summaryrefslogtreecommitdiff
path: root/src/library/scala/Array.scala
blob: d89e9d291d9dc3c21b53ab61528c77f3ae64dbff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2002-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

package scala

import scala.collection.generic._
import scala.collection.{ mutable, immutable }
import mutable.{ ArrayBuilder, ArraySeq }
import scala.compat.Platform.arraycopy
import scala.reflect.ClassTag
import scala.runtime.ScalaRunTime.{ array_apply, array_update }

/** Contains a fallback builder for arrays when the element type
 *  does not have a class tag. In that case a generic array is built.
 */
class FallbackArrayBuilding {

  /** A builder factory that generates a generic array.
   *  Called instead of `Array.newBuilder` if the element type of an array
   *  does not have a class tag. Note that fallbackBuilder factory
   *  needs an implicit parameter (otherwise it would not be dominated in
   *  implicit search by `Array.canBuildFrom`). We make sure that
   *  implicit search is always successful.
   */
  implicit def fallbackCanBuildFrom[T](implicit m: DummyImplicit): CanBuildFrom[Array[_], T, ArraySeq[T]] =
    new CanBuildFrom[Array[_], T, ArraySeq[T]] {
      def apply(from: Array[_]) = ArraySeq.newBuilder[T]
      def apply() = ArraySeq.newBuilder[T]
    }
}

/** Utility methods for operating on arrays.
 *  For example:
 *  {{{
 *  val a = Array(1, 2)
 *  val b = Array.ofDim[Int](2)
 *  val c = Array.concat(a, b)
 *  }}}
 *  where the array objects `a`, `b` and `c` have respectively the values
 *  `Array(1, 2)`, `Array(0, 0)` and `Array(1, 2, 0, 0)`.
 *
 *  @author Martin Odersky
 *  @version 1.0
 */
object Array extends FallbackArrayBuilding {
  val emptyBooleanArray = new Array[Boolean](0)
  val emptyByteArray    = new Array[Byte](0)
  val emptyCharArray    = new Array[Char](0)
  val emptyDoubleArray  = new Array[Double](0)
  val emptyFloatArray   = new Array[Float](0)
  val emptyIntArray     = new Array[Int](0)
  val emptyLongArray    = new Array[Long](0)
  val emptyShortArray   = new Array[Short](0)
  val emptyObjectArray  = new Array[Object](0)

  implicit def canBuildFrom[T](implicit t: ClassTag[T]): CanBuildFrom[Array[_], T, Array[T]] =
    new CanBuildFrom[Array[_], T, Array[T]] {
      def apply(from: Array[_]) = ArrayBuilder.make[T]()(t)
      def apply() = ArrayBuilder.make[T]()(t)
    }

  /**
   * Returns a new [[scala.collection.mutable.ArrayBuilder]].
   */
  def newBuilder[T](implicit t: ClassTag[T]): ArrayBuilder[T] = ArrayBuilder.make[T]()(t)

  private def slowcopy(src : AnyRef,
                       srcPos : Int,
                       dest : AnyRef,
                       destPos : Int,
                       length : Int) {
    var i = srcPos
    var j = destPos
    val srcUntil = srcPos + length
    while (i < srcUntil) {
      array_update(dest, j, array_apply(src, i))
      i += 1
      j += 1
    }
  }

  /** Copy one array to another.
   *  Equivalent to Java's
   *    `System.arraycopy(src, srcPos, dest, destPos, length)`,
   *  except that this also works for polymorphic and boxed arrays.
   *
   *  Note that the passed-in `dest` array will be modified by this call.
   *
   *  @param src the source array.
   *  @param srcPos  starting position in the source array.
   *  @param dest destination array.
   *  @param destPos starting position in the destination array.
   *  @param length the number of array elements to be copied.
   *
   *  @see `java.lang.System#arraycopy`
   */
  def copy(src: AnyRef, srcPos: Int, dest: AnyRef, destPos: Int, length: Int) {
    val srcClass = src.getClass
    if (srcClass.isArray && dest.getClass.isAssignableFrom(srcClass))
      arraycopy(src, srcPos, dest, destPos, length)
    else
      slowcopy(src, srcPos, dest, destPos, length)
  }

  /** Returns an array of length 0 */
  def empty[T: ClassTag]: Array[T] = new Array[T](0)

  /** Creates an array with given elements.
   *
   *  @param xs the elements to put in the array
   *  @return an array containing all elements from xs.
   */
  // Subject to a compiler optimization in Cleanup.
  // Array(e0, ..., en) is translated to { val a = new Array(3); a(i) = ei; a }
  def apply[T: ClassTag](xs: T*): Array[T] = {
    val array = new Array[T](xs.length)
    var i = 0
    for (x <- xs.iterator) { array(i) = x; i += 1 }
    array
  }

  /** Creates an array of `Boolean` objects */
  // Subject to a compiler optimization in Cleanup, see above.
  def apply(x: Boolean, xs: Boolean*): Array[Boolean] = {
    val array = new Array[Boolean](xs.length + 1)
    array(0) = x
    var i = 1
    for (x <- xs.iterator) { array(i) = x; i += 1 }
    array
  }

  /** Creates an array of `Byte` objects */
  // Subject to a compiler optimization in Cleanup, see above.
  def apply(x: Byte, xs: Byte*): Array[Byte] = {
    val array = new Array[Byte](xs.length + 1)
    array(0) = x
    var i = 1
    for (x <- xs.iterator) { array(i) = x; i += 1 }
    array
  }

  /** Creates an array of `Short` objects */
  // Subject to a compiler optimization in Cleanup, see above.
  def apply(x: Short, xs: Short*): Array[Short] = {
    val array = new Array[Short](xs.length + 1)
    array(0) = x
    var i = 1
    for (x <- xs.iterator) { array(i) = x; i += 1 }
    array
  }

  /** Creates an array of `Char` objects */
  // Subject to a compiler optimization in Cleanup, see above.
  def apply(x: Char, xs: Char*): Array[Char] = {
    val array = new Array[Char](xs.length + 1)
    array(0) = x
    var i = 1
    for (x <- xs.iterator) { array(i) = x; i += 1 }
    array
  }

  /** Creates an array of `Int` objects */
  // Subject to a compiler optimization in Cleanup, see above.
  def apply(x: Int, xs: Int*): Array[Int] = {
    val array = new Array[Int](xs.length + 1)
    array(0) = x
    var i = 1
    for (x <- xs.iterator) { array(i) = x; i += 1 }
    array
  }

  /** Creates an array of `Long` objects */
  // Subject to a compiler optimization in Cleanup, see above.
  def apply(x: Long, xs: Long*): Array[Long] = {
    val array = new Array[Long](xs.length + 1)
    array(0) = x
    var i = 1
    for (x <- xs.iterator) { array(i) = x; i += 1 }
    array
  }

  /** Creates an array of `Float` objects */
  // Subject to a compiler optimization in Cleanup, see above.
  def apply(x: Float, xs: Float*): Array[Float] = {
    val array = new Array[Float](xs.length + 1)
    array(0) = x
    var i = 1
    for (x <- xs.iterator) { array(i) = x; i += 1 }
    array
  }

  /** Creates an array of `Double` objects */
  // Subject to a compiler optimization in Cleanup, see above.
  def apply(x: Double, xs: Double*): Array[Double] = {
    val array = new Array[Double](xs.length + 1)
    array(0) = x
    var i = 1
    for (x <- xs.iterator) { array(i) = x; i += 1 }
    array
  }

  /** Creates an array of `Unit` objects */
  def apply(x: Unit, xs: Unit*): Array[Unit] = {
    val array = new Array[Unit](xs.length + 1)
    array(0) = x
    var i = 1
    for (x <- xs.iterator) { array(i) = x; i += 1 }
    array
  }

  /** Creates array with given dimensions */
  def ofDim[T: ClassTag](n1: Int): Array[T] =
    new Array[T](n1)
  /** Creates a 2-dimensional array */
  def ofDim[T: ClassTag](n1: Int, n2: Int): Array[Array[T]] = {
    val arr: Array[Array[T]] = (new Array[Array[T]](n1): Array[Array[T]])
    for (i <- 0 until n1) arr(i) = new Array[T](n2)
    arr
    // tabulate(n1)(_ => ofDim[T](n2))
  }
  /** Creates a 3-dimensional array */
  def ofDim[T: ClassTag](n1: Int, n2: Int, n3: Int): Array[Array[Array[T]]] =
    tabulate(n1)(_ => ofDim[T](n2, n3))
  /** Creates a 4-dimensional array */
  def ofDim[T: ClassTag](n1: Int, n2: Int, n3: Int, n4: Int): Array[Array[Array[Array[T]]]] =
    tabulate(n1)(_ => ofDim[T](n2, n3, n4))
  /** Creates a 5-dimensional array */
  def ofDim[T: ClassTag](n1: Int, n2: Int, n3: Int, n4: Int, n5: Int): Array[Array[Array[Array[Array[T]]]]] =
    tabulate(n1)(_ => ofDim[T](n2, n3, n4, n5))

  /** Concatenates all arrays into a single array.
   *
   *  @param xss the given arrays
   *  @return   the array created from concatenating `xss`
   */
  def concat[T: ClassTag](xss: Array[T]*): Array[T] = {
    val b = newBuilder[T]
    b.sizeHint(xss.map(_.length).sum)
    for (xs <- xss) b ++= xs
    b.result()
  }

  /** Returns an array that contains the results of some element computation a number
   *  of times.
   *
   *  Note that this means that `elem` is computed a total of n times:
   *  {{{
   * scala> Array.fill(3){ math.random }
   * res3: Array[Double] = Array(0.365461167592537, 1.550395944913685E-4, 0.7907242137333306)
   *  }}}
   *
   *  @param   n  the number of elements desired
   *  @param   elem the element computation
   *  @return an Array of size n, where each element contains the result of computing
   *  `elem`.
   */
  def fill[T: ClassTag](n: Int)(elem: => T): Array[T] = {
    val b = newBuilder[T]
    b.sizeHint(n)
    var i = 0
    while (i < n) {
      b += elem
      i += 1
    }
    b.result()
  }

  /** Returns a two-dimensional array that contains the results of some element
   *  computation a number of times.
   *
   *  @param   n1  the number of elements in the 1st dimension
   *  @param   n2  the number of elements in the 2nd dimension
   *  @param   elem the element computation
   */
  def fill[T: ClassTag](n1: Int, n2: Int)(elem: => T): Array[Array[T]] =
    tabulate(n1)(_ => fill(n2)(elem))

  /** Returns a three-dimensional array that contains the results of some element
   *  computation a number of times.
   *
   *  @param   n1  the number of elements in the 1st dimension
   *  @param   n2  the number of elements in the 2nd dimension
   *  @param   n3  the number of elements in the 3nd dimension
   *  @param   elem the element computation
   */
  def fill[T: ClassTag](n1: Int, n2: Int, n3: Int)(elem: => T): Array[Array[Array[T]]] =
    tabulate(n1)(_ => fill(n2, n3)(elem))

  /** Returns a four-dimensional array that contains the results of some element
   *  computation a number of times.
   *
   *  @param   n1  the number of elements in the 1st dimension
   *  @param   n2  the number of elements in the 2nd dimension
   *  @param   n3  the number of elements in the 3nd dimension
   *  @param   n4  the number of elements in the 4th dimension
   *  @param   elem the element computation
   */
  def fill[T: ClassTag](n1: Int, n2: Int, n3: Int, n4: Int)(elem: => T): Array[Array[Array[Array[T]]]] =
    tabulate(n1)(_ => fill(n2, n3, n4)(elem))

  /** Returns a five-dimensional array that contains the results of some element
   *  computation a number of times.
   *
   *  @param   n1  the number of elements in the 1st dimension
   *  @param   n2  the number of elements in the 2nd dimension
   *  @param   n3  the number of elements in the 3nd dimension
   *  @param   n4  the number of elements in the 4th dimension
   *  @param   n5  the number of elements in the 5th dimension
   *  @param   elem the element computation
   */
  def fill[T: ClassTag](n1: Int, n2: Int, n3: Int, n4: Int, n5: Int)(elem: => T): Array[Array[Array[Array[Array[T]]]]] =
    tabulate(n1)(_ => fill(n2, n3, n4, n5)(elem))

  /** Returns an array containing values of a given function over a range of integer
   *  values starting from 0.
   *
   *  @param  n   The number of elements in the array
   *  @param  f   The function computing element values
   *  @return A traversable consisting of elements `f(0),f(1), ..., f(n - 1)`
   */
  def tabulate[T: ClassTag](n: Int)(f: Int => T): Array[T] = {
    val b = newBuilder[T]
    b.sizeHint(n)
    var i = 0
    while (i < n) {
      b += f(i)
      i += 1
    }
    b.result()
  }

  /** Returns a two-dimensional array containing values of a given function
   *  over ranges of integer values starting from `0`.
   *
   *  @param   n1  the number of elements in the 1st dimension
   *  @param   n2  the number of elements in the 2nd dimension
   *  @param   f   The function computing element values
   */
  def tabulate[T: ClassTag](n1: Int, n2: Int)(f: (Int, Int) => T): Array[Array[T]] =
    tabulate(n1)(i1 => tabulate(n2)(f(i1, _)))

  /** Returns a three-dimensional array containing values of a given function
   *  over ranges of integer values starting from `0`.
   *
   *  @param   n1  the number of elements in the 1st dimension
   *  @param   n2  the number of elements in the 2nd dimension
   *  @param   n3  the number of elements in the 3rd dimension
   *  @param   f   The function computing element values
   */
  def tabulate[T: ClassTag](n1: Int, n2: Int, n3: Int)(f: (Int, Int, Int) => T): Array[Array[Array[T]]] =
    tabulate(n1)(i1 => tabulate(n2, n3)(f(i1, _, _)))

  /** Returns a four-dimensional array containing values of a given function
   *  over ranges of integer values starting from `0`.
   *
   *  @param   n1  the number of elements in the 1st dimension
   *  @param   n2  the number of elements in the 2nd dimension
   *  @param   n3  the number of elements in the 3rd dimension
   *  @param   n4  the number of elements in the 4th dimension
   *  @param   f   The function computing element values
   */
  def tabulate[T: ClassTag](n1: Int, n2: Int, n3: Int, n4: Int)(f: (Int, Int, Int, Int) => T): Array[Array[Array[Array[T]]]] =
    tabulate(n1)(i1 => tabulate(n2, n3, n4)(f(i1, _, _, _)))

  /** Returns a five-dimensional array containing values of a given function
   *  over ranges of integer values starting from `0`.
   *
   *  @param   n1  the number of elements in the 1st dimension
   *  @param   n2  the number of elements in the 2nd dimension
   *  @param   n3  the number of elements in the 3rd dimension
   *  @param   n4  the number of elements in the 4th dimension
   *  @param   n5  the number of elements in the 5th dimension
   *  @param   f   The function computing element values
   */
  def tabulate[T: ClassTag](n1: Int, n2: Int, n3: Int, n4: Int, n5: Int)(f: (Int, Int, Int, Int, Int) => T): Array[Array[Array[Array[Array[T]]]]] =
    tabulate(n1)(i1 => tabulate(n2, n3, n4, n5)(f(i1, _, _, _, _)))

  /** Returns an array containing a sequence of increasing integers in a range.
   *
   *  @param start  the start value of the array
   *  @param end    the end value of the array, exclusive (in other words, this is the first value '''not''' returned)
   *  @return  the array with values in range `start, start + 1, ..., end - 1`
   *  up to, but excluding, `end`.
   */
  def range(start: Int, end: Int): Array[Int] = range(start, end, 1)

  /** Returns an array containing equally spaced values in some integer interval.
   *
   *  @param start the start value of the array
   *  @param end   the end value of the array, exclusive (in other words, this is the first value '''not''' returned)
   *  @param step  the increment value of the array (may not be zero)
   *  @return      the array with values in `start, start + step, ...` up to, but excluding `end`
   */
  def range(start: Int, end: Int, step: Int): Array[Int] = {
    if (step == 0) throw new IllegalArgumentException("zero step")
    val b = newBuilder[Int]
    b.sizeHint(immutable.Range.count(start, end, step, isInclusive = false))

    var i = start
    while (if (step < 0) end < i else i < end) {
      b += i
      i += step
    }
    b.result()
  }

  /** Returns an array containing repeated applications of a function to a start value.
   *
   *  @param start the start value of the array
   *  @param len   the number of elements returned by the array
   *  @param f     the function that is repeatedly applied
   *  @return      the array returning `len` values in the sequence `start, f(start), f(f(start)), ...`
   */
  def iterate[T: ClassTag](start: T, len: Int)(f: T => T): Array[T] = {
    val b = newBuilder[T]

    if (len > 0) {
      b.sizeHint(len)
      var acc = start
      var i = 1
      b += acc

      while (i < len) {
        acc = f(acc)
        i += 1
        b += acc
      }
    }
    b.result()
  }

  /** Called in a pattern match like `{ case Array(x,y,z) => println('3 elements')}`.
   *
   *  @param x the selector value
   *  @return  sequence wrapped in a [[scala.Some]], if `x` is a Seq, otherwise `None`
   */
  def unapplySeq[T](x: Array[T]): Option[IndexedSeq[T]] =
    if (x == null) None else Some(x.toIndexedSeq)
    // !!! the null check should to be necessary, but without it 2241 fails. Seems to be a bug
    // in pattern matcher.  @PP: I noted in #4364 I think the behavior is correct.
}

/** Arrays are mutable, indexed collections of values. `Array[T]` is Scala's representation
 *  for Java's `T[]`.
 *
 *  {{{
 *  val numbers = Array(1, 2, 3, 4)
 *  val first = numbers(0) // read the first element
 *  numbers(3) = 100 // replace the 4th array element with 100
 *  val biggerNumbers = numbers.map(_ * 2) // multiply all numbers by two
 *  }}}
 *
 *  Arrays make use of two common pieces of Scala syntactic sugar, shown on lines 2 and 3 of the above
 *  example code.
 *  Line 2 is translated into a call to `apply(Int)`, while line 3 is translated into a call to
 *  `update(Int, T)`.
 *
 *  Two implicit conversions exist in [[scala.Predef]] that are frequently applied to arrays: a conversion
 *  to [[scala.collection.mutable.ArrayOps]] (shown on line 4 of the example above) and a conversion
 *  to [[scala.collection.mutable.WrappedArray]] (a subtype of [[scala.collection.Seq]]).
 *  Both types make available many of the standard operations found in the Scala collections API.
 *  The conversion to `ArrayOps` is temporary, as all operations defined on `ArrayOps` return an `Array`,
 *  while the conversion to `WrappedArray` is permanent as all operations return a `WrappedArray`.
 *
 *  The conversion to `ArrayOps` takes priority over the conversion to `WrappedArray`. For instance,
 *  consider the following code:
 *
 *  {{{
 *  val arr = Array(1, 2, 3)
 *  val arrReversed = arr.reverse
 *  val seqReversed : Seq[Int] = arr.reverse
 *  }}}
 *
 *  Value `arrReversed` will be of type `Array[Int]`, with an implicit conversion to `ArrayOps` occurring
 *  to perform the `reverse` operation. The value of `seqReversed`, on the other hand, will be computed
 *  by converting to `WrappedArray` first and invoking the variant of `reverse` that returns another
 *  `WrappedArray`.
 *
 *  @author Martin Odersky
 *  @version 1.0
 *  @see [[http://www.scala-lang.org/files/archive/spec/2.11/ Scala Language Specification]], for in-depth information on the transformations the Scala compiler makes on Arrays (Sections 6.6 and 6.15 respectively.)
 *  @see [[http://docs.scala-lang.org/sips/completed/scala-2-8-arrays.html "Scala 2.8 Arrays"]] the Scala Improvement Document detailing arrays since Scala 2.8.
 *  @see [[http://docs.scala-lang.org/overviews/collections/arrays.html "The Scala 2.8 Collections' API"]] section on `Array` by Martin Odersky for more information.
 *  @define coll array
 *  @define Coll `Array`
 *  @define orderDependent
 *  @define orderDependentFold
 *  @define mayNotTerminateInf
 *  @define willNotTerminateInf
 *  @define collectExample
 *  @define undefinedorder
 *  @define thatinfo the class of the returned collection. In the standard library configuration,
 *    `That` is either `Array[B]` if an ClassTag is available for B or `ArraySeq[B]` otherwise.
 *  @define zipthatinfo $thatinfo
 *  @define bfinfo an implicit value of class `CanBuildFrom` which determines the result class `That` from the current
 *    representation type `Repr` and the new element type `B`.
 */
final class Array[T](_length: Int) extends java.io.Serializable with java.lang.Cloneable {

  /** The length of the array */
  def length: Int = throw new Error()

  /** The element at given index.
   *
   *  Indices start at `0`; `xs.apply(0)` is the first element of array `xs`.
   *  Note the indexing syntax `xs(i)` is a shorthand for `xs.apply(i)`.
   *
   *  @param    i   the index
   *  @return       the element at the given index
   *  @throws       ArrayIndexOutOfBoundsException if `i < 0` or `length <= i`
   */
  def apply(i: Int): T = throw new Error()

  /** Update the element at given index.
   *
   *  Indices start at `0`; `xs.update(i, x)` replaces the i^th^ element in the array.
   *  Note the syntax `xs(i) = x` is a shorthand for `xs.update(i, x)`.
   *
   *  @param    i   the index
   *  @param    x   the value to be written at index `i`
   *  @throws       ArrayIndexOutOfBoundsException if `i < 0` or `length <= i`
   */
  def update(i: Int, x: T) { throw new Error() }

  /** Clone the Array.
   *
   *  @return A clone of the Array.
   */
  override def clone(): Array[T] = throw new Error()
}