abstract"
          ) + ", since"

          if (abstractErrors.isEmpty) abstractErrors ++= List(prelude, msg)
          else abstractErrors += msg
        }

        def javaErasedOverridingSym(sym: Symbol): Symbol =
          clazz.tpe.nonPrivateMemberAdmitting(sym.name, BRIDGE).filter(other =>
            !other.isDeferred && other.isJavaDefined && {
              def uncurryAndErase(tp: Type) = erasure.erasure(uncurry.transformInfo(sym, tp)) // #3622: erasure operates on uncurried types -- note on passing sym in both cases: only sym.isType is relevant for uncurry.transformInfo
              val tp1 = uncurryAndErase(clazz.thisType.memberType(sym))
              val tp2 = uncurryAndErase(clazz.thisType.memberType(other))
              atPhase(currentRun.erasurePhase.next)(tp1 matches tp2)
            })

        def ignoreDeferred(member: Symbol) =
          isAbstractTypeWithoutFBound(member) ||
          (member.isJavaDefined &&
           (currentRun.erasurePhase == NoPhase || // the test requires atPhase(erasurePhase.next) so shouldn't be done if the compiler has no erasure phase available
            javaErasedOverridingSym(member) != NoSymbol))

        // 2. Check that only abstract classes have deferred members
        def checkNoAbstractMembers() = {
          // Avoid spurious duplicates: first gather any missing members.
          def memberList = clazz.tpe.nonPrivateMembersAdmitting(VBRIDGE)
          val (missing, rest) = memberList partition (m => m.isDeferred && !ignoreDeferred(m))
          // Group missing members by the underlying symbol.
          val grouped = missing groupBy (analyzer underlying _ name)

          for (member <- missing) {
            def undefined(msg: String) = abstractClassError(false, infoString(member) + " is not defined" + msg)
            val underlying = analyzer.underlying(member)

            // Give a specific error message for abstract vars based on why it fails:
            // It could be unimplemented, have only one accessor, or be uninitialized.
            if (underlying.isVariable) {
              // If both getter and setter are missing, squelch the setter error.
              val isMultiple = grouped(underlying.name).size > 1
              // TODO: messages shouldn't be spread over two files, and varNotice is not a clear name
              if (member.isSetter && isMultiple) ()
              else undefined(
                if (member.isSetter) "\n(Note that an abstract var requires a setter in addition to the getter)"
                else if (member.isGetter && !isMultiple) "\n(Note that an abstract var requires a getter in addition to the setter)"
                else analyzer.varNotice(member)
              )
            }
            else if (underlying.isMethod) {
              // If there is a concrete method whose name matches the unimplemented
              // abstract method, and a cursory examination of the difference reveals
              // something obvious to us, let's make it more obvious to them.
              val abstractParams   = underlying.tpe.paramTypes
              val matchingName     = clazz.tpe.nonPrivateMembersAdmitting(VBRIDGE)
              val matchingArity    = matchingName filter { m =>
                !m.isDeferred &&
                (m.name == underlying.name) &&
                (m.tpe.paramTypes.size == underlying.tpe.paramTypes.size) &&
                (m.tpe.typeParams.size == underlying.tpe.typeParams.size)
              }

              matchingArity match {
                // So far so good: only one candidate method
                case concrete :: Nil   =>
                  val mismatches  = abstractParams zip concrete.tpe.paramTypes filterNot { case (x, y) => x =:= y }
                  mismatches match {
                    // Only one mismatched parameter: say something useful.
                    case (pa, pc) :: Nil  =>
                      val addendum =
                        if (pa.typeSymbol == pc.typeSymbol) {
                          // TODO: what is the optimal way to test for a raw type at this point?
                          // Compilation has already failed so we shouldn't have to worry overmuch
                          // about forcing types.
                          if (underlying.isJavaDefined && pa.typeArgs.isEmpty && pa.typeSymbol.typeParams.nonEmpty)
                            ". To implement a raw type, use %s[_]".format(pa)
                          else if (pa.prefix =:= pc.prefix)
                            ": their type parameters differ"
                          else
                            ": their prefixes (i.e. enclosing instances) differ"
                        }
                        else ""

                      undefined("\n(Note that %s does not match %s%s)".format(pa, pc, addendum))
                    case xs =>
                      undefined("")
                  }
                case _ =>
                  undefined("")
              }
            }
            else undefined("")
          }

          // Check the remainder for invalid absoverride.
          for (member <- rest ; if ((member hasFlag ABSOVERRIDE) && member.isIncompleteIn(clazz))) {
            val other = member.superSymbol(clazz)
            val explanation =
              if (other != NoSymbol) " and overrides incomplete superclass member " + infoString(other)
              else ", but no concrete implementation could be found in a base class"

            abstractClassError(true, infoString(member) + " is marked `abstract' and `override'" + explanation)
          }
        }

        // 3. Check that concrete classes do not have deferred definitions
        // that are not implemented in a subclass.
        // Note that this is not the same as (2); In a situation like
        //
        // class C { def m: Int = 0}
        // class D extends C { def m: Int }
        //
        // (3) is violated but not (2).
        def checkNoAbstractDecls(bc: Symbol) {
          for (decl <- bc.info.decls.iterator) {
            if (decl.isDeferred && !ignoreDeferred(decl)) {
              val impl = decl.matchingSymbol(clazz.thisType, admit = VBRIDGE)
              if (impl == NoSymbol || (decl.owner isSubClass impl.owner)) {
                abstractClassError(false, "there is a deferred declaration of "+infoString(decl)+
                                   " which is not implemented in a subclass"+analyzer.varNotice(decl))
              }
            }
          }
          val parents = bc.info.parents
          if (!parents.isEmpty && parents.head.typeSymbol.hasFlag(ABSTRACT))
            checkNoAbstractDecls(parents.head.typeSymbol)
        }

        checkNoAbstractMembers()
        if (abstractErrors.isEmpty)
          checkNoAbstractDecls(clazz)

        if (abstractErrors.nonEmpty)
          unit.error(clazz.pos, abstractErrorMessage)
      } else if (clazz.isTrait) {
        // prevent abstract methods in interfaces that override final members in Object; see #4431
        for (decl <- clazz.info.decls.iterator) {
          val overridden = decl.overriddenSymbol(ObjectClass)
          if (overridden.isFinal)
            unit.error(decl.pos, "trait cannot redefine final method from class AnyRef")
        }
      }

      /** Returns whether there is a symbol declared in class `inclazz`
       *  (which must be different from `clazz`) whose name and type
       *  seen as a member of `class.thisType` matches `member`'s.
       */
      def hasMatchingSym(inclazz: Symbol, member: Symbol): Boolean = {
        val isVarargs = hasRepeatedParam(member.tpe)
        lazy val varargsType = toJavaRepeatedParam(member.tpe)

        def isSignatureMatch(sym: Symbol) = !sym.isTerm || {
          val symtpe            = clazz.thisType memberType sym
          def matches(tp: Type) = tp matches symtpe

          matches(member.tpe) || (isVarargs && matches(varargsType))
        }
        /** The rules for accessing members which have an access boundary are more
         *  restrictive in java than scala.  Since java has no concept of package nesting,
         *  a member with "default" (package-level) access can only be accessed by members
         *  in the exact same package.  Example:
         *
         *    package a.b;
         *    public class JavaClass { void foo() { } }
         *
         *  The member foo() can be accessed only from members of package a.b, and not
         *  nested packages like a.b.c.  In the analogous scala class:
         *
         *    package a.b
         *    class ScalaClass { private[b] def foo() = () }
         *
         *  The member IS accessible to classes in package a.b.c.  The javaAccessCheck logic
         *  is restricting the set of matching signatures according to the above semantics.
         */
        def javaAccessCheck(sym: Symbol) = (
             !inclazz.isJavaDefined                             // not a java defined member
          || !sym.hasAccessBoundary                             // no access boundary
          || sym.isProtected                                    // marked protected in java, thus accessible to subclasses
          || sym.privateWithin == member.enclosingPackageClass  // exact package match
        )
        def classDecls   = inclazz.info.nonPrivateDecl(member.name)
        def matchingSyms = classDecls filter (sym => isSignatureMatch(sym) && javaAccessCheck(sym))

        (inclazz != clazz) && (matchingSyms != NoSymbol)
      }

      // 4. Check that every defined member with an `override` modifier overrides some other member.
      for (member <- clazz.info.decls)
        if ((member hasFlag (OVERRIDE | ABSOVERRIDE)) &&
            !(clazz.thisType.baseClasses exists (hasMatchingSym(_, member)))) {
          // for (bc <- clazz.info.baseClasses.tail) Console.println("" + bc + " has " + bc.info.decl(member.name) + ":" + bc.info.decl(member.name).tpe);//DEBUG
          unit.error(member.pos, member.toString() + " overrides nothing");
          member resetFlag OVERRIDE
        }
    }

  // Basetype Checking --------------------------------------------------------

    /** <ol>
     *    <li> <!-- 1 -->
     *      Check that later type instances in the base-type sequence
     *      are subtypes of earlier type instances of the same mixin.
     *    </li>
     *  </ol>
     */
    private def validateBaseTypes(clazz: Symbol) {
      val seenParents = mutable.HashSet[Type]()
      val seenTypes = new Array[List[Type]](clazz.info.baseTypeSeq.length)
      for (i <- 0 until seenTypes.length)
        seenTypes(i) = Nil

      /** validate all base types of a class in reverse linear order. */
      def register(tp: Type): Unit = {
//        if (clazz.fullName.endsWith("Collection.Projection"))
//            println("validate base type "+tp)
        val baseClass = tp.typeSymbol
        if (baseClass.isClass) {
          val index = clazz.info.baseTypeIndex(baseClass)
          if (index >= 0) {
            if (seenTypes(index) forall (tp1 => !(tp1 <:< tp)))
              seenTypes(index) =
                tp :: (seenTypes(index) filter (tp1 => !(tp <:< tp1)))
          }
        }
        val remaining = tp.parents filterNot seenParents
        seenParents ++= remaining
        remaining foreach register
      }
      register(clazz.tpe)
      for (i <- 0 until seenTypes.length) {
        val baseClass = clazz.info.baseTypeSeq(i).typeSymbol
        seenTypes(i) match {
          case List() =>
            println("??? base "+baseClass+" not found in basetypes of "+clazz)
          case List(_) =>
            ;// OK
          case tp1 :: tp2 :: _ =>
            unit.error(clazz.pos, "illegal inheritance;\n " + clazz +
                       " inherits different type instances of " + baseClass +
                       ":\n" + tp1 + " and " + tp2);
            explainTypes(tp1, tp2)
            explainTypes(tp2, tp1)
        }
      }
    }

  // Variance Checking --------------------------------------------------------

    private val ContraVariance = -1
    private val NoVariance = 0
    private val CoVariance = 1
    private val AnyVariance = 2

    private val escapedPrivateLocals = new mutable.HashSet[Symbol]

    val varianceValidator = new Traverser {

      /** Validate variance of info of symbol `base` */
      private def validateVariance(base: Symbol) {

        def varianceString(variance: Int): String =
          if (variance == 1) "covariant"
          else if (variance == -1) "contravariant"
          else "invariant";

        /** The variance of a symbol occurrence of `tvar`
         *  seen at the level of the definition of `base`.
         *  The search proceeds from `base` to the owner of `tvar`.
         *  Initially the state is covariant, but it might change along the search.
         */
        def relativeVariance(tvar: Symbol): Int = {
          val clazz = tvar.owner
          var sym = base
          var state = CoVariance
          while (sym != clazz && state != AnyVariance) {
            //Console.println("flip: " + sym + " " + sym.isParameter());//DEBUG
            // Flip occurrences of type parameters and parameters, unless
            //  - it's a constructor, or case class factory or extractor
            //  - it's a type parameter of tvar's owner.
            if (sym.isParameter && !sym.owner.isConstructor && !sym.owner.isCaseApplyOrUnapply &&
                !(tvar.isTypeParameterOrSkolem && sym.isTypeParameterOrSkolem &&
                  tvar.owner == sym.owner)) state = -state;
            else if (!sym.owner.isClass ||
                     sym.isTerm && ((sym.isPrivateLocal || sym.isProtectedLocal || sym.isSuperAccessor /* super accessors are implicitly local #4345*/) && !(escapedPrivateLocals contains sym))) {
              // return AnyVariance if `sym` is local to a term
              // or is private[this] or protected[this]
              state = AnyVariance
            } else if (sym.isAliasType) {
              // return AnyVariance if `sym` is an alias type
              // that does not override anything. This is OK, because we always
              // expand aliases for variance checking.
              // However, if `sym` does override a type in a base class
              // we have to assume NoVariance, as there might then be
              // references to the type parameter that are not variance checked.
              state = if (sym.allOverriddenSymbols.isEmpty) AnyVariance
                      else NoVariance
            }
            sym = sym.owner
          }
          state
        }

        /** Validate that the type `tp` is variance-correct, assuming
         *  the type occurs itself at variance position given by `variance`
         */
        def validateVariance(tp: Type, variance: Int): Unit = tp match {
          case ErrorType => ;
          case WildcardType => ;
          case NoType => ;
          case NoPrefix => ;
          case ThisType(_) => ;
          case ConstantType(_) => ;
          // case DeBruijnIndex(_, _) => ;
          case SingleType(pre, sym) =>
            validateVariance(pre, variance)
          case TypeRef(pre, sym, args) =>
//            println("validate "+sym+" at "+relativeVariance(sym))
            if (sym.isAliasType/* && relativeVariance(sym) == AnyVariance*/)
              validateVariance(tp.normalize, variance)
            else if (sym.variance != NoVariance) {
              val v = relativeVariance(sym)
              if (v != AnyVariance && sym.variance != v * variance) {
                //Console.println("relativeVariance(" + base + "," + sym + ") = " + v);//DEBUG
                def tpString(tp: Type) = tp match {
                  case ClassInfoType(parents, _, clazz) => "supertype "+intersectionType(parents, clazz.owner)
                  case _ => "type "+tp
                }
                unit.error(base.pos,
                           varianceString(sym.variance) + " " + sym +
                           " occurs in " + varianceString(v * variance) +
                           " position in " + tpString(base.info) + " of " + base);
              }
            }
            validateVariance(pre, variance)
            validateVarianceArgs(args, variance, sym.typeParams) //@M for higher-kinded typeref, args.isEmpty
            // However, these args respect variances by construction anyway
            // -- the interesting case is in type application, see checkKindBounds in Infer
          case ClassInfoType(parents, decls, symbol) =>
            validateVariances(parents, variance)
          case RefinedType(parents, decls) =>
            validateVariances(parents, variance)
            for (sym <- decls)
              validateVariance(sym.info, if (sym.isAliasType) NoVariance else variance)
          case TypeBounds(lo, hi) =>
            validateVariance(lo, -variance)
            validateVariance(hi, variance)
          case MethodType(formals, result) =>
            validateVariance(result, variance)
          case NullaryMethodType(result) =>
            validateVariance(result, variance)
          case PolyType(tparams, result) =>
            // type parameters will be validated separately, because they are defined explicitly.
            validateVariance(result, variance)
          case ExistentialType(tparams, result) =>
            validateVariances(tparams map (_.info), variance)
            validateVariance(result, variance)
          case AnnotatedType(annots, tp, selfsym) =>
            if (!(annots exists (_.atp.typeSymbol.isNonBottomSubClass(uncheckedVarianceClass))))
              validateVariance(tp, variance)
        }

        def validateVariances(tps: List[Type], variance: Int) {
          tps foreach (tp => validateVariance(tp, variance))
        }

        def validateVarianceArgs(tps: List[Type], variance: Int, tparams: List[Symbol]) {
          (tps zip tparams) foreach {
            case (tp, tparam) => validateVariance(tp, variance * tparam.variance)
          }
        }

        validateVariance(base.info, CoVariance)
      }

      override def traverse(tree: Tree) {
        tree match {
          case ClassDef(_, _, _, _) |
               TypeDef(_, _, _, _) =>
            validateVariance(tree.symbol)
            super.traverse(tree)
          // ModuleDefs need not be considered because they have been eliminated already
          case ValDef(_, _, _, _) =>
            validateVariance(tree.symbol)
          case DefDef(_, _, tparams, vparamss, tpt, rhs) =>
            validateVariance(tree.symbol)
            traverseTrees(tparams); traverseTreess(vparamss)
          case Template(_, _, _) =>
            super.traverse(tree)
          case _ =>
        }
      }
    }

// Forward reference checking ---------------------------------------------------

    class LevelInfo(val outer: LevelInfo) {
      val scope: Scope = if (outer eq null) new Scope else new Scope(outer.scope)
      var maxindex: Int = Int.MinValue
      var refpos: Position = _
      var refsym: Symbol = _
    }

    private var currentLevel: LevelInfo = null
    private val symIndex = new mutable.HashMap[Symbol, Int]

    private def pushLevel() {
      currentLevel = new LevelInfo(currentLevel)
    }

    private def popLevel() {
      currentLevel = currentLevel.outer
    }

    private def enterSyms(stats: List[Tree]) {
      var index = -1
      for (stat <- stats) {
        index = index + 1;
        stat match {
          case ClassDef(_, _, _, _) | DefDef(_, _, _, _, _, _) | ModuleDef(_, _, _) | ValDef(_, _, _, _) =>
            //assert(stat.symbol != NoSymbol, stat);//debug
            val sym = stat.symbol.lazyAccessorOrSelf
            if (sym.isLocal) {
              currentLevel.scope.enter(sym)
              symIndex(sym) = index;
            }
          case _ =>
        }
      }
    }

    private def enterReference(pos: Position, sym: Symbol) {
      if (sym.isLocal) {
        val e = currentLevel.scope.lookupEntry(sym.name)
        if ((e ne null) && sym == e.sym) {
          var l = currentLevel
          while (l.scope != e.owner) l = l.outer;
          val symindex = symIndex(sym)
          if (l.maxindex < symindex) {
            l.refpos = pos
            l.refsym = sym
            l.maxindex = symindex
          }
        }
      }
    }

// Comparison checking -------------------------------------------------------
    object normalizeAll extends TypeMap {
      def apply(tp: Type) = mapOver(tp).normalize
    }

    def checkSensible(pos: Position, fn: Tree, args: List[Tree]) = fn match {
      case Select(qual, name @ (nme.EQ | nme.NE | nme.eq | nme.ne)) if args.length == 1 =>
        def isReferenceOp = name == nme.eq || name == nme.ne
        def isNew(tree: Tree) = tree match {
          case Function(_, _)
             | Apply(Select(New(_), nme.CONSTRUCTOR), _) => true
          case _ => false
        }
        def underlyingClass(tp: Type): Symbol = {
          var sym = tp.widen.typeSymbol
          while (sym.isAbstractType)
            sym = sym.info.bounds.hi.widen.typeSymbol
          sym
        }
        val actual   = underlyingClass(args.head.tpe)
        val receiver = underlyingClass(qual.tpe)
        def onTrees[T](f: List[Tree] => T) = f(List(qual, args.head))
        def onSyms[T](f: List[Symbol] => T) = f(List(receiver, actual))

        // @MAT normalize for consistency in error message, otherwise only part is normalized due to use of `typeSymbol`
        def typesString = normalizeAll(qual.tpe.widen)+" and "+normalizeAll(args.head.tpe.widen)

        /** Symbols which limit the warnings we can issue since they may be value types */
        val isMaybeValue = Set(AnyClass, AnyRefClass, AnyValClass, ObjectClass, ComparableClass, SerializableClass)

        // Whether def equals(other: Any) is overridden
        def isUsingDefaultEquals      = {
          val m = receiver.info.member(nme.equals_)
          (m == Object_equals) || (m == Any_equals)
        }
        // Whether this == or != is one of those defined in Any/AnyRef or an overload from elsewhere.
        def isUsingDefaultScalaOp = {
          val s = fn.symbol
          (s == Object_==) || (s == Object_!=) || (s == Any_==) || (s == Any_!=)
        }
        // Whether the operands+operator represent a warnable combo (assuming anyrefs)
        def isWarnable           = isReferenceOp || (isUsingDefaultEquals && isUsingDefaultScalaOp)
        def isEitherNullable     = (NullClass.tpe <:< receiver.info) || (NullClass.tpe <:< actual.info)
        def isBoolean(s: Symbol) = unboxedValueClass(s) == BooleanClass
        def isUnit(s: Symbol)    = unboxedValueClass(s) == UnitClass
        def isNumeric(s: Symbol) = isNumericValueClass(unboxedValueClass(s)) || (s isSubClass ScalaNumberClass)
        def possibleNumericCount = onSyms(_ filter (x => isNumeric(x) || isMaybeValue(x)) size)
        val nullCount            = onSyms(_ filter (_ == NullClass) size)

        def nonSensibleWarning(what: String, alwaysEqual: Boolean) = {
          val msg = alwaysEqual == (name == nme.EQ || name == nme.eq)
          unit.warning(pos, "comparing "+what+" using `"+name.decode+"' will always yield " + msg)
        }

        def nonSensible(pre: String, alwaysEqual: Boolean) =
          nonSensibleWarning(pre+"values of types "+typesString, alwaysEqual)

        def unrelatedTypes() =
          unit.warning(pos, typesString + " are unrelated: should not compare equal")

        if (nullCount == 2)
          nonSensible("", true)  // null == null
        else if (nullCount == 1) {
          if (onSyms(_ exists isValueClass)) // null == 5
            nonSensible("", false)
          else if (onTrees( _ exists isNew)) // null == new AnyRef
            nonSensibleWarning("a fresh object", false)
        }
        else if (isBoolean(receiver)) {
          if (!isBoolean(actual) && !isMaybeValue(actual))    // true == 5
            nonSensible("", false)
        }
        else if (isUnit(receiver)) {
          if (isUnit(actual)) // () == ()
            nonSensible("", true)
          else if (!isUnit(actual) && !isMaybeValue(actual))  // () == "abc"
            nonSensible("", false)
        }
        else if (isNumeric(receiver)) {
          if (!isNumeric(actual) && !forMSIL)
            if (isUnit(actual) || isBoolean(actual) || !isMaybeValue(actual))   // 5 == "abc"
              nonSensible("", false)
        }
        else if (isWarnable) {
          if (isNew(qual)) // new X == y
            nonSensibleWarning("a fresh object", false)
          else if (isNew(args.head) && (receiver.isFinal || isReferenceOp))   // object X ; X == new Y
            nonSensibleWarning("a fresh object", false)
          else if (receiver.isFinal && !(receiver isSubClass actual)) {  // object X, Y; X == Y
            if (isEitherNullable)
              nonSensible("non-null ", false)
            else
              nonSensible("", false)
          }
        }
        // Warning on types without a parental relationship.  Uncovers a lot of
        // bugs, but not always right to warn.
        if (false) {
          if (nullCount == 0 && possibleNumericCount < 2 && !(receiver isSubClass actual) && !(actual isSubClass receiver))
            unrelatedTypes()
        }

      case _ =>
    }

// Transformation ------------------------------------------------------------

    /* Convert a reference to a case factory of type `tpe` to a new of the class it produces. */
    def toConstructor(pos: Position, tpe: Type): Tree = {
      var rtpe = tpe.finalResultType
      assert(rtpe.typeSymbol hasFlag CASE, tpe);
      localTyper.typedOperator {
        atPos(pos) {
          Select(New(TypeTree(rtpe)), rtpe.typeSymbol.primaryConstructor)
        }
      }
    }

    override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = {
      pushLevel()
      try {
        enterSyms(stats)
        var index = -1
        stats flatMap { stat => index += 1; transformStat(stat, index) }
      }
      finally popLevel()
    }

    /** Eliminate ModuleDefs.
     *   - A top level object is replaced with their module class.
     *   - An inner object is transformed into a module var, created on first access.
     *
     *  In both cases, this transformation returns the list of replacement trees:
     *   - Top level: the module class accessor definition
     *   - Inner: a class definition, declaration of module var, and module var accessor
     */
    private def eliminateModuleDefs(tree: Tree): List[Tree] = {
      val ModuleDef(mods, name, impl) = tree
      val sym = tree.symbol

      val classSym        = sym.moduleClass
      val cdef            = ClassDef(mods | MODULE, name.toTypeName, Nil, impl) setSymbol classSym setType NoType

      def findOrCreateModuleVar() = localTyper.typedPos(tree.pos) {
        lazy val createModuleVar = gen.mkModuleVarDef(sym)
        sym.owner.info.decl(nme.moduleVarName(sym.name.toTermName)) match {
          // In case we are dealing with local symbol then we already have
          // to correct error with forward reference
          case NoSymbol => createModuleVar
          case vsym     => ValDef(vsym)
        }
      }
      def createStaticModuleAccessor() = atPhase(phase.next) {
        val method = (
          sym.owner.newMethod(sym.pos, sym.name.toTermName)
          setFlag (sym.flags | STABLE) resetFlag MODULE setInfo NullaryMethodType(sym.moduleClass.tpe)
        )
        sym.owner.info.decls enter method
        localTyper.typedPos(tree.pos)(gen.mkModuleAccessDef(method, sym))
      }
      def createInnerModuleAccessor(vdef: Tree) = List(
        vdef,
        localTyper.typedPos(tree.pos) {
          val vsym = vdef.symbol
          atPhase(phase.next) {
            val rhs  = gen.newModule(sym, vsym.tpe)
            val body = if (sym.owner.isTrait) rhs else gen.mkAssignAndReturn(vsym, rhs)
            DefDef(sym, body.changeOwner(vsym -> sym))
          }
        }
      )
      transformTrees(cdef :: {
        if (sym.isStatic)
          if (sym.allOverriddenSymbols.isEmpty) Nil
          else List(createStaticModuleAccessor())
        else createInnerModuleAccessor(findOrCreateModuleVar)
      })
    }

    /** Implements lazy value accessors:
     *    - for lazy values of type Unit and all lazy fields inside traits,
     *      the rhs is the initializer itself
     *    - for all other lazy values z the accessor is a block of this form:
     *      { z = <rhs>; z } where z can be an identifier or a field.
     */
    private def makeLazyAccessor(tree: Tree, rhs: Tree): List[Tree] = {
      val vsym        = tree.symbol
      assert(vsym.isTerm, vsym)
      val hasUnitType = vsym.tpe.typeSymbol == UnitClass
      val lazySym     = vsym.lazyAccessor
      assert(lazySym != NoSymbol, vsym)

      // for traits, this is further transformed in mixins
      val body = (
        if (tree.symbol.owner.isTrait || hasUnitType) rhs
        else gen.mkAssignAndReturn(vsym, rhs)
      )
      val lazyDef = atPos(tree.pos)(DefDef(lazySym, body.changeOwner(vsym -> lazySym)))
      log("Made lazy def: " + lazyDef)

      if (hasUnitType) List(typed(lazyDef))
      else List(
        typed(ValDef(vsym)),
        atPhase(phase.next)(typed(lazyDef))
      )
    }

    def transformStat(tree: Tree, index: Int): List[Tree] = tree match {
      case ModuleDef(_, _, _) => eliminateModuleDefs(tree)
      case ValDef(_, _, _, _) =>
        val tree1 @ ValDef(_, _, _, rhs) = transform(tree) // important to do before forward reference check
        if (tree.symbol.isLazy)
          makeLazyAccessor(tree, rhs)
        else {
          val lazySym = tree.symbol.lazyAccessorOrSelf
          if (lazySym.isLocal && index <= currentLevel.maxindex) {
            if (settings.debug.value)
              Console.println(currentLevel.refsym)
            unit.error(currentLevel.refpos, "forward reference extends over definition of " + lazySym)
          }
          List(tree1)
        }
      case Import(_, _) => Nil
      case _            => List(transform(tree))
    }

    /* Check whether argument types conform to bounds of type parameters */
    private def checkBounds(pre: Type, owner: Symbol, tparams: List[Symbol], argtps: List[Type], pos: Position): Unit =
      try typer.infer.checkBounds(pos, pre, owner, tparams, argtps, "")
      catch {
        case ex: TypeError =>
          unit.error(pos, ex.getMessage());
          if (settings.explaintypes.value) {
            val bounds = tparams map (tp => tp.info.instantiateTypeParams(tparams, argtps).bounds)
            (argtps, bounds).zipped map ((targ, bound) => explainTypes(bound.lo, targ))
            (argtps, bounds).zipped map ((targ, bound) => explainTypes(targ, bound.hi))
            ()
          }
      }
    private def isIrrefutable(pat: Tree, seltpe: Type): Boolean = pat match {
      case Apply(_, args) =>
        val clazz = pat.tpe.typeSymbol
        clazz == seltpe.typeSymbol &&
        clazz.isCaseClass &&
        (args corresponds clazz.primaryConstructor.tpe.asSeenFrom(seltpe, clazz).paramTypes)(isIrrefutable)
      case Typed(pat, tpt) =>
        seltpe <:< tpt.tpe
      case Ident(tpnme.WILDCARD) =>
        true
      case Bind(_, pat) =>
        isIrrefutable(pat, seltpe)
      case _ =>
        false
    }

    /** If symbol is deprecated, and the point of reference is not enclosed
     *  in either a deprecated member or a scala bridge method, issue a warning.
     */
    private def checkDeprecated(sym: Symbol, pos: Position) {
      if (sym.isDeprecated && !currentOwner.ownerChain.exists(x => x.isDeprecated || x.hasBridgeAnnotation)) {
        unit.deprecationWarning(pos, "%s%s is deprecated%s".format(
          sym, sym.locationString, sym.deprecationMessage map (": " + _) getOrElse "")
        )
      }
    }

    /** Similar to deprecation: check if the symbol is marked with @migration
     *  indicating it has changed semantics between versions.
     */
    private def checkMigration(sym: Symbol, pos: Position) = {
      for (msg <- sym.migrationMessage)
        unit.warning(pos, sym.fullLocationString + " has changed semantics:\n" + msg)
    }

    /** Check that a deprecated val or def does not override a
      * concrete, non-deprecated method.  If it does, then
      * deprecation is meaningless.
      */
    private def checkDeprecatedOvers(tree: Tree) {
      val symbol = tree.symbol
      if (symbol.isDeprecated) {
        val concrOvers =
          symbol.allOverriddenSymbols.filter(sym =>
            !sym.isDeprecated && !sym.isDeferred)
        if(!concrOvers.isEmpty)
          unit.deprecationWarning(
            tree.pos,
            symbol.toString + " overrides concrete, non-deprecated symbol(s):" +
            concrOvers.map(_.name.decode).mkString("    ", ", ", ""))
      }
    }
    private def isRepeatedParamArg(tree: Tree) = currentApplication match {
      case Apply(fn, args) =>
        !args.isEmpty && (args.last eq tree) &&
        fn.tpe.params.length == args.length && isRepeatedParamType(fn.tpe.params.last.tpe)
      case _ =>
        false
    }
    private def checkTypeRef(tp: Type, pos: Position) = tp match {
      case TypeRef(pre, sym, args) =>
        checkDeprecated(sym, pos)
        if(sym.isJavaDefined)
          sym.typeParams foreach (_.cookJavaRawInfo())
        if (!tp.isHigherKinded)
          checkBounds(pre, sym.owner, sym.typeParams, args, pos)
      case _ =>
    }

    private def checkAnnotations(tpes: List[Type], pos: Position) = tpes foreach (tp => checkTypeRef(tp, pos))
    private def doTypeTraversal(tree: Tree)(f: Type => Unit) = if (!inPattern) tree.tpe foreach f

    private def applyRefchecksToAnnotations(tree: Tree): Unit = {
      def applyChecks(annots: List[AnnotationInfo]) = {
        checkAnnotations(annots map (_.atp), tree.pos)
        transformTrees(annots flatMap (_.args))
      }

      tree match {
        case m: MemberDef =>
          val sym = m.symbol
          applyChecks(sym.annotations)
          // validate implicitNotFoundMessage
          analyzer.ImplicitNotFoundMsg.check(sym) foreach { warn =>
            unit.warning(tree.pos, "Invalid implicitNotFound message for %s%s:\n%s".format(sym, sym.locationString, warn))
          }
        case tpt@TypeTree() =>
          if(tpt.original != null) {
            tpt.original foreach {
              case dc@TypeTreeWithDeferredRefCheck() => applyRefchecksToAnnotations(dc.check()) // #2416
              case _ =>
            }
          }

          doTypeTraversal(tree) {
            case AnnotatedType(annots, _, _)  => applyChecks(annots)
            case _ =>
          }
        case _ =>
      }
    }

    private def transformCaseApply(tree: Tree, ifNot: => Unit) = {
      val sym = tree.symbol

      if (sym.isSourceMethod && sym.isCase && sym.name == nme.apply)
        toConstructor(tree.pos, tree.tpe)
      else {
        ifNot
        tree
      }
    }

    private def transformApply(tree: Apply): Tree = tree match {
      case Apply(
        Select(qual, nme.filter),
        List(Function(
          List(ValDef(_, pname, tpt, _)),
          Match(_, CaseDef(pat1, _, _) :: _))))
        if ((pname startsWith nme.CHECK_IF_REFUTABLE_STRING) &&
            isIrrefutable(pat1, tpt.tpe) && (qual.tpe <:< tree.tpe)) =>

          transform(qual)

      case Apply(Select(New(tpt), name), args)
      if (tpt.tpe.typeSymbol == ArrayClass && args.length >= 2) =>
        unit.deprecationWarning(tree.pos,
          "new Array(...) with multiple dimensions has been deprecated; use Array.ofDim(...) instead")
        val manif = {
          var etpe = tpt.tpe
          for (_ <- args) { etpe = etpe.typeArgs.headOption.getOrElse(NoType) }
          if (etpe == NoType) {
            unit.error(tree.pos, "too many dimensions for array creation")
            Literal(Constant(null))
          } else {
            localTyper.getManifestTree(tree.pos, etpe, false)
          }
        }
        val newResult = localTyper.typedPos(tree.pos) {
          new ApplyToImplicitArgs(gen.mkMethodCall(ArrayModule, nme.ofDim, args), List(manif))
        }
        currentApplication = tree
        newResult

      case Apply(fn, args) =>
        checkSensible(tree.pos, fn, args)
        currentApplication = tree
        tree
    }
    private def transformSelect(tree: Select): Tree = {
      val Select(qual, name) = tree
      val sym = tree.symbol

      /** Note: if a symbol has both @deprecated and @migration annotations and both
       *  warnings are enabled, only the first one checked here will be emitted.
       *  I assume that's a consequence of some code trying to avoid noise by suppressing
       *  warnings after the first, but I think it'd be better if we didn't have to
       *  arbitrarily choose one as more important than the other.
       */
      checkDeprecated(sym, tree.pos)
      if (settings.Xmigration28.value)
        checkMigration(sym, tree.pos)

      if (currentClass != sym.owner && sym.hasLocalFlag) {
        var o = currentClass
        var hidden = false
        while (!hidden && o != sym.owner && o != sym.owner.moduleClass && !o.isPackage) {
          hidden = o.isTerm || o.isPrivateLocal
          o = o.owner
        }
        if (!hidden) escapedPrivateLocals += sym
      }

      def checkSuper(mix: Name) =
        // term should have been eliminated by super accessors
        assert(!(qual.symbol.isTrait && sym.isTerm && mix == tpnme.EMPTY))

      transformCaseApply(tree,
        qual match {
          case Super(_, mix)  => checkSuper(mix)
          case _              =>
        }
      )
    }
    private def transformIf(tree: If): Tree = {
      val If(cond, thenpart, elsepart) = tree
      def unitIfEmpty(t: Tree): Tree =
        if (t == EmptyTree) Literal(()).setPos(tree.pos).setType(UnitClass.tpe) else t

      cond.tpe match {
        case ConstantType(value) =>
          val res = if (value.booleanValue) thenpart else elsepart
          unitIfEmpty(res)
        case _ => tree
      }
    }

    override def transform(tree: Tree): Tree = {
      val savedLocalTyper = localTyper
      val savedCurrentApplication = currentApplication
      try {
        val sym = tree.symbol

        // Apply RefChecks to annotations. Makes sure the annotations conform to
        // type bounds (bug #935), issues deprecation warnings for symbols used
        // inside annotations.
        applyRefchecksToAnnotations(tree)
        var result: Tree = tree match {
          case DefDef(mods, name, tparams, vparams, tpt, EmptyTree) if tree.symbol.hasAnnotation(NativeAttr) =>
            tree.symbol.resetFlag(DEFERRED)
            transform(treeCopy.DefDef(
              tree, mods, name, tparams, vparams, tpt,
              typed(gen.mkSysErrorCall("native method stub"))
            ))

          case ValDef(_, _, _, _) | DefDef(_, _, _, _, _, _) =>
            checkDeprecatedOvers(tree)
            tree

          case Template(parents, self, body) =>
            localTyper = localTyper.atOwner(tree, currentOwner)
            validateBaseTypes(currentOwner)
            checkOverloadedRestrictions(currentOwner)
            val bridges = addVarargBridges(currentOwner)
            checkAllOverrides(currentOwner)

            if (bridges.nonEmpty) treeCopy.Template(tree, parents, self, body ::: bridges)
            else tree

          case dc@TypeTreeWithDeferredRefCheck() => assert(false, "adapt should have turned dc: TypeTreeWithDeferredRefCheck into tpt: TypeTree, with tpt.original == dc"); dc
          case tpt@TypeTree() =>
            if(tpt.original != null) {
              tpt.original foreach {
                case dc@TypeTreeWithDeferredRefCheck() =>
                  transform(dc.check()) // #2416 -- only call transform to do refchecks, but discard results
                  // tpt has the right type if the deferred checks are ok
                case _ =>
              }
            }

            val existentialParams = new ListBuffer[Symbol]
            doTypeTraversal(tree) { // check all bounds, except those that are
                              // existential type parameters
              case ExistentialType(tparams, tpe) =>
                existentialParams ++= tparams
              case t: TypeRef =>
                val exparams = existentialParams.toList
                val wildcards = exparams map (_ => WildcardType)
                checkTypeRef(t.subst(exparams, wildcards), tree.pos)
              case _ =>
            }
            tree

          case TypeApply(fn, args) =>
            checkBounds(NoPrefix, NoSymbol, fn.tpe.typeParams, args map (_.tpe), tree.pos)
            transformCaseApply(tree, ())

          case x @ Apply(_, _)  =>
            transformApply(x)

          case x @ If(_, _, _)  =>
            transformIf(x)

          case New(tpt) =>
            enterReference(tree.pos, tpt.tpe.typeSymbol)
            tree

          case Typed(_, Ident(tpnme.WILDCARD_STAR)) if !isRepeatedParamArg(tree) =>
            unit.error(tree.pos, "no `: _*' annotation allowed here\n"+
              "(such annotations are only allowed in arguments to *-parameters)")
            tree

          case Ident(name) =>
            transformCaseApply(tree,
              if (name != nme.WILDCARD && name != tpnme.WILDCARD_STAR) {
                assert(sym != NoSymbol, "transformCaseApply: name = " + name.debugString + " tree = " + tree + " / " + tree.getClass) //debug
                enterReference(tree.pos, sym)
              }
            )

          case x @ Select(_, _) =>
            transformSelect(x)

          case UnApply(fun, args) =>
            transform(fun) // just make sure we enterReference for unapply symbols, note that super.transform(tree) would not transform(fun)
                           // transformTrees(args) // TODO: is this necessary? could there be forward references in the args??
                           // probably not, until we allow parameterised extractors
            tree


          case _ => tree
        }
        result = result match {
          case CaseDef(pat, guard, body) =>
            inPattern = true
            val pat1 = transform(pat)
            inPattern = false
            treeCopy.CaseDef(tree, pat1, transform(guard), transform(body))
          case _ =>
            super.transform(result)
        }
        result match {
          case ClassDef(_, _, _, _)
             | TypeDef(_, _, _, _) =>
            if (result.symbol.isLocal || result.symbol.owner.isPackageClass)
              varianceValidator.traverse(result)
          case _ =>
        }
        result
      } catch {
        case ex: TypeError =>
          if (settings.debug.value) ex.printStackTrace();
          unit.error(tree.pos, ex.getMessage())
          tree
      } finally {
        localTyper = savedLocalTyper
        currentApplication = savedCurrentApplication
      }
    }
  }
}