summaryrefslogtreecommitdiff
path: root/src/library/scala/collection/Iterator.scala
blob: 03b9fbff26e61c1b1c3520dfe7e75c9a4585a3da (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

package scala
package collection

import mutable.ArrayBuffer
import scala.annotation.{tailrec, migration}
import immutable.Stream
import scala.collection.generic.CanBuildFrom
import scala.annotation.unchecked.{ uncheckedVariance => uV }

/** The `Iterator` object provides various functions for creating specialized iterators.
 *
 *  @author  Martin Odersky
 *  @author  Matthias Zenger
 *  @version 2.8
 *  @since   2.8
 */
object Iterator {

  /** With the advent of `TraversableOnce` and `Iterator`, it can be useful to have a builder which
   *  operates on `Iterator`s so they can be treated uniformly along with the collections.
   *  See `scala.util.Random.shuffle` for an example.
   */
  implicit def IteratorCanBuildFrom[A] = new TraversableOnce.BufferedCanBuildFrom[A, Iterator] {
    def bufferToColl[B](coll: ArrayBuffer[B]) = coll.iterator
    def traversableToColl[B](t: GenTraversable[B]) = t.toIterator
  }

  /** The iterator which produces no values. */
  val empty: Iterator[Nothing] = new AbstractIterator[Nothing] {
    def hasNext: Boolean = false
    def next(): Nothing = throw new NoSuchElementException("next on empty iterator")
  }

  /** Creates an iterator which produces a single element.
   *  '''Note:''' Equivalent, but more efficient than Iterator(elem)
   *
   *  @param elem the element
   *  @return An iterator which produces `elem` on the first call to `next`,
   *          and which has no further elements.
   */
  def single[A](elem: A): Iterator[A] = new AbstractIterator[A] {
    private var hasnext = true
    def hasNext: Boolean = hasnext
    def next(): A =
      if (hasnext) { hasnext = false; elem }
      else empty.next()
  }

  /** Creates an iterator with given elements.
   *
   *  @param elems  The elements returned one-by-one from the iterator
   *  @return An iterator which produces the given elements on the
   *          first calls to `next`, and which has no further elements.
   */
  def apply[A](elems: A*): Iterator[A] = elems.iterator

  /** Creates iterator that produces the results of some element computation a number of times.
   *
   *  @param   len  the number of elements returned by the iterator.
   *  @param   elem the element computation
   *  @return  An iterator that produces the results of `n` evaluations of `elem`.
   */
  def fill[A](len: Int)(elem: => A): Iterator[A] = new AbstractIterator[A] {
    private var i = 0
    def hasNext: Boolean = i < len
    def next(): A =
      if (hasNext) { i += 1; elem }
      else empty.next()
  }

  /** Creates an iterator producing the values of a given function over a range of integer values starting from 0.
   *
   *  @param  end The number of elements returned by the iterator
   *  @param  f   The function computing element values
   *  @return An iterator that produces the values `f(0), ..., f(n -1)`.
   */
  def tabulate[A](end: Int)(f: Int => A): Iterator[A] = new AbstractIterator[A] {
    private var i = 0
    def hasNext: Boolean = i < end
    def next(): A =
      if (hasNext) { val result = f(i); i += 1; result }
      else empty.next()
  }

  /** Creates nn iterator returning successive values in some integer interval.
   *
   *  @param start the start value of the iterator
   *  @param end   the end value of the iterator (the first value NOT returned)
   *  @return      the iterator producing values `start, start + 1, ..., end - 1`
   */
  def range(start: Int, end: Int): Iterator[Int] = range(start, end, 1)

  /** An iterator producing equally spaced values in some integer interval.
   *
   *  @param start the start value of the iterator
   *  @param end   the end value of the iterator (the first value NOT returned)
   *  @param step  the increment value of the iterator (must be positive or negative)
   *  @return      the iterator producing values `start, start + step, ...` up to, but excluding `end`
   */
  def range(start: Int, end: Int, step: Int): Iterator[Int] = new AbstractIterator[Int] {
    if (step == 0) throw new IllegalArgumentException("zero step")
    private var i = start
    def hasNext: Boolean = (step <= 0 || i < end) && (step >= 0 || i > end)
    def next(): Int =
      if (hasNext) { val result = i; i += step; result }
      else empty.next()
  }

  /** Creates an infinite iterator that repeatedly applies a given function to the previous result.
   *
   *  @param start the start value of the iterator
   *  @param f     the function that's repeatedly applied
   *  @return      the iterator producing the infinite sequence of values `start, f(start), f(f(start)), ...`
   */
  def iterate[T](start: T)(f: T => T): Iterator[T] = new AbstractIterator[T] {
    private[this] var first = true
    private[this] var acc = start
    def hasNext: Boolean = true
    def next(): T = {
      if (first) first = false
      else acc = f(acc)

      acc
    }
  }

  /** Creates an infinite-length iterator which returns successive values from some start value.

   *  @param start the start value of the iterator
   *  @return      the iterator producing the infinite sequence of values `start, start + 1, start + 2, ...`
   */
  def from(start: Int): Iterator[Int] = from(start, 1)

  /** Creates an infinite-length iterator returning values equally spaced apart.
   *
   *  @param start the start value of the iterator
   *  @param step  the increment between successive values
   *  @return      the iterator producing the infinite sequence of values `start, start + 1 * step, start + 2 * step, ...`
   */
  def from(start: Int, step: Int): Iterator[Int] = new AbstractIterator[Int] {
    private var i = start
    def hasNext: Boolean = true
    def next(): Int = { val result = i; i += step; result }
  }

  /** Creates an infinite-length iterator returning the results of evaluating an expression.
   *  The expression is recomputed for every element.
   *
   *  @param elem the element computation.
   *  @return the iterator containing an infinite number of results of evaluating `elem`.
   */
  def continually[A](elem: => A): Iterator[A] = new AbstractIterator[A] {
    def hasNext = true
    def next = elem
  }

  /** Avoid stack overflows when applying ++ to lots of iterators by
   *  flattening the unevaluated iterators out into a vector of closures.
   */
  private[scala] final class ConcatIterator[+A](private[this] var current: Iterator[A], initial: Vector[() => Iterator[A]]) extends Iterator[A] {
    @deprecated def this(initial: Vector[() => Iterator[A]]) = this(Iterator.empty, initial) // for binary compatibility
    private[this] var queue: Vector[() => Iterator[A]] = initial
    private[this] var currentHasNextChecked = false
    // Advance current to the next non-empty iterator
    // current is set to null when all iterators are exhausted
    @tailrec
    private[this] def advance(): Boolean = {
      if (queue.isEmpty) {
        current = null
        false
      }
      else {
        current = queue.head()
        queue = queue.tail
        if (current.hasNext) {
          currentHasNextChecked = true
          true
        } else advance()
      }
    }
    def hasNext =
      if (currentHasNextChecked) true
      else if (current eq null) false
      else if (current.hasNext) {
        currentHasNextChecked = true
        true
      } else advance()
    def next()  =
      if (hasNext) {
        currentHasNextChecked = false
        current.next()
      } else Iterator.empty.next()

    override def ++[B >: A](that: => GenTraversableOnce[B]): Iterator[B] =
      if(current eq null) new JoinIterator(Iterator.empty, that)
      else new ConcatIterator(current, queue :+ (() => that.toIterator))
  }

  private[scala] final class JoinIterator[+A](lhs: Iterator[A], that: => GenTraversableOnce[A]) extends Iterator[A] {
    private[this] var state = 0 // 0: lhs not checked, 1: lhs has next, 2: switched to rhs
    private[this] lazy val rhs: Iterator[A] = that.toIterator
    def hasNext = state match {
      case 0 =>
        if (lhs.hasNext) {
          state = 1
          true
        } else {
          state = 2
          rhs.hasNext
        }
      case 1 => true
      case _ => rhs.hasNext
    }
    def next() = state match {
      case 0 =>
        if (lhs.hasNext) lhs.next()
        else {
          state = 2
          rhs.next()
        }
      case 1 =>
        state = 0
        lhs.next()
      case _ =>
        rhs.next()
    }

    override def ++[B >: A](that: => GenTraversableOnce[B]) =
      new ConcatIterator(this, Vector(() => that.toIterator))
  }
}

import Iterator.empty

/** Iterators are data structures that allow to iterate over a sequence
 *  of elements. They have a `hasNext` method for checking
 *  if there is a next element available, and a `next` method
 *  which returns the next element and discards it from the iterator.
 *
 *  An iterator is mutable: most operations on it change its state. While it is often used
 *  to iterate through the elements of a collection, it can also be used without
 *  being backed by any collection (see constructors on the companion object).
 *
 *  It is of particular importance to note that, unless stated otherwise, ''one should never
 *  use an iterator after calling a method on it''. The two most important exceptions
 *  are also the sole abstract methods: `next` and `hasNext`.
 *
 *  Both these methods can be called any number of times without having to discard the
 *  iterator. Note that even `hasNext` may cause mutation -- such as when iterating
 *  from an input stream, where it will block until the stream is closed or some
 *  input becomes available.
 *
 *  Consider this example for safe and unsafe use:
 *
 *  {{{
 *  def f[A](it: Iterator[A]) = {
 *    if (it.hasNext) {            // Safe to reuse "it" after "hasNext"
 *      it.next                    // Safe to reuse "it" after "next"
 *      val remainder = it.drop(2) // it is *not* safe to use "it" again after this line!
 *      remainder.take(2)          // it is *not* safe to use "remainder" after this line!
 *    } else it
 *  }
 *  }}}
 *
 *  @author  Martin Odersky, Matthias Zenger
 *  @version 2.8
 *  @since   1
 *  @define willNotTerminateInf
 *  Note: will not terminate for infinite iterators.
 *  @define mayNotTerminateInf
 *  Note: may not terminate for infinite iterators.
 *  @define preservesIterator
 *  The iterator remains valid for further use whatever result is returned.
 *  @define consumesIterator
 *  After calling this method, one should discard the iterator it was called
 *  on. Using it is undefined and subject to change.
 *  @define consumesAndProducesIterator
 *  After calling this method, one should discard the iterator it was called
 *  on, and use only the iterator that was returned. Using the old iterator
 *  is undefined, subject to change, and may result in changes to the new
 *  iterator as well.
 *  @define consumesTwoAndProducesOneIterator
 *  After calling this method, one should discard the iterator it was called
 *  on, as well as the one passed as a parameter, and use only the iterator
 *  that was returned. Using the old iterators is undefined, subject to change,
 *  and may result in changes to the new iterator as well.
 *  @define consumesOneAndProducesTwoIterators
 *  After calling this method, one should discard the iterator it was called
 *  on, and use only the iterators that were returned. Using the old iterator
 *  is undefined, subject to change, and may result in changes to the new
 *  iterators as well.
 *  @define consumesTwoIterators
 *  After calling this method, one should discard the iterator it was called
 *  on, as well as the one passed as parameter. Using the old iterators is
 *  undefined and subject to change.
 */
trait Iterator[+A] extends TraversableOnce[A] {
  self =>

  def seq: Iterator[A] = this

  /** Tests whether this iterator can provide another element.
   *
   *  @return  `true` if a subsequent call to `next` will yield an element,
   *           `false` otherwise.
   *  @note    Reuse: $preservesIterator
   */
  def hasNext: Boolean

  /** Produces the next element of this iterator.
   *
   *  @return  the next element of this iterator, if `hasNext` is `true`,
   *           undefined behavior otherwise.
   *  @note    Reuse: $preservesIterator
   */
  def next(): A

  /** Tests whether this iterator is empty.
   *
   *  @return   `true` if hasNext is false, `false` otherwise.
   *  @note     Reuse: $preservesIterator
   */
  def isEmpty: Boolean = !hasNext

  /** Tests whether this Iterator can be repeatedly traversed.
   *
   *  @return   `false`
   *  @note     Reuse: $preservesIterator
   */
  def isTraversableAgain = false

  /** Tests whether this Iterator has a known size.
   *
   *  @return   `true` for empty Iterators, `false` otherwise.
   *  @note     Reuse: $preservesIterator
   */
  def hasDefiniteSize = isEmpty

  /** Selects first ''n'' values of this iterator.
   *
   *  @param  n    the number of values to take
   *  @return an iterator producing only of the first `n` values of this iterator, or else the
   *          whole iterator, if it produces fewer than `n` values.
   *  @note   Reuse: $consumesAndProducesIterator
   */
  def take(n: Int): Iterator[A] = slice(0, n)

  /** Advances this iterator past the first ''n'' elements, or the length of the iterator, whichever is smaller.
   *
   *  @param n the number of elements to drop
   *  @return  an iterator which produces all values of the current iterator, except
   *           it omits the first `n` values.
   *  @note    Reuse: $consumesAndProducesIterator
   */
  def drop(n: Int): Iterator[A] = {
    var j = 0
    while (j < n && hasNext) {
      next()
      j += 1
    }
    this
  }

  /** Creates an iterator returning an interval of the values produced by this iterator.
   *
   *  @param from   the index of the first element in this iterator which forms part of the slice.
   *  @param until  the index of the first element following the slice.
   *  @return an iterator which advances this iterator past the first `from` elements using `drop`,
   *  and then takes `until - from` elements, using `take`.
   *  @note         Reuse: $consumesAndProducesIterator
   */
  def slice(from: Int, until: Int): Iterator[A] = {
    val lo = from max 0
    var toDrop = lo
    while (toDrop > 0 && self.hasNext) {
      self.next()
      toDrop -= 1
    }

    new AbstractIterator[A] {
      private var remaining = until - lo
      def hasNext = remaining > 0 && self.hasNext
      def next(): A =
        if (remaining > 0) {
          remaining -= 1
          self.next()
        }
        else empty.next()
    }
  }

  /** Creates a new iterator that maps all produced values of this iterator
   *  to new values using a transformation function.
   *
   *  @param f  the transformation function
   *  @return a new iterator which transforms every value produced by this
   *          iterator by applying the function `f` to it.
   *  @note   Reuse: $consumesAndProducesIterator
   */
  def map[B](f: A => B): Iterator[B] = new AbstractIterator[B] {
    def hasNext = self.hasNext
    def next() = f(self.next())
  }

  /** Concatenates this iterator with another.
   *
   *  @param   that   the other iterator
   *  @return  a new iterator that first yields the values produced by this
   *  iterator followed by the values produced by iterator `that`.
   *  @note    Reuse: $consumesTwoAndProducesOneIterator
   *
   *  @usecase def ++(that: => Iterator[A]): Iterator[A]
   *    @inheritdoc
   */
  def ++[B >: A](that: => GenTraversableOnce[B]): Iterator[B] = new Iterator.JoinIterator(self, that)

  /** Creates a new iterator by applying a function to all values produced by this iterator
   *  and concatenating the results.
   *
   *  @param f the function to apply on each element.
   *  @return  the iterator resulting from applying the given iterator-valued function
   *           `f` to each value produced by this iterator and concatenating the results.
   *  @note    Reuse: $consumesAndProducesIterator
   */
  def flatMap[B](f: A => GenTraversableOnce[B]): Iterator[B] = new AbstractIterator[B] {
    private var cur: Iterator[B] = empty
    private def nextCur() { cur = f(self.next()).toIterator }
    def hasNext: Boolean = {
      // Equivalent to cur.hasNext || self.hasNext && { nextCur(); hasNext }
      // but slightly shorter bytecode (better JVM inlining!)
      while (!cur.hasNext) {
        if (!self.hasNext) return false
        nextCur()
      }
      true
    }
    def next(): B = (if (hasNext) cur else empty).next()
  }

  /** Returns an iterator over all the elements of this iterator that satisfy the predicate `p`.
   *  The order of the elements is preserved.
   *
   *  @param p the predicate used to test values.
   *  @return  an iterator which produces those values of this iterator which satisfy the predicate `p`.
   *  @note    Reuse: $consumesAndProducesIterator
   */
  def filter(p: A => Boolean): Iterator[A] = new AbstractIterator[A] {
    // TODO 2.12 - Make a full-fledged FilterImpl that will reverse sense of p
    private var hd: A = _
    private var hdDefined: Boolean = false

    def hasNext: Boolean = hdDefined || {
      do {
        if (!self.hasNext) return false
        hd = self.next()
      } while (!p(hd))
      hdDefined = true
      true
    }

    def next() = if (hasNext) { hdDefined = false; hd } else empty.next()
  }

  /** Tests whether every element of this iterator relates to the
   *  corresponding element of another collection by satisfying a test predicate.
   *
   *  @param   that    the other collection
   *  @param   p       the test predicate, which relates elements from both collections
   *  @tparam  B       the type of the elements of `that`
   *  @return          `true` if both collections have the same length and
   *                   `p(x, y)` is `true` for all corresponding elements `x` of this iterator
   *                   and `y` of `that`, otherwise `false`
   */
  def corresponds[B](that: GenTraversableOnce[B])(p: (A, B) => Boolean): Boolean = {
    val that0 = that.toIterator
    while (hasNext && that0.hasNext)
      if (!p(next(), that0.next())) return false

    hasNext == that0.hasNext
  }

  /** Creates an iterator over all the elements of this iterator that
   *  satisfy the predicate `p`. The order of the elements
   *  is preserved.
   *
   *  '''Note:''' `withFilter` is the same as `filter` on iterators. It exists so that
   *  for-expressions with filters work over iterators.
   *
   *  @param p the predicate used to test values.
   *  @return  an iterator which produces those values of this iterator which satisfy the predicate `p`.
   *  @note    Reuse: $consumesAndProducesIterator
   */
  def withFilter(p: A => Boolean): Iterator[A] = filter(p)

  /** Creates an iterator over all the elements of this iterator which
   *  do not satisfy a predicate p.
   *
   *  @param p the predicate used to test values.
   *  @return  an iterator which produces those values of this iterator which do not satisfy the predicate `p`.
   *  @note    Reuse: $consumesAndProducesIterator
   */
  def filterNot(p: A => Boolean): Iterator[A] = filter(!p(_))

 /** Creates an iterator by transforming values
  *  produced by this iterator with a partial function, dropping those
  *  values for which the partial function is not defined.
  *
  *  @param pf the partial function which filters and maps the iterator.
  *  @return   a new iterator which yields each value `x` produced by this iterator for
  *  which `pf` is defined the image `pf(x)`.
  *  @note     Reuse: $consumesAndProducesIterator
  */
  @migration("`collect` has changed. The previous behavior can be reproduced with `toSeq`.", "2.8.0")
  def collect[B](pf: PartialFunction[A, B]): Iterator[B] = new AbstractIterator[B] {
    // Manually buffer to avoid extra layer of wrapping with buffered
    private[this] var hd: A = _
    
    // Little state machine to keep track of where we are
    // Seek = 0; Found = 1; Empty = -1
    // Not in vals because scalac won't make them static (@inline def only works with -optimize)
    // BE REALLY CAREFUL TO KEEP COMMENTS AND NUMBERS IN SYNC!
    private[this] var status = 0/*Seek*/
    
    def hasNext = {
      while (status == 0/*Seek*/) {
        if (self.hasNext) {
          hd = self.next()
          if (pf.isDefinedAt(hd)) status = 1/*Found*/
        }
        else status = -1/*Empty*/
      }
      status == 1/*Found*/
    }
    def next() = if (hasNext) { status = 0/*Seek*/; pf(hd) } else Iterator.empty.next()
  }

  /** Produces a collection containing cumulative results of applying the
   *  operator going left to right.
   *
   *  $willNotTerminateInf
   *  $orderDependent
   *
   *  @tparam B      the type of the elements in the resulting collection
   *  @param z       the initial value
   *  @param op      the binary operator applied to the intermediate result and the element
   *  @return        iterator with intermediate results
   *  @note          Reuse: $consumesAndProducesIterator
   */
  def scanLeft[B](z: B)(op: (B, A) => B): Iterator[B] = new AbstractIterator[B] {
    var hasNext = true
    var elem = z
    def next() = if (hasNext) {
      val res = elem
      if (self.hasNext) elem = op(elem, self.next())
      else hasNext = false
      res
    } else Iterator.empty.next()
  }

  /** Produces a collection containing cumulative results of applying the operator going right to left.
   *  The head of the collection is the last cumulative result.
   *
   *  $willNotTerminateInf
   *  $orderDependent
   *
   *  @tparam B      the type of the elements in the resulting collection
   *  @param z       the initial value
   *  @param op      the binary operator applied to the intermediate result and the element
   *  @return        iterator with intermediate results
   *  @example       {{{
   *    Iterator(1, 2, 3, 4).scanRight(0)(_ + _).toList == List(10, 9, 7, 4, 0)
   *  }}}
   *  @note          Reuse: $consumesAndProducesIterator
   */
  def scanRight[B](z: B)(op: (A, B) => B): Iterator[B] = toBuffer.scanRight(z)(op).iterator

  /** Takes longest prefix of values produced by this iterator that satisfy a predicate.
   *
   *  @param   p  The predicate used to test elements.
   *  @return  An iterator returning the values produced by this iterator, until
   *           this iterator produces a value that does not satisfy
   *           the predicate `p`.
   *  @note    Reuse: $consumesAndProducesIterator
   */
  def takeWhile(p: A => Boolean): Iterator[A] = new AbstractIterator[A] {
    private var hd: A = _
    private var hdDefined: Boolean = false
    private var tail: Iterator[A] = self

    def hasNext = hdDefined || tail.hasNext && {
      hd = tail.next()
      if (p(hd)) hdDefined = true
      else tail = Iterator.empty
      hdDefined
    }
    def next() = if (hasNext) { hdDefined = false; hd } else empty.next()
  }

  /** Partitions this iterator in two iterators according to a predicate.
   *
   *  @param p the predicate on which to partition
   *  @return  a pair of iterators: the iterator that satisfies the predicate
   *           `p` and the iterator that does not.
   *           The relative order of the elements in the resulting iterators
   *           is the same as in the original iterator.
   *  @note    Reuse: $consumesOneAndProducesTwoIterators
   */
  def partition(p: A => Boolean): (Iterator[A], Iterator[A]) = {
    val self = buffered
    class PartitionIterator(p: A => Boolean) extends AbstractIterator[A] {
      var other: PartitionIterator = _
      val lookahead = new mutable.Queue[A]
      def skip() =
        while (self.hasNext && !p(self.head)) {
          other.lookahead += self.next
        }
      def hasNext = !lookahead.isEmpty || { skip(); self.hasNext }
      def next() = if (!lookahead.isEmpty) lookahead.dequeue()
                   else { skip(); self.next() }
    }
    val l = new PartitionIterator(p)
    val r = new PartitionIterator(!p(_))
    l.other = r
    r.other = l
    (l, r)
  }

  /** Splits this Iterator into a prefix/suffix pair according to a predicate.
   *
   *  @param p the test predicate
   *  @return  a pair of Iterators consisting of the longest prefix of this
   *           whose elements all satisfy `p`, and the rest of the Iterator.
   *  @note    Reuse: $consumesOneAndProducesTwoIterators
   */
  def span(p: A => Boolean): (Iterator[A], Iterator[A]) = {
    /*
     * Giving a name to following iterator (as opposed to trailing) because
     * anonymous class is represented as a structural type that trailing
     * iterator is referring (the finish() method) and thus triggering
     * handling of structural calls. It's not what's intended here.
     */
    class Leading extends AbstractIterator[A] {
      private[this] var lookahead: mutable.Queue[A] = null
      private[this] var hd: A = _
      /* Status is kept with magic numbers
       *   1 means next element is in hd and we're still reading into this iterator
       *   0 means we're still reading but haven't found a next element
       *   -1 means we are done reading into the iterator, so we must rely on lookahead
       *   -2 means we are done but have saved hd for the other iterator to use as its first element
       */
      private[this] var status = 0
      private def store(a: A) {
        if (lookahead == null) lookahead = new mutable.Queue[A]
        lookahead += a
      }
      def hasNext = {
        if (status < 0) (lookahead ne null) && lookahead.nonEmpty
        else if (status > 0) true
        else {
          if (self.hasNext) {
            hd = self.next()
            status = if (p(hd)) 1 else -2
          }
          else status = -1
          status > 0
        }
      }
      def next() = {
        if (hasNext) {
          if (status == 1) { status = 0; hd }
          else lookahead.dequeue()
        }
        else empty.next()
      }
      def finish(): Boolean = status match {
        case -2 => status = -1 ; true
        case -1 => false
        case  1 => store(hd) ; status = 0 ; finish()
        case  0 => 
          status = -1
          while (self.hasNext) {
            val a = self.next()
            if (p(a)) store(a)
            else {
              hd = a
              return true
            }
          }
          false
      }
      def trailer: A = hd
    }
    
    val leading = new Leading
    
    val trailing = new AbstractIterator[A] {
      private[this] var myLeading = leading
      /* Status flags meanings:
       *   -1 not yet accesssed
       *   0 single element waiting in leading
       *   1 defer to self
       */
      private[this] var status = -1
      def hasNext = {
        if (status > 0) self.hasNext
        else {
          if (status == 0) true
          else if (myLeading.finish()) {
            status = 0
            true
          }
          else {
            status = 1
            myLeading = null
            self.hasNext
          }
        }
      }
      def next() = {
        if (hasNext) {
          if (status > 0) self.next()
          else {
            status = 1
            val ans = myLeading.trailer
            myLeading = null
            ans
          }
        }
        else Iterator.empty.next()
      }
            
      override def toString = "unknown-if-empty iterator"
    }

    (leading, trailing)
  }

  /** Skips longest sequence of elements of this iterator which satisfy given
   *  predicate `p`, and returns an iterator of the remaining elements.
   *
   *  @param p the predicate used to skip elements.
   *  @return  an iterator consisting of the remaining elements
   *  @note    Reuse: $consumesAndProducesIterator
   */
  def dropWhile(p: A => Boolean): Iterator[A] = new AbstractIterator[A] {
    // Magic value: -1 = hasn't dropped, 0 = found first, 1 = defer to parent iterator
    private[this] var status = -1
    // Local buffering to avoid double-wrap with .buffered
    private[this] var fst: A = _
    def hasNext: Boolean =
      if (status == 1) self.hasNext
      else if (status == 0) true
      else {
        while (self.hasNext) {
          val a = self.next()
          if (!p(a)) {
            fst = a
            status = 0
            return true
          }
        }
        status = 1
        false
      }
    def next() = 
      if (hasNext) {
        if (status == 1) self.next()
        else {
          status = 1
          fst
        }
      }
      else Iterator.empty.next()
  }

  /** Creates an iterator formed from this iterator and another iterator
   *  by combining corresponding values in pairs.
   *  If one of the two iterators is longer than the other, its remaining
   *  elements are ignored.
   *
   *  @param   that  The iterator providing the second half of each result pair
   *  @return        a new iterator containing pairs consisting of
   *                 corresponding elements of this iterator and `that`. The number
   *                 of elements returned by the new iterator is the
   *                 minimum of the number of elements returned by this
   *                 iterator and `that`.
   *  @note          Reuse: $consumesTwoAndProducesOneIterator
   */
  def zip[B](that: Iterator[B]): Iterator[(A, B)] = new AbstractIterator[(A, B)] {
    def hasNext = self.hasNext && that.hasNext
    def next = (self.next(), that.next())
  }

  /** Appends an element value to this iterator until a given target length is reached.
   *
   *  @param   len   the target length
   *  @param   elem  the padding value
   *  @return a new iterator consisting of producing all values of this iterator,
   *          followed by the minimal number of occurrences of `elem` so
   *          that the number of produced values is at least `len`.
   *  @note    Reuse: $consumesAndProducesIterator
   *
   *  @usecase def padTo(len: Int, elem: A): Iterator[A]
   *    @inheritdoc
   */
  def padTo[A1 >: A](len: Int, elem: A1): Iterator[A1] = new AbstractIterator[A1] {
    private var count = 0
    def hasNext = self.hasNext || count < len
    def next = {
      count += 1
      if (self.hasNext) self.next()
      else if (count <= len) elem
      else empty.next()
    }
  }

  /** Creates an iterator that pairs each element produced by this iterator
   *  with its index, counting from 0.
   *
   *  @return        a new iterator containing pairs consisting of
   *                 corresponding elements of this iterator and their indices.
   *  @note          Reuse: $consumesAndProducesIterator
   */
  def zipWithIndex: Iterator[(A, Int)] = new AbstractIterator[(A, Int)] {
    var idx = 0
    def hasNext = self.hasNext
    def next = {
      val ret = (self.next(), idx)
      idx += 1
      ret
    }
  }

  /** Creates an iterator formed from this iterator and another iterator
   *  by combining corresponding elements in pairs.
   *  If one of the two iterators is shorter than the other,
   *  placeholder elements are used to extend the shorter iterator to the length of the longer.
   *
   *  @param that     iterator `that` may have a different length
   *                  as the self iterator.
   *  @param thisElem element `thisElem` is used to fill up the
   *                  resulting iterator if the self iterator is shorter than
   *                  `that`
   *  @param thatElem element `thatElem` is used to fill up the
   *                  resulting iterator if `that` is shorter than
   *                  the self iterator
   *  @return         a new iterator containing pairs consisting of
   *                  corresponding values of this iterator and `that`. The length
   *                  of the returned iterator is the maximum of the lengths of this iterator and `that`.
   *                  If this iterator is shorter than `that`, `thisElem` values are used to pad the result.
   *                  If `that` is shorter than this iterator, `thatElem` values are used to pad the result.
   *  @note           Reuse: $consumesTwoAndProducesOneIterator
   *
   *  @usecase def zipAll[B](that: Iterator[B], thisElem: A, thatElem: B): Iterator[(A, B)]
   *    @inheritdoc
   */
  def zipAll[B, A1 >: A, B1 >: B](that: Iterator[B], thisElem: A1, thatElem: B1): Iterator[(A1, B1)] = new AbstractIterator[(A1, B1)] {
    def hasNext = self.hasNext || that.hasNext
    def next(): (A1, B1) =
      if (self.hasNext) {
        if (that.hasNext) (self.next(), that.next())
        else (self.next(), thatElem)
      } else {
        if (that.hasNext) (thisElem, that.next())
        else empty.next()
      }
  }

  /** Applies a function `f` to all values produced by this iterator.
   *
   *  @param  f   the function that is applied for its side-effect to every element.
   *              The result of function `f` is discarded.
   *
   *  @tparam  U  the type parameter describing the result of function `f`.
   *              This result will always be ignored. Typically `U` is `Unit`,
   *              but this is not necessary.
   *
   *  @note    Reuse: $consumesIterator
   *
   *  @usecase def foreach(f: A => Unit): Unit
   *    @inheritdoc
   */
  def foreach[U](f: A => U) { while (hasNext) f(next()) }

  /** Tests whether a predicate holds for all values produced by this iterator.
   *  $mayNotTerminateInf
   *
   *  @param   p     the predicate used to test elements.
   *  @return        `true` if the given predicate `p` holds for all values
   *                 produced by this iterator, otherwise `false`.
   *  @note          Reuse: $consumesIterator
   */
  def forall(p: A => Boolean): Boolean = {
    var res = true
    while (res && hasNext) res = p(next())
    res
  }

  /** Tests whether a predicate holds for some of the values produced by this iterator.
   *  $mayNotTerminateInf
   *
   *  @param   p     the predicate used to test elements.
   *  @return        `true` if the given predicate `p` holds for some of the values
   *                 produced by this iterator, otherwise `false`.
   *  @note          Reuse: $consumesIterator
   */
  def exists(p: A => Boolean): Boolean = {
    var res = false
    while (!res && hasNext) res = p(next())
    res
  }

  /** Tests whether this iterator contains a given value as an element.
   *  $mayNotTerminateInf
   *
   *  @param elem  the element to test.
   *  @return     `true` if this iterator produces some value that is
   *               is equal (as determined by `==`) to `elem`, `false` otherwise.
   *  @note        Reuse: $consumesIterator
   */
  def contains(elem: Any): Boolean = exists(_ == elem)    // Note--this seems faster than manual inlining!

  /** Finds the first value produced by the iterator satisfying a
   *  predicate, if any.
   *  $mayNotTerminateInf
   *
   *  @param p the predicate used to test values.
   *  @return  an option value containing the first value produced by the iterator that satisfies
   *           predicate `p`, or `None` if none exists.
   *  @note    Reuse: $consumesIterator
   */
  def find(p: A => Boolean): Option[A] = {
    while (hasNext) {
      val a = next()
      if (p(a)) return Some(a)
    }
    None
  }

  /** Returns the index of the first produced value satisfying a predicate, or -1.
   *  $mayNotTerminateInf
   *
   *  @param  p the predicate to test values
   *  @return   the index of the first produced value satisfying `p`,
   *           or -1 if such an element does not exist until the end of the iterator is reached.
   *  @note    Reuse: $consumesIterator
   */
  def indexWhere(p: A => Boolean): Int = {
    var i = 0
    while (hasNext) {
      if (p(next())) return i
      i += 1
    }
    -1
  }

  /** Returns the index of the first occurrence of the specified
   *  object in this iterable object.
   *  $mayNotTerminateInf
   *
   *  @param  elem  element to search for.
   *  @return the index of the first occurrence of `elem` in the values produced by this iterator,
   *          or -1 if such an element does not exist until the end of the iterator is reached.
   *  @note   Reuse: $consumesIterator
   */
  def indexOf[B >: A](elem: B): Int = {
    var i = 0
    while (hasNext) {
      if (next() == elem) return i
      i += 1
    }
    -1
  }

  /** Creates a buffered iterator from this iterator.
   *
   *  @see [[scala.collection.BufferedIterator]]
   *  @return  a buffered iterator producing the same values as this iterator.
   *  @note    Reuse: $consumesAndProducesIterator
   */
  def buffered: BufferedIterator[A] = new AbstractIterator[A] with BufferedIterator[A] {
    private var hd: A = _
    private var hdDefined: Boolean = false

    def head: A = {
      if (!hdDefined) {
        hd = next()
        hdDefined = true
      }
      hd
    }

    def hasNext =
      hdDefined || self.hasNext

    def next() =
      if (hdDefined) {
        hdDefined = false
        hd
      } else self.next()
  }

  /** A flexible iterator for transforming an `Iterator[A]` into an
   *  Iterator[Seq[A]], with configurable sequence size, step, and
   *  strategy for dealing with elements which don't fit evenly.
   *
   *  Typical uses can be achieved via methods `grouped` and `sliding`.
   */
  class GroupedIterator[B >: A](self: Iterator[A], size: Int, step: Int)
  extends AbstractIterator[Seq[B]]
     with Iterator[Seq[B]] {

    require(size >= 1 && step >= 1, "size=%d and step=%d, but both must be positive".format(size, step))

    private[this] var buffer: ArrayBuffer[B] = ArrayBuffer()  // the buffer
    private[this] var filled = false                          // whether the buffer is "hot"
    private[this] var _partial = true                         // whether we deliver short sequences
    private[this] var pad: Option[() => B] = None             // what to pad short sequences with

    /** Public functions which can be used to configure the iterator before use.
	 *
	 *  Pads the last segment if necessary so that all segments will
	 *  have the same size.
	 *
	 *  @param x The element that will be appended to the last segment, if necessary.
	 *  @return  The same iterator, and ''not'' a new iterator.
	 *  @note    This method mutates the iterator it is called on, which can be safely used afterwards.
	 *  @note    This method is mutually exclusive with `withPartial(true)`.
 	 */
    def withPadding(x: => B): this.type = {
      pad = Some(() => x)
      this
    }
	/** Public functions which can be used to configure the iterator before use.
  	 *
	 *  Select whether the last segment may be returned with less than `size`
	 *  elements. If not, some elements of the original iterator may not be
	 *  returned at all.
	 *
	 *  @param x `true` if partial segments may be returned, `false` otherwise.
	 *  @return  The same iterator, and ''not'' a new iterator.
	 *  @note    This method mutates the iterator it is called on, which can be safely used afterwards.
	 *  @note    This method is mutually exclusive with `withPadding`.
	 */
    def withPartial(x: Boolean): this.type = {
      _partial = x
      if (_partial == true) // reset pad since otherwise it will take precedence
        pad = None

      this
    }

    /** For reasons which remain to be determined, calling
     *  self.take(n).toSeq cause an infinite loop, so we have
     *  a slight variation on take for local usage.
     *  NB: self.take.toSeq is slice.toStream, lazily built on self,
     *  so a subsequent self.hasNext would not test self after the
     *  group was consumed.
     */
    private def takeDestructively(size: Int): Seq[A] = {
      val buf = new ArrayBuffer[A]
      var i = 0
      // The order of terms in the following condition is important
      // here as self.hasNext could be blocking
      while (i < size && self.hasNext) {
        buf += self.next
        i += 1
      }
      buf
    }

    private def padding(x: Int) = List.fill(x)(pad.get())
    private def gap = (step - size) max 0

    private def go(count: Int) = {
      val prevSize = buffer.size
      def isFirst = prevSize == 0
      // If there is padding defined we insert it immediately
      // so the rest of the code can be oblivious
      val xs: Seq[B] = {
        val res = takeDestructively(count)
        // was: extra checks so we don't calculate length unless there's reason
        // but since we took the group eagerly, just use the fast length
        val shortBy = count - res.length
        if (shortBy > 0 && pad.isDefined) res ++ padding(shortBy) else res
      }
      lazy val len = xs.length
      lazy val incomplete = len < count

      // if 0 elements are requested, or if the number of newly obtained
      // elements is less than the gap between sequences, we are done.
      def deliver(howMany: Int) = {
        (howMany > 0 && (isFirst || len > gap)) && {
          if (!isFirst)
            buffer trimStart (step min prevSize)

          val available =
            if (isFirst) len
            else howMany min (len - gap)

          buffer ++= (xs takeRight available)
          filled = true
          true
        }
      }

      if (xs.isEmpty) false                         // self ran out of elements
      else if (_partial) deliver(len min size)      // if _partial is true, we deliver regardless
      else if (incomplete) false                    // !_partial && incomplete means no more seqs
      else if (isFirst) deliver(len)                // first element
      else deliver(step min size)                   // the typical case
    }

    // fill() returns false if no more sequences can be produced
    private def fill(): Boolean = {
      if (!self.hasNext) false
      // the first time we grab size, but after that we grab step
      else if (buffer.isEmpty) go(size)
      else go(step)
    }

    def hasNext = filled || fill()
    def next = {
      if (!filled)
        fill()

      if (!filled)
        throw new NoSuchElementException("next on empty iterator")
      filled = false
      buffer.toList
    }
  }

  /** Returns an iterator which groups this iterator into fixed size
   *  blocks.  Example usages:
   *  {{{
   *    // Returns List(List(1, 2, 3), List(4, 5, 6), List(7)))
   *    (1 to 7).iterator grouped 3 toList
   *    // Returns List(List(1, 2, 3), List(4, 5, 6))
   *    (1 to 7).iterator grouped 3 withPartial false toList
   *    // Returns List(List(1, 2, 3), List(4, 5, 6), List(7, 20, 25)
   *    // Illustrating that withPadding's argument is by-name.
   *    val it2 = Iterator.iterate(20)(_ + 5)
   *    (1 to 7).iterator grouped 3 withPadding it2.next toList
   *  }}}
   *
   *  @note Reuse: $consumesAndProducesIterator
   */
  def grouped[B >: A](size: Int): GroupedIterator[B] =
    new GroupedIterator[B](self, size, size)

  /** Returns an iterator which presents a "sliding window" view of
   *  another iterator.  The first argument is the window size, and
   *  the second is how far to advance the window on each iteration;
   *  defaults to `1`.  Example usages:
   *  {{{
   *    // Returns List(List(1, 2, 3), List(2, 3, 4), List(3, 4, 5))
   *    (1 to 5).iterator.sliding(3).toList
   *    // Returns List(List(1, 2, 3, 4), List(4, 5))
   *    (1 to 5).iterator.sliding(4, 3).toList
   *    // Returns List(List(1, 2, 3, 4))
   *    (1 to 5).iterator.sliding(4, 3).withPartial(false).toList
   *    // Returns List(List(1, 2, 3, 4), List(4, 5, 20, 25))
   *    // Illustrating that withPadding's argument is by-name.
   *    val it2 = Iterator.iterate(20)(_ + 5)
   *    (1 to 5).iterator.sliding(4, 3).withPadding(it2.next).toList
   *  }}}
   *
   *  @note Reuse: $consumesAndProducesIterator
   */
  def sliding[B >: A](size: Int, step: Int = 1): GroupedIterator[B] =
    new GroupedIterator[B](self, size, step)

  /** Returns the number of elements in this iterator.
   *  $willNotTerminateInf
   *
   *  @note Reuse: $consumesIterator
   */
  def length: Int = this.size

  /** Creates two new iterators that both iterate over the same elements
   *  as this iterator (in the same order).  The duplicate iterators are
   *  considered equal if they are positioned at the same element.
   *
   *  Given that most methods on iterators will make the original iterator
   *  unfit for further use, this methods provides a reliable way of calling
   *  multiple such methods on an iterator.
   *
   *  @return a pair of iterators
   *  @note   The implementation may allocate temporary storage for elements
   *          iterated by one iterator but not yet by the other.
   *  @note   Reuse: $consumesOneAndProducesTwoIterators
   */
  def duplicate: (Iterator[A], Iterator[A]) = {
    val gap = new scala.collection.mutable.Queue[A]
    var ahead: Iterator[A] = null
    class Partner extends AbstractIterator[A] {
      def hasNext: Boolean = self.synchronized {
        (this ne ahead) && !gap.isEmpty || self.hasNext
      }
      def next(): A = self.synchronized {
        if (gap.isEmpty) ahead = this
        if (this eq ahead) {
          val e = self.next()
          gap enqueue e
          e
        } else gap.dequeue()
      }
      // to verify partnerhood we use reference equality on gap because
      // type testing does not discriminate based on origin.
      private def compareGap(queue: scala.collection.mutable.Queue[A]) = gap eq queue
      override def hashCode = gap.hashCode()
      override def equals(other: Any) = other match {
        case x: Partner   => x.compareGap(gap) && gap.isEmpty
        case _            => super.equals(other)
      }
    }
    (new Partner, new Partner)
  }

  /** Returns this iterator with patched values.
   *  Patching at negative indices is the same as patching starting at 0.
   *  Patching at indices at or larger than the length of the original iterator appends the patch to the end.
   *  If more values are replaced than actually exist, the excess is ignored.
   *
   *  @param from       The start index from which to patch
   *  @param patchElems The iterator of patch values
   *  @param replaced   The number of values in the original iterator that are replaced by the patch.
   *  @note           Reuse: $consumesTwoAndProducesOneIterator
   */
  def patch[B >: A](from: Int, patchElems: Iterator[B], replaced: Int): Iterator[B] = new AbstractIterator[B] {
    private var origElems = self
    private var i = (if (from > 0) from else 0)  // Counts down, switch to patch on 0, -1 means use patch first
    def hasNext: Boolean = {
      if (i == 0) {
        origElems = origElems drop replaced
        i = -1
      }
      origElems.hasNext || patchElems.hasNext
    }
    def next(): B = {
      if (i == 0) {
        origElems = origElems drop replaced
        i = -1
      }
      if (i < 0) {
        if (patchElems.hasNext) patchElems.next()
        else origElems.next()
      }
      else {
        if (origElems.hasNext) {
          i -= 1
          origElems.next()
        }
        else {
          i = -1
          patchElems.next()
        }
      }
    }
  }

  /** Copies selected values produced by this iterator to an array.
   *  Fills the given array `xs` starting at index `start` with at most
   *  `len` values produced by this iterator.
   *  Copying will stop once either the end of the current iterator is reached,
   *  or the end of the array is reached, or `len` elements have been copied.
   *
   *  @param  xs     the array to fill.
   *  @param  start  the starting index.
   *  @param  len    the maximal number of elements to copy.
   *  @tparam B      the type of the elements of the array.
   *
   *  @note    Reuse: $consumesIterator
   *
   *  @usecase def copyToArray(xs: Array[A], start: Int, len: Int): Unit
   *    @inheritdoc
   *
   *    $willNotTerminateInf
   */
  def copyToArray[B >: A](xs: Array[B], start: Int, len: Int): Unit = {
    require(start >= 0 && (start < xs.length || xs.length == 0), s"start $start out of range ${xs.length}")
    var i = start
    val end = start + math.min(len, xs.length - start)
    while (i < end && hasNext) {
      xs(i) = next()
      i += 1
    }
    // TODO: return i - start so the caller knows how many values read?
  }

  /** Tests if another iterator produces the same values as this one.
   *
   *  $willNotTerminateInf
   *
   *  @param that  the other iterator
   *  @return      `true`, if both iterators produce the same elements in the same order, `false` otherwise.
   *
   *  @note        Reuse: $consumesTwoIterators
   */
  def sameElements(that: Iterator[_]): Boolean = {
    while (hasNext && that.hasNext)
      if (next != that.next)
        return false

    !hasNext && !that.hasNext
  }

  def toTraversable: Traversable[A] = toStream
  def toIterator: Iterator[A] = self
  def toStream: Stream[A] =
    if (self.hasNext) Stream.cons(self.next(), self.toStream)
    else Stream.empty[A]


  /** Converts this iterator to a string.
   *
   *  @return `"empty iterator"` or `"non-empty iterator"`, depending on
   *           whether or not the iterator is empty.
   *  @note    Reuse: $preservesIterator
   */
  override def toString = (if (hasNext) "non-empty" else "empty")+" iterator"
}

/** Explicit instantiation of the `Iterator` trait to reduce class file size in subclasses. */
abstract class AbstractIterator[+A] extends Iterator[A]