summaryrefslogtreecommitdiff
path: root/src/library/scala/collection/SeqLike.scala
blob: b7754805322ea5d652eb7a3bcfd8f7e4c1e97243 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

package scala
package collection

import mutable.{ ListBuffer, ArraySeq }
import immutable.{ List, Range }
import generic._
import parallel.ParSeq
import scala.math.{ min, max, Ordering }

/** A template trait for sequences of type `Seq[A]`
 *  $seqInfo
 *
 *  @define seqInfo
 *  Sequences are special cases of iterable collections of class `Iterable`.
 *  Unlike iterables, sequences always have a defined order of elements.
 *  Sequences provide a method `apply` for indexing. Indices range from `0` up to the `length` of
 *  a sequence. Sequences support a number of methods to find occurrences of elements or subsequences, including
 *  `segmentLength`, `prefixLength`, `indexWhere`, `indexOf`, `lastIndexWhere`, `lastIndexOf`,
 *  `startsWith`, `endsWith`, `indexOfSlice`.
 *
 *  Another way to see a sequence is as a `PartialFunction` from `Int` values
 *  to the element type of the sequence. The `isDefinedAt` method of a sequence
 *  returns `true` for the interval from `0` until `length`.
 *
 *  Sequences can be accessed in reverse order of their elements, using methods
 *  `reverse` and `reverseIterator`.
 *
 *  Sequences have two principal subtraits, `IndexedSeq` and `LinearSeq`, which give different guarantees for performance.
 *  An `IndexedSeq` provides fast random-access of elements and a fast `length` operation.
 *  A `LinearSeq` provides fast access only to the first element via `head`, but also
 *  has a fast `tail` operation.
 *
 *  @tparam A    the element type of the collection
 *  @tparam Repr the type of the actual collection containing the elements.
 *
 *  @author  Martin Odersky
 *  @author  Matthias Zenger
 *  @version 1.0, 16/07/2003
 *  @since   2.8
 *
 *  @define Coll `Seq`
 *  @define coll sequence
 *  @define thatinfo the class of the returned collection. Where possible, `That` is
 *    the same class as the current collection class `Repr`, but this
 *    depends on the element type `B` being admissible for that class,
 *    which means that an implicit instance of type `CanBuildFrom[Repr, B, That]`
 *    is found.
 *  @define bfinfo an implicit value of class `CanBuildFrom` which determines the
 *    result class `That` from the current representation type `Repr`
 *    and the new element type `B`.
 *  @define orderDependent
 *  @define orderDependentFold
 */
trait SeqLike[+A, +Repr] extends Any with IterableLike[A, Repr] with GenSeqLike[A, Repr] with Parallelizable[A, ParSeq[A]] { self =>

  override protected[this] def thisCollection: Seq[A] = this.asInstanceOf[Seq[A]]
  override protected[this] def toCollection(repr: Repr): Seq[A] = repr.asInstanceOf[Seq[A]]

  def length: Int

  def apply(idx: Int): A

  protected[this] override def parCombiner = ParSeq.newCombiner[A]

  /** Compares the length of this $coll to a test value.
   *
   *   @param   len   the test value that gets compared with the length.
   *   @return  A value `x` where
   *   {{{
   *        x <  0       if this.length <  len
   *        x == 0       if this.length == len
   *        x >  0       if this.length >  len
   *   }}}
   *  The method as implemented here does not call `length` directly; its running time
   *  is `O(length min len)` instead of `O(length)`. The method should be overwritten
   *  if computing `length` is cheap.
   */
  def lengthCompare(len: Int): Int = {
    if (len < 0) 1
    else {
      var i = 0
      val it = iterator
      while (it.hasNext) {
        if (i == len) return if (it.hasNext) 1 else 0
        it.next()
        i += 1
      }
      i - len
    }
  }

  override /*IterableLike*/ def isEmpty: Boolean = lengthCompare(0) == 0

  /** The size of this $coll, equivalent to `length`.
   *
   *  $willNotTerminateInf
   */
  override def size = length

  def segmentLength(p: A => Boolean, from: Int): Int = {
    var i = 0
    val it = iterator.drop(from)
    while (it.hasNext && p(it.next()))
      i += 1
    i
  }

  def indexWhere(p: A => Boolean, from: Int): Int = {
    var i = from
    val it = iterator.drop(from)
    while (it.hasNext) {
      if (p(it.next())) return i
      else i += 1
    }

    -1
  }

  def lastIndexWhere(p: A => Boolean, end: Int): Int = {
    var i = length - 1
    val it = reverseIterator
    while (it.hasNext && { val elem = it.next(); (i > end || !p(elem)) }) i -= 1
    i
  }

  /** Iterates over distinct permutations.
   *
   *  @return   An Iterator which traverses the distinct permutations of this $coll.
   *  @example  `"abb".permutations = Iterator(abb, bab, bba)`
   */
  def permutations: Iterator[Repr] =
    if (isEmpty) Iterator(repr)
    else new PermutationsItr

  /** Iterates over combinations.  A _combination_ of length `n` is a subsequence of
   *  the original sequence, with the elements taken in order.  Thus, `"xy"` and `"yy"`
   *  are both length-2 combinations of `"xyy"`, but `"yx"` is not.  If there is
   *  more than one way to generate the same subsequence, only one will be returned.
   *
   *  For example, `"xyyy"` has three different ways to generate `"xy"` depending on
   *  whether the first, second, or third `"y"` is selected.  However, since all are 
   *  identical, only one will be chosen.  Which of the three will be taken is an
   *  implementation detail that is not defined.
   *
   *  @return   An Iterator which traverses the possible n-element combinations of this $coll.
   *  @example  `"abbbc".combinations(2) = Iterator(ab, ac, bb, bc)`
   */
  def combinations(n: Int): Iterator[Repr] =
    if (n < 0 || n > size) Iterator.empty
    else new CombinationsItr(n)

  private class PermutationsItr extends AbstractIterator[Repr] {
    private[this] val (elms, idxs) = init()
    private var _hasNext = true

    def hasNext = _hasNext
    def next(): Repr = {
      if (!hasNext)
        Iterator.empty.next()

      val forcedElms = new mutable.ArrayBuffer[A](elms.size) ++= elms
      val result = (self.newBuilder ++= forcedElms).result()
      var i = idxs.length - 2
      while(i >= 0 && idxs(i) >= idxs(i+1))
        i -= 1

      if (i < 0)
        _hasNext = false
      else {
        var j = idxs.length - 1
        while(idxs(j) <= idxs(i)) j -= 1
          swap(i,j)

        val len = (idxs.length - i) / 2
        var k = 1
        while (k <= len) {
          swap(i+k, idxs.length - k)
          k += 1
        }
      }
      result
    }
    private def swap(i: Int, j: Int) {
      val tmpI = idxs(i)
      idxs(i) = idxs(j)
      idxs(j) = tmpI
      val tmpE = elms(i)
      elms(i) = elms(j)
      elms(j) = tmpE
    }

    private[this] def init() = {
      val m = mutable.HashMap[A, Int]()
      val (es, is) = (thisCollection map (e => (e, m.getOrElseUpdate(e, m.size))) sortBy (_._2)).unzip

      (es.toBuffer, is.toArray)
    }
  }

  private class CombinationsItr(n: Int) extends AbstractIterator[Repr] {
    // generating all nums such that:
    // (1) nums(0) + .. + nums(length-1) = n
    // (2) 0 <= nums(i) <= cnts(i), where 0 <= i <= cnts.length-1
    private val (elms, cnts, nums) = init()
    private val offs = cnts.scanLeft(0)(_ + _)
    private var _hasNext = true

    def hasNext = _hasNext
    def next(): Repr = {
      if (!hasNext)
        Iterator.empty.next()

      /* Calculate this result. */
      val buf = self.newBuilder
      for(k <- 0 until nums.length; j <- 0 until nums(k))
        buf += elms(offs(k)+j)
      val res = buf.result()

      /* Prepare for the next call to next. */
      var idx = nums.length - 1
      while (idx >= 0 && nums(idx) == cnts(idx))
        idx -= 1

      idx = nums.lastIndexWhere(_ > 0, idx - 1)

      if (idx < 0)
        _hasNext = false
      else {
        var sum = nums.slice(idx + 1, nums.length).sum + 1
        nums(idx) -= 1
        for (k <- (idx+1) until nums.length) {
          nums(k) = sum min cnts(k)
          sum -= nums(k)
        }
      }

      res
    }

    /** Rearrange seq to newSeq a0a0..a0a1..a1...ak..ak such that
     *  seq.count(_ == aj) == cnts(j)
     *
     *  @return     (newSeq,cnts,nums)
     */
    private def init(): (IndexedSeq[A], Array[Int], Array[Int]) = {
      val m = mutable.HashMap[A, Int]()

      // e => (e, weight(e))
      val (es, is) = (thisCollection map (e => (e, m.getOrElseUpdate(e, m.size))) sortBy (_._2)).unzip
      val cs = new Array[Int](m.size)
      is foreach (i => cs(i) += 1)
      val ns = new Array[Int](cs.length)

      var r = n
      0 until ns.length foreach { k =>
        ns(k) = r min cs(k)
        r -= ns(k)
      }
      (es.toIndexedSeq, cs, ns)
    }
  }

  def reverse: Repr = {
    var xs: List[A] = List()
    for (x <- this)
      xs = x :: xs
    val b = newBuilder
    b.sizeHint(this)
    for (x <- xs)
      b += x
    b.result()
  }

  def reverseMap[B, That](f: A => B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    var xs: List[A] = List()
    for (x <- this)
      xs = x :: xs
    val b = bf(repr)
    for (x <- xs)
      b += f(x)

    b.result()
  }

  /** An iterator yielding elements in reversed order.
   *
   *   $willNotTerminateInf
   *
   * Note: `xs.reverseIterator` is the same as `xs.reverse.iterator` but might be more efficient.
   *
   *  @return  an iterator yielding the elements of this $coll in reversed order
   */
  def reverseIterator: Iterator[A] = toCollection(reverse).iterator

  def startsWith[B](that: GenSeq[B], offset: Int): Boolean = {
    val i = this.iterator drop offset
    val j = that.iterator
    while (j.hasNext && i.hasNext)
      if (i.next != j.next)
        return false

    !j.hasNext
  }

  def endsWith[B](that: GenSeq[B]): Boolean = {
    val i = this.iterator.drop(length - that.length)
    val j = that.iterator
    while (i.hasNext && j.hasNext)
      if (i.next != j.next)
        return false

    !j.hasNext
  }

  /** Finds first index where this $coll contains a given sequence as a slice.
   *  $mayNotTerminateInf
   *  @param  that    the sequence to test
   *  @return  the first index such that the elements of this $coll starting at this index
   *           match the elements of sequence `that`, or `-1` of no such subsequence exists.
   */
  def indexOfSlice[B >: A](that: GenSeq[B]): Int = indexOfSlice(that, 0)

  /** Finds first index after or at a start index where this $coll contains a given sequence as a slice.
   *  $mayNotTerminateInf
   *  @param  that    the sequence to test
   *  @param  from    the start index
   *  @return  the first index `>= from` such that the elements of this $coll starting at this index
   *           match the elements of sequence `that`, or `-1` of no such subsequence exists.
   */
  def indexOfSlice[B >: A](that: GenSeq[B], from: Int): Int =
    if (this.hasDefiniteSize && that.hasDefiniteSize) {
      val l = length
      val tl = that.length
      val clippedFrom = math.max(0, from)
      if (from > l) -1
      else if (tl < 1) clippedFrom
      else if (l < tl) -1
      else SeqLike.kmpSearch(thisCollection, clippedFrom, l, that.seq, 0, tl, forward = true)
    }
    else {
      var i = from
      var s: Seq[A] = thisCollection drop i
      while (!s.isEmpty) {
        if (s startsWith that)
          return i

        i += 1
        s = s.tail
      }
      -1
    }

  /** Finds last index where this $coll contains a given sequence as a slice.
   *  $willNotTerminateInf
   *  @param  that    the sequence to test
   *  @return  the last index such that the elements of this $coll starting a this index
   *           match the elements of sequence `that`, or `-1` of no such subsequence exists.
   */
  def lastIndexOfSlice[B >: A](that: GenSeq[B]): Int = lastIndexOfSlice(that, length)

  /** Finds last index before or at a given end index where this $coll contains a given sequence as a slice.
   *  @param  that    the sequence to test
   *  @param  end     the end index
   *  @return  the last index `<= end` such that the elements of this $coll starting at this index
   *           match the elements of sequence `that`, or `-1` of no such subsequence exists.
   */
  def lastIndexOfSlice[B >: A](that: GenSeq[B], end: Int): Int = {
    val l = length
    val tl = that.length
    val clippedL = math.min(l-tl, end)

    if (end < 0) -1
    else if (tl < 1) clippedL
    else if (l < tl) -1
    else SeqLike.kmpSearch(thisCollection, 0, clippedL+tl, that.seq, 0, tl, forward = false)
  }

  /** Tests whether this $coll contains a given sequence as a slice.
   *  $mayNotTerminateInf
   *  @param  that    the sequence to test
   *  @return  `true` if this $coll contains a slice with the same elements
   *           as `that`, otherwise `false`.
   */
  def containsSlice[B](that: GenSeq[B]): Boolean = indexOfSlice(that) != -1

  /** Tests whether this $coll contains a given value as an element.
   *  $mayNotTerminateInf
   *
   *  @param elem  the element to test.
   *  @return     `true` if this $coll has an element that is equal (as
   *              determined by `==`) to `elem`, `false` otherwise.
   */
  def contains[A1 >: A](elem: A1): Boolean = exists (_ == elem)

  /** Produces a new sequence which contains all elements of this $coll and also all elements of
   *  a given sequence. `xs union ys`  is equivalent to `xs ++ ys`.
   *
   *  @param that   the sequence to add.
   *  @tparam B     the element type of the returned $coll.
   *  @tparam That  $thatinfo
   *  @param bf     $bfinfo
   *  @return       a new collection of type `That` which contains all elements of this $coll
   *                followed by all elements of `that`.
   *  @usecase def union(that: Seq[A]): $Coll[A]
   *    @inheritdoc
   *
   *    Another way to express this
   *    is that `xs union ys` computes the order-preserving multi-set union of `xs` and `ys`.
   *    `union` is hence a counter-part of `diff` and `intersect` which also work on multi-sets.
   *
   *    $willNotTerminateInf
   *
   *    @return       a new $coll which contains all elements of this $coll
   *                  followed by all elements of `that`.
   */
  override def union[B >: A, That](that: GenSeq[B])(implicit bf: CanBuildFrom[Repr, B, That]): That =
    this ++ that

  /** Computes the multiset difference between this $coll and another sequence.
   *
   *  @param that   the sequence of elements to remove
   *  @tparam B     the element type of the returned $coll.
   *  @return       a new collection of type `That` which contains all elements of this $coll
   *                except some of occurrences of elements that also appear in `that`.
   *                If an element value `x` appears
   *                ''n'' times in `that`, then the first ''n'' occurrences of `x` will not form
   *                part of the result, but any following occurrences will.
   *  @usecase def diff(that: Seq[A]): $Coll[A]
   *    @inheritdoc
   *
   *    $willNotTerminateInf
   *
   *    @return       a new $coll which contains all elements of this $coll
   *                  except some of occurrences of elements that also appear in `that`.
   *                  If an element value `x` appears
   *                  ''n'' times in `that`, then the first ''n'' occurrences of `x` will not form
   *                  part of the result, but any following occurrences will.
   */
  def diff[B >: A](that: GenSeq[B]): Repr = {
    val occ = occCounts(that.seq)
    val b = newBuilder
    for (x <- this) {
      val ox = occ(x)  // Avoid multiple map lookups
      if (ox == 0) b += x
      else occ(x) = ox - 1
    }
    b.result()
  }

  /** Computes the multiset intersection between this $coll and another sequence.
   *
   *  @param that   the sequence of elements to intersect with.
   *  @tparam B     the element type of the returned $coll.
   *  @return       a new collection of type `That` which contains all elements of this $coll
   *                which also appear in `that`.
   *                If an element value `x` appears
   *                ''n'' times in `that`, then the first ''n'' occurrences of `x` will be retained
   *                in the result, but any following occurrences will be omitted.
   *  @usecase def intersect(that: Seq[A]): $Coll[A]
   *    @inheritdoc
   *
   *    $mayNotTerminateInf
   *
   *    @return       a new $coll which contains all elements of this $coll
   *                  which also appear in `that`.
   *                  If an element value `x` appears
   *                  ''n'' times in `that`, then the first ''n'' occurrences of `x` will be retained
   *                  in the result, but any following occurrences will be omitted.
   */
  def intersect[B >: A](that: GenSeq[B]): Repr = {
    val occ = occCounts(that.seq)
    val b = newBuilder
    for (x <- this) {
      val ox = occ(x)  // Avoid multiple map lookups
      if (ox > 0) {
        b += x
        occ(x) = ox - 1
      }
    }
    b.result()
  }

  private def occCounts[B](sq: Seq[B]): mutable.Map[B, Int] = {
    val occ = new mutable.HashMap[B, Int] { override def default(k: B) = 0 }
    for (y <- sq) occ(y) += 1
    occ
  }

  /** Builds a new $coll from this $coll without any duplicate elements.
   *  $willNotTerminateInf
   *
   *  @return  A new $coll which contains the first occurrence of every element of this $coll.
   */
  def distinct: Repr = {
    val b = newBuilder
    val seen = mutable.HashSet[A]()
    for (x <- this) {
      if (!seen(x)) {
        b += x
        seen += x
      }
    }
    b.result()
  }

  def patch[B >: A, That](from: Int, patch: GenSeq[B], replaced: Int)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    val b = bf(repr)
    var i = 0
    val it = this.iterator
    while (i < from && it.hasNext) {
      b += it.next()
      i += 1
    }
    b ++= patch.seq
    i = replaced
    while (i > 0 && it.hasNext) {
      it.next()
      i -= 1
    }
    while (it.hasNext) b += it.next()
    b.result()
  }

  def updated[B >: A, That](index: Int, elem: B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    if (index < 0) throw new IndexOutOfBoundsException(index.toString)
    val b = bf(repr)
    var i = 0
    val it = this.iterator
    while (i < index && it.hasNext) {
      b += it.next()
      i += 1
    }
    if (!it.hasNext) throw new IndexOutOfBoundsException(index.toString)
    b += elem
    it.next()
    while (it.hasNext) b += it.next()
    b.result()
  }

  def +:[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    val b = bf(repr)
    b += elem
    b ++= thisCollection
    b.result()
  }

  def :+[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    val b = bf(repr)
    b ++= thisCollection
    b += elem
    b.result()
  }

  def padTo[B >: A, That](len: Int, elem: B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    val b = bf(repr)
    val L = length
    b.sizeHint(math.max(L, len))
    var diff = len - L
    b ++= thisCollection
    while (diff > 0) {
      b += elem
      diff -= 1
    }
    b.result()
  }

  def corresponds[B](that: GenSeq[B])(p: (A,B) => Boolean): Boolean = {
    val i = this.iterator
    val j = that.iterator
    while (i.hasNext && j.hasNext)
      if (!p(i.next(), j.next()))
        return false

    !i.hasNext && !j.hasNext
  }

  /** Sorts this $coll according to a comparison function.
   *  $willNotTerminateInf
   *
   *  The sort is stable. That is, elements that are equal (as determined by
   *  `lt`) appear in the same order in the sorted sequence as in the original.
   *
   *  @param  lt  the comparison function which tests whether
   *              its first argument precedes its second argument in
   *              the desired ordering.
   *  @return     a $coll consisting of the elements of this $coll
   *              sorted according to the comparison function `lt`.
   *  @example {{{
   *    List("Steve", "Tom", "John", "Bob").sortWith(_.compareTo(_) < 0) =
   *    List("Bob", "John", "Steve", "Tom")
   *  }}}
   */
  def sortWith(lt: (A, A) => Boolean): Repr = sorted(Ordering fromLessThan lt)

  /** Sorts this $Coll according to the Ordering which results from transforming
   *  an implicitly given Ordering with a transformation function.
   *  @see [[scala.math.Ordering]]
   *  $willNotTerminateInf
   *  @param   f the transformation function mapping elements
   *           to some other domain `B`.
   *  @param   ord the ordering assumed on domain `B`.
   *  @tparam  B the target type of the transformation `f`, and the type where
   *           the ordering `ord` is defined.
   *  @return  a $coll consisting of the elements of this $coll
   *           sorted according to the ordering where `x < y` if
   *           `ord.lt(f(x), f(y))`.
   *
   *  @example {{{
   *    val words = "The quick brown fox jumped over the lazy dog".split(' ')
   *    // this works because scala.Ordering will implicitly provide an Ordering[Tuple2[Int, Char]]
   *    words.sortBy(x => (x.length, x.head))
   *    res0: Array[String] = Array(The, dog, fox, the, lazy, over, brown, quick, jumped)
   *  }}}
   */
  def sortBy[B](f: A => B)(implicit ord: Ordering[B]): Repr = sorted(ord on f)

  /** Sorts this $coll according to an Ordering.
   *
   *  The sort is stable. That is, elements that are equal (as determined by
   *  `lt`) appear in the same order in the sorted sequence as in the original.
   *
   *  @see [[scala.math.Ordering]]
   *
   *  @param  ord the ordering to be used to compare elements.
   *  @return     a $coll consisting of the elements of this $coll
   *              sorted according to the ordering `ord`.
   */
  def sorted[B >: A](implicit ord: Ordering[B]): Repr = {
    val len = this.length
    val b = newBuilder
    if (len == 1) b ++= this
    else if (len > 1) {
      b.sizeHint(len)
      val arr = new Array[AnyRef](len)  // Previously used ArraySeq for more compact but slower code
      var i = 0
      for (x <- this) {
        arr(i) = x.asInstanceOf[AnyRef]
        i += 1
      }
      java.util.Arrays.sort(arr, ord.asInstanceOf[Ordering[Object]])
      i = 0
      while (i < arr.length) {
        b += arr(i).asInstanceOf[A]
        i += 1
      }
    }
    b.result()
  }

  /** Converts this $coll to a sequence.
   *  $willNotTerminateInf
   *
   *  A new collection will not be built; in particular, lazy sequences will stay lazy.
   */
  override def toSeq: Seq[A] = thisCollection

  /** Produces the range of all indices of this sequence.
   *
   *  @return  a `Range` value from `0` to one less than the length of this $coll.
   */
  def indices: Range = 0 until length

  override def view = new SeqView[A, Repr] {
    protected lazy val underlying = self.repr
    override def iterator = self.iterator
    override def length = self.length
    override def apply(idx: Int) = self.apply(idx)
  }

  override def view(from: Int, until: Int) = view.slice(from, until)

  /* Need to override string, so that it's not the Function1's string that gets mixed in.
   */
  override def toString = super[IterableLike].toString
}

/** The companion object for trait `SeqLike`.
 */
object SeqLike {
  // KMP search utilities

  /** Make sure a target sequence has fast, correctly-ordered indexing for KMP.
   *
   *  @author Rex Kerr
   *  @since  2.10
   *  @param  W    The target sequence
   *  @param  n0   The first element in the target sequence that we should use
   *  @param  n1   The far end of the target sequence that we should use (exclusive)
   *  @return Target packed in an IndexedSeq (taken from iterator unless W already is an IndexedSeq)
   */
  private def kmpOptimizeWord[B](W: Seq[B], n0: Int, n1: Int, forward: Boolean) = W match {
    case iso: IndexedSeq[_] =>
      // Already optimized for indexing--use original (or custom view of original)
      if (forward && n0==0 && n1==W.length) iso.asInstanceOf[IndexedSeq[B]]
      else if (forward) new AbstractSeq[B] with IndexedSeq[B] {
        val length = n1 - n0
        def apply(x: Int) = iso(n0 + x).asInstanceOf[B]
      }
      else new AbstractSeq[B] with IndexedSeq[B] {
        def length = n1 - n0
        def apply(x: Int) = iso(n1 - 1 - x).asInstanceOf[B]
      }
    case _ =>
      // W is probably bad at indexing.  Pack in array (in correct orientation)
      // Would be marginally faster to special-case each direction
      new AbstractSeq[B] with IndexedSeq[B] {
        private[this] val Warr = new Array[AnyRef](n1-n0)
        private[this] val delta = if (forward) 1 else -1
        private[this] val done = if (forward) n1-n0 else -1
        val wit = W.iterator.drop(n0)
        var i = if (forward) 0 else (n1-n0-1)
        while (i != done) {
          Warr(i) = wit.next().asInstanceOf[AnyRef]
          i += delta
        }

        val length = n1 - n0
        def apply(x: Int) = Warr(x).asInstanceOf[B]
      }
  }

 /** Make a jump table for KMP search.
   *
   *  @author paulp, Rex Kerr
   *  @since  2.10
   *  @param  Wopt The target sequence, as at least an IndexedSeq
   *  @param  wlen Just in case we're only IndexedSeq and not IndexedSeqOptimized
   *  @return KMP jump table for target sequence
   */
 private def kmpJumpTable[B](Wopt: IndexedSeq[B], wlen: Int) = {
    val arr = new Array[Int](wlen)
    var pos = 2
    var cnd = 0
    arr(0) = -1
    arr(1) = 0
    while (pos < wlen) {
      if (Wopt(pos-1) == Wopt(cnd)) {
        arr(pos) = cnd + 1
        pos += 1
        cnd += 1
      }
      else if (cnd > 0) {
        cnd = arr(cnd)
      }
      else {
        arr(pos) = 0
        pos += 1
      }
    }
    arr
  }

 /**  A KMP implementation, based on the undoubtedly reliable wikipedia entry.
   *  Note: I made this private to keep it from entering the API.  That can be reviewed.
   *
   *  @author paulp, Rex Kerr
   *  @since  2.10
   *  @param  S       Sequence that may contain target
   *  @param  m0      First index of S to consider
   *  @param  m1      Last index of S to consider (exclusive)
   *  @param  W       Target sequence
   *  @param  n0      First index of W to match
   *  @param  n1      Last index of W to match (exclusive)
   *  @param  forward Direction of search (from beginning==true, from end==false)
   *  @return Index of start of sequence if found, -1 if not (relative to beginning of S, not m0).
   */
  private def kmpSearch[B](S: Seq[B], m0: Int, m1: Int, W: Seq[B], n0: Int, n1: Int, forward: Boolean): Int = {
    // Check for redundant case when target has single valid element
    def clipR(x: Int, y: Int) = if (x < y) x else -1
    def clipL(x: Int, y: Int) = if (x > y) x else -1

    if (n1 == n0+1) {
      if (forward)
        clipR(S.indexOf(W(n0), m0), m1)
      else
        clipL(S.lastIndexOf(W(n0), m1-1), m0-1)
    }

    // Check for redundant case when both sequences are same size
    else if (m1-m0 == n1-n0) {
      // Accepting a little slowness for the uncommon case.
      if (S.view.slice(m0, m1) == W.view.slice(n0, n1)) m0
      else -1
    }
    // Now we know we actually need KMP search, so do it
    else S match {
      case xs: IndexedSeq[_] =>
        // We can index into S directly; it should be adequately fast
        val Wopt = kmpOptimizeWord(W, n0, n1, forward)
        val T = kmpJumpTable(Wopt, n1-n0)
        var i, m = 0
        val zero = if (forward) m0 else m1-1
        val delta = if (forward) 1 else -1
        while (i+m < m1-m0) {
          if (Wopt(i) == S(zero+delta*(i+m))) {
            i += 1
            if (i == n1-n0) return (if (forward) m+m0 else m1-m-i)
          }
          else {
            val ti = T(i)
            m += i - ti
            if (i > 0) i = ti
          }
        }
        -1
      case _ =>
        // We had better not index into S directly!
        val iter = S.iterator.drop(m0)
        val Wopt = kmpOptimizeWord(W, n0, n1, forward = true)
        val T = kmpJumpTable(Wopt, n1-n0)
        val cache = new Array[AnyRef](n1-n0)  // Ring buffer--need a quick way to do a look-behind
        var largest = 0
        var i, m = 0
        var answer = -1
        while (m+m0+n1-n0 <= m1) {
          while (i+m >= largest) {
            cache(largest%(n1-n0)) = iter.next().asInstanceOf[AnyRef]
            largest += 1
          }
          if (Wopt(i) == cache((i+m)%(n1-n0))) {
            i += 1
            if (i == n1-n0) {
              if (forward) return m+m0
              else {
                i -= 1
                answer = m+m0
                val ti = T(i)
                m += i - ti
                if (i > 0) i = ti
              }
            }
          }
          else {
            val ti = T(i)
            m += i - ti
            if (i > 0) i = ti
          }
        }
        answer
    }
  }

  /** Finds a particular index at which one sequence occurs in another sequence.
   *  Both the source sequence and the target sequence are expressed in terms
   *  other sequences S' and T' with offset and length parameters.  This
   *  function is designed to wrap the KMP machinery in a sufficiently general
   *  way that all library sequence searches can use it.  It is unlikely you
   *  have cause to call it directly: prefer functions such as StringBuilder#indexOf
   *  and Seq#lastIndexOf.
   *
   *  @param  source        the sequence to search in
   *  @param  sourceOffset  the starting offset in source
   *  @param  sourceCount   the length beyond sourceOffset to search
   *  @param  target        the sequence being searched for
   *  @param  targetOffset  the starting offset in target
   *  @param  targetCount   the length beyond targetOffset which makes up the target string
   *  @param  fromIndex     the smallest index at which the target sequence may start
   *
   *  @return the applicable index in source where target exists, or -1 if not found
   */
  def indexOf[B](
    source: Seq[B], sourceOffset: Int, sourceCount: Int,
    target: Seq[B], targetOffset: Int, targetCount: Int,
    fromIndex: Int
  ): Int = {
    // Fiddle with variables to match previous behavior and use kmpSearch
    // Doing LOTS of max/min, both clearer and faster to use math._
    val slen        = source.length
    val clippedFrom = math.max(0, fromIndex)
    val s0          = math.min(slen, sourceOffset + clippedFrom)
    val s1          = math.min(slen, s0 + sourceCount)
    val tlen        = target.length
    val t0          = math.min(tlen, targetOffset)
    val t1          = math.min(tlen, t0 + targetCount)

    // Error checking
    if (clippedFrom > slen-sourceOffset) -1   // Cannot return an index in range
    else if (t1 - t0 < 1) s0                  // Empty, matches first available position
    else if (s1 - s0 < t1 - t0) -1            // Source is too short to find target
    else {
      // Nontrivial search
      val ans = kmpSearch(source, s0, s1, target, t0, t1, forward = true)
      if (ans < 0) ans else ans - math.min(slen, sourceOffset)
    }
  }

  /** Finds a particular index at which one sequence occurs in another sequence.
   *  Like `indexOf`, but finds the latest occurrence rather than earliest.
   *
   *  @see  [[scala.collection.SeqLike]], method `indexOf`
   */
  def lastIndexOf[B](
    source: Seq[B], sourceOffset: Int, sourceCount: Int,
    target: Seq[B], targetOffset: Int, targetCount: Int,
    fromIndex: Int
  ): Int = {
    // Fiddle with variables to match previous behavior and use kmpSearch
    // Doing LOTS of max/min, both clearer and faster to use math._
    val slen        = source.length
    val tlen        = target.length
    val s0          = math.min(slen, sourceOffset)
    val s1          = math.min(slen, s0 + sourceCount)
    val clippedFrom = math.min(s1 - s0, fromIndex)
    val t0          = math.min(tlen, targetOffset)
    val t1          = math.min(tlen, t0 + targetCount)
    val fixed_s1    = math.min(s1, s0 + clippedFrom + (t1 - t0) - 1)

    // Error checking
    if (clippedFrom < 0) -1                   // Cannot return an index in range
    else if (t1 - t0 < 1) s0+clippedFrom      // Empty, matches last available position
    else if (fixed_s1 - s0 < t1 - t0) -1      // Source is too short to find target
    else {
      // Nontrivial search
      val ans = kmpSearch(source, s0, fixed_s1, target, t0, t1, forward = false)
      if (ans < 0) ans else ans - s0
    }
  }
}