summaryrefslogtreecommitdiff
path: root/src/library/scala/collection/immutable/Stream.scala
blob: d3be8092550d174cc78c8404262f2b18774a5c1a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

package scala
package collection
package immutable

import generic._
import mutable.{Builder, StringBuilder, LazyBuilder, ListBuffer}
import scala.annotation.tailrec
import Stream.cons
import scala.language.implicitConversions

/** The class `Stream` implements lazy lists where elements
 *  are only evaluated when they are needed. Here is an example:
 *
 *  {{{
 *  import scala.math.BigInt
 *  object Main extends App {
 *
 *    val fibs: Stream[BigInt] = BigInt(0) #:: BigInt(1) #:: fibs.zip(fibs.tail).map { n => n._1 + n._2 }
 *
 *    fibs take 5 foreach println
 *  }
 *
 *  // prints
 *  //
 *  // 0
 *  // 1
 *  // 1
 *  // 2
 *  // 3
 *  }}}
 *
 *  The `Stream` class also employs memoization such that previously computed
 *  values are converted from `Stream` elements to concrete values of type `A`.
 *  To illustrate, we will alter body of the `fibs` value above and take some
 *  more values:
 *
 *  {{{
 *  import scala.math.BigInt
 *  object Main extends App {
 *
 *    val fibs: Stream[BigInt] = BigInt(0) #:: BigInt(1) #:: fibs.zip(
 *      fibs.tail).map(n => {
 *        println("Adding %d and %d".format(n._1, n._2))
 *        n._1 + n._2
 *      })
 *
 *    fibs take 5 foreach println
 *    fibs take 6 foreach println
 *  }
 *
 *  // prints
 *  //
 *  // 0
 *  // 1
 *  // Adding 0 and 1
 *  // 1
 *  // Adding 1 and 1
 *  // 2
 *  // Adding 1 and 2
 *  // 3
 *
 *  // And then prints
 *  //
 *  // 0
 *  // 1
 *  // 1
 *  // 2
 *  // 3
 *  // Adding 2 and 3
 *  // 5
 *  }}}
 *
 *  There are a number of subtle points to the above example.
 *
 *  - The definition of `fibs` is a `val` not a method.  The memoization of the
 *  `Stream` requires us to have somewhere to store the information and a `val`
 *  allows us to do that.
 *
 *  - While the `Stream` is actually being modified during access, this does not
 *  change the notion of its immutability.  Once the values are memoized they do
 *  not change and values that have yet to be memoized still "exist", they
 *  simply haven't been realized yet.
 *
 *  - One must be cautious of memoization; you can very quickly eat up large
 *  amounts of memory if you're not careful.  The reason for this is that the
 *  memoization of the `Stream` creates a structure much like
 *  [[scala.collection.immutable.List]].  So long as something is holding on to
 *  the head, the head holds on to the tail, and so it continues recursively.
 *  If, on the other hand, there is nothing holding on to the head (e.g. we used
 *  `def` to define the `Stream`) then once it is no longer being used directly,
 *  it disappears.
 *
 *  - Note that some operations, including [[drop]], [[dropWhile]],
 *  [[flatMap]] or [[collect]] may process a large number of intermediate
 *  elements before returning.  These necessarily hold onto the head, since
 *  they are methods on `Stream`, and a stream holds its own head.  For
 *  computations of this sort where memoization is not desired, use
 *  `Iterator` when possible.
 *
 *  {{{
 *  // For example, let's build the natural numbers and do some silly iteration
 *  // over them.
 *
 *  // We'll start with a silly iteration
 *  def loop(s: String, i: Int, iter: Iterator[Int]): Unit = {
 *    // Stop after 200,000
 *    if (i < 200001) {
 *      if (i % 50000 == 0) println(s + i)
 *      loop(s, iter.next, iter)
 *    }
 *  }
 *
 *  // Our first Stream definition will be a val definition
 *  val stream1: Stream[Int] = {
 *    def loop(v: Int): Stream[Int] = v #:: loop(v + 1)
 *    loop(0)
 *  }
 *
 *  // Because stream1 is a val, everything that the iterator produces is held
 *  // by virtue of the fact that the head of the Stream is held in stream1
 *  val it1 = stream1.iterator
 *  loop("Iterator1: ", it1.next, it1)
 *
 *  // We can redefine this Stream such that all we have is the Iterator left
 *  // and allow the Stream to be garbage collected as required.  Using a def
 *  // to provide the Stream ensures that no val is holding onto the head as
 *  // is the case with stream1
 *  def stream2: Stream[Int] = {
 *    def loop(v: Int): Stream[Int] = v #:: loop(v + 1)
 *    loop(0)
 *  }
 *  val it2 = stream2.iterator
 *  loop("Iterator2: ", it2.next, it2)
 *
 *  // And, of course, we don't actually need a Stream at all for such a simple
 *  // problem.  There's no reason to use a Stream if you don't actually need
 *  // one.
 *  val it3 = new Iterator[Int] {
 *    var i = -1
 *    def hasNext = true
 *    def next(): Int = { i += 1; i }
 *  }
 *  loop("Iterator3: ", it3.next, it3)
 *  }}}
 *
 *  - The fact that `tail` works at all is of interest.  In the definition of
 *  `fibs` we have an initial `(0, 1, Stream(...))` so `tail` is deterministic.
 *  If we defined `fibs` such that only `0` were concretely known then the act
 *  of determining `tail` would require the evaluation of `tail` which would
 *  cause an infinite recursion and stack overflow.  If we define a definition
 *  where the tail is not initially computable then we're going to have an
 *  infinite recursion:
 *  {{{
 *  // The first time we try to access the tail we're going to need more
 *  // information which will require us to recurse, which will require us to
 *  // recurse, which...
 *  val sov: Stream[Vector[Int]] = Vector(0) #:: sov.zip(sov.tail).map { n => n._1 ++ n._2 }
 *  }}}
 *
 *  The definition of `fibs` above creates a larger number of objects than
 *  necessary depending on how you might want to implement it.  The following
 *  implementation provides a more "cost effective" implementation due to the
 *  fact that it has a more direct route to the numbers themselves:
 *
 *  {{{
 *  lazy val fib: Stream[Int] = {
 *    def loop(h: Int, n: Int): Stream[Int] = h #:: loop(n, h + n)
 *    loop(1, 1)
 *  }
 *  }}}
 *
 *  Note that `mkString` forces evaluation of a `Stream`, but `addString` does
 *  not.  In both cases, a `Stream` that is or ends in a cycle
 *  (e.g. `lazy val s: Stream[Int] = 0 #:: s`) will convert additional trips
 *  through the cycle to `...`.  Additionally, `addString` will display an
 *  un-memoized tail as `?`.
 *
 *  @tparam A    the type of the elements contained in this stream.
 *
 *  @author Martin Odersky, Matthias Zenger
 *  @version 1.1 08/08/03
 *  @since   2.8
 *  @see [[http://docs.scala-lang.org/overviews/collections/concrete-immutable-collection-classes.html#streams "Scala's Collection Library overview"]]
 *  section on `Streams` for more information.

 *  @define naturalsEx def naturalsFrom(i: Int): Stream[Int] = i #:: naturalsFrom(i + 1)
 *  @define Coll `Stream`
 *  @define coll stream
 *  @define orderDependent
 *  @define orderDependentFold
 *  @define willTerminateInf Note: lazily evaluated; will terminate for infinite-sized collections.
 */
@deprecatedInheritance("This class will be sealed.", "2.11.0")
abstract class Stream[+A] extends AbstractSeq[A]
                             with LinearSeq[A]
                             with GenericTraversableTemplate[A, Stream]
                             with LinearSeqOptimized[A, Stream[A]]
                             with Serializable {
self =>
  override def companion: GenericCompanion[Stream] = Stream

  import scala.collection.{Traversable, Iterable, Seq, IndexedSeq}

  /** Indicates whether or not the `Stream` is empty.
   *
   * @return `true` if the `Stream` is empty and `false` otherwise.
   */
  def isEmpty: Boolean

  /** Gives constant time access to the first element of this `Stream`.  Using
   * the `fibs` example from earlier:
   *
   * {{{
   * println(fibs head)
   * // prints
   * // 0
   * }}}
   *
   *  @return The first element of the `Stream`.
   *  @throws java.util.NoSuchElementException if the stream is empty.
   */
  def head: A

  /** A stream consisting of the remaining elements of this stream after the
   *  first one.
   *
   *  Note that this method does not force evaluation of the `Stream` but merely
   *  returns the lazy result.
   *
   *  @return The tail of the `Stream`.
   *  @throws UnsupportedOperationException if the stream is empty.
   */
  def tail: Stream[A]

  /** Is the tail of this stream defined? */
  protected def tailDefined: Boolean

  // Implementation of abstract method in Traversable

  // New methods in Stream

  /** The stream resulting from the concatenation of this stream with the argument stream.
   *  @param rest   The stream that gets appended to this stream
   *  @return       The stream containing elements of this stream and the traversable object.
   */
  def append[B >: A](rest: => TraversableOnce[B]): Stream[B] =
    if (isEmpty) rest.toStream else cons(head, tail append rest)

  /** Forces evaluation of the whole stream and returns it.
   *
   * @note Often we use `Stream`s to represent an infinite set or series.  If
   * that's the case for your particular `Stream` then this function will never
   * return and will probably crash the VM with an `OutOfMemory` exception.
   * This function will not hang on a finite cycle, however.
   *
   *  @return The fully realized `Stream`.
   */
  def force: Stream[A] = {
    // Use standard 2x 1x iterator trick for cycle detection ("those" is slow one)
    var these, those = this
    if (!these.isEmpty) these = these.tail
    while (those ne these) {
      if (these.isEmpty) return this
      these = these.tail
      if (these.isEmpty) return this
      these = these.tail
      if (these eq those) return this
      those = those.tail
    }
    this
  }

  /** Prints elements of this stream one by one, separated by commas. */
  def print() { print(", ") }

  /** Prints elements of this stream one by one, separated by `sep`.
   *  @param sep   The separator string printed between consecutive elements.
   */
  def print(sep: String) {
    def loop(these: Stream[A], start: String) {
      Console.print(start)
      if (these.isEmpty) Console.print("empty")
      else {
        Console.print(these.head)
        loop(these.tail, sep)
      }
    }
    loop(this, "")
  }

  /** Returns the length of this `Stream`.
   *
   * @note In order to compute the length of the `Stream`, it must first be
   * fully realized, which could cause the complete evaluation of an infinite
   * series, assuming that's what your `Stream` represents.
   *
   * @return The length of this `Stream`.
   */
  override def length: Int = {
    var len = 0
    var left = this
    while (!left.isEmpty) {
      len += 1
      left = left.tail
    }
    len
  }

  // It's an imperfect world, but at least we can bottle up the
  // imperfection in a capsule.
  @inline private def asThat[That](x: AnyRef): That     = x.asInstanceOf[That]
  @inline private def asStream[B](x: AnyRef): Stream[B] = x.asInstanceOf[Stream[B]]
  @inline private def isStreamBuilder[B, That](bf: CanBuildFrom[Stream[A], B, That]) =
    bf(repr).isInstanceOf[Stream.StreamBuilder[_]]

  // Overridden methods from Traversable

  override def toStream: Stream[A] = this

  override def hasDefiniteSize: Boolean = isEmpty || {
    if (!tailDefined) false
    else {
      // Two-iterator trick (2x & 1x speed) for cycle detection.
      var those = this
      var these = tail
      while (those ne these) {
        if (these.isEmpty) return true
        if (!these.tailDefined) return false
        these = these.tail
        if (these.isEmpty) return true
        if (!these.tailDefined) return false
        these = these.tail
        if (those eq these) return false
        those = those.tail
      }
      false  // Cycle detected
    }
  }

  /** Create a new stream which contains all elements of this stream followed by
   * all elements of Traversable `that`.
   *
   * @note It's subtle why this works. We know that if the target type of the
   * [[scala.collection.mutable.Builder]] `That` is either a `Stream`, or one of
   * its supertypes, or undefined, then `StreamBuilder` will be chosen for the
   * implicit.  We recognize that fact and optimize to get more laziness.
   *
   * @note This method doesn't cause the `Stream` to be fully realized but it
   * should be noted that using the `++` operator from another collection type
   * could cause infinite realization of a `Stream`.  For example, referring to
   * the definition of `fibs` in the preamble, the following would never return:
   * `List(BigInt(12)) ++ fibs`.
   *
   * @tparam B The element type of the returned collection.'''That'''
   * @param that The [[scala.collection.GenTraversableOnce]] the be concatenated
   * to this `Stream`.
   * @return A new collection containing the result of concatenating `this` with
   * `that`.
   */
  override def ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[Stream[A], B, That]): That =
    // we assume there is no other builder factory on streams and therefore know that That = Stream[A]
    if (isStreamBuilder(bf)) asThat(
      if (isEmpty) that.toStream
      else cons(head, asStream[A](tail ++ that))
    )
    else super.++(that)(bf)

  override def +:[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Stream[A], B, That]): That =
    if (isStreamBuilder(bf)) asThat(cons(elem, this))
    else super.+:(elem)(bf)

  /**
   * Create a new stream which contains all intermediate results of applying the
   * operator to subsequent elements left to right.  `scanLeft` is analogous to
   * `foldLeft`.
   *
   * @note This works because the target type of the
   * [[scala.collection.mutable.Builder]] `That` is a `Stream`.
   *
   * @param z The initial value for the scan.
   * @param op A function that will apply operations to successive values in the
   * `Stream` against previous accumulated results.
   * @return A new collection containing the modifications from the application
   * of `op`.
   */
  override final def scanLeft[B, That](z: B)(op: (B, A) => B)(implicit bf: CanBuildFrom[Stream[A], B, That]): That =
    if (isStreamBuilder(bf)) asThat(
      if (isEmpty) Stream(z)
      else cons(z, asStream[B](tail.scanLeft(op(z, head))(op)))
    )
    else super.scanLeft(z)(op)(bf)

  /** Returns the stream resulting from applying the given function `f` to each
   * element of this stream.  This returns a lazy `Stream` such that it does not
   * need to be fully realized.
   *
   * @example {{{
   * $naturalsEx
   * naturalsFrom(1).map(_ + 10) take 5 mkString(", ")
   * // produces: "11, 12, 13, 14, 15"
   * }}}
   *
   * @tparam B The element type of the returned collection '''That'''.
   * @param f function to apply to each element.
   * @return  `f(a,,0,,), ..., f(a,,n,,)` if this sequence is `a,,0,,, ..., a,,n,,`.
   */
  override final def map[B, That](f: A => B)(implicit bf: CanBuildFrom[Stream[A], B, That]): That = {
    if (isStreamBuilder(bf)) asThat(
      if (isEmpty) Stream.Empty
      else cons(f(head), asStream[B](tail map f))
    )
    else super.map(f)(bf)
  }

  override final def collect[B, That](pf: PartialFunction[A, B])(implicit bf: CanBuildFrom[Stream[A], B, That]): That = {
    if (!isStreamBuilder(bf)) super.collect(pf)(bf)
    else {
      // this implementation avoids:
      // 1) stackoverflows (could be achieved with tailrec, too)
      // 2) out of memory errors for big streams (`this` reference can be eliminated from the stack)
      var rest: Stream[A] = this

      // Avoids calling both `pf.isDefined` and `pf.apply`.
      var newHead: B = null.asInstanceOf[B]
      val runWith = pf.runWith((b: B) => newHead = b)

      while (rest.nonEmpty && !runWith(rest.head)) rest = rest.tail

      //  without the call to the companion object, a thunk is created for the tail of the new stream,
      //  and the closure of the thunk will reference `this`
      if (rest.isEmpty) Stream.Empty.asInstanceOf[That]
      else Stream.collectedTail(newHead, rest, pf, bf).asInstanceOf[That]
    }
  }

  /** Applies the given function `f` to each element of this stream, then
   * concatenates the results.  As with `map` this function does not need to
   * realize the entire `Stream` but continues to keep it as a lazy `Stream`.
   *
   * @example {{{
   * // Let's create a Stream of Vectors, each of which contains the
   * // collection of Fibonacci numbers up to the current value.  We
   * // can then 'flatMap' that Stream.
   *
   * val fibVec: Stream[Vector[Int]] = Vector(0) #:: Vector(0, 1) #:: fibVec.zip(fibVec.tail).map(n => {
   *   n._2 ++ Vector(n._1.last + n._2.last)
   * })
   *
   * fibVec take 5 foreach println
   * // prints
   * // Vector(0)
   * // Vector(0, 1)
   * // Vector(0, 1, 1)
   * // Vector(0, 1, 1, 2)
   * // Vector(0, 1, 1, 2, 3)
   *
   * // If we now want to `flatMap` across that stream by adding 10
   * // we can see what the series turns into:
   *
   * fibVec.flatMap(_.map(_ + 10)) take 15 mkString(", ")
   * // produces: 10, 10, 11, 10, 11, 11, 10, 11, 11, 12, 10, 11, 11, 12, 13
   * }}}
   *
   * ''Note:''  Currently `flatMap` will evaluate as much of the Stream as needed
   * until it finds a non-empty element for the head, which is non-lazy.
   *
   * @tparam B The element type of the returned collection '''That'''.
   * @param f  the function to apply on each element.
   * @return  `f(a,,0,,) ::: ... ::: f(a,,n,,)` if
   *           this stream is `[a,,0,,, ..., a,,n,,]`.
   */
  override final def flatMap[B, That](f: A => GenTraversableOnce[B])(implicit bf: CanBuildFrom[Stream[A], B, That]): That =
    // we assume there is no other builder factory on streams and therefore know that That = Stream[B]
    // optimisations are not for speed, but for functionality
    // see tickets #153, #498, #2147, and corresponding tests in run/ (as well as run/stream_flatmap_odds.scala)
    if (isStreamBuilder(bf)) asThat(
      if (isEmpty) Stream.Empty
      else {
        // establish !prefix.isEmpty || nonEmptyPrefix.isEmpty
        var nonEmptyPrefix = this
        var prefix = f(nonEmptyPrefix.head).toStream
        while (!nonEmptyPrefix.isEmpty && prefix.isEmpty) {
          nonEmptyPrefix = nonEmptyPrefix.tail
          if(!nonEmptyPrefix.isEmpty)
            prefix = f(nonEmptyPrefix.head).toStream
        }

        if (nonEmptyPrefix.isEmpty) Stream.empty
        else prefix append asStream[B](nonEmptyPrefix.tail flatMap f)
      }
    )
    else super.flatMap(f)(bf)

  /** Returns all the elements of this `Stream` that satisfy the predicate `p`
   * in a new `Stream` - i.e., it is still a lazy data structure. The order of
   * the elements is preserved
   *
   *  @param p the predicate used to filter the stream.
   *  @return the elements of this stream satisfying `p`.
   *
   * @example {{{
   * $naturalsEx
   * naturalsFrom(1) filter { _ % 5 == 0 } take 10 mkString(", ")
   * // produces "5, 10, 15, 20, 25, 30, 35, 40, 45, 50"
   * }}}
   */
  override def filter(p: A => Boolean): Stream[A] = {
    // optimization: drop leading prefix of elems for which f returns false
    // var rest = this dropWhile (!p(_)) - forget DRY principle - GC can't collect otherwise
    var rest = this
    while (!rest.isEmpty && !p(rest.head)) rest = rest.tail
    // private utility func to avoid `this` on stack (would be needed for the lazy arg)
    if (rest.nonEmpty) Stream.filteredTail(rest, p)
    else Stream.Empty
  }

  override final def withFilter(p: A => Boolean): StreamWithFilter = new StreamWithFilter(p)

  /** A lazier implementation of WithFilter than TraversableLike's.
   */
  final class StreamWithFilter(p: A => Boolean) extends WithFilter(p) {

    override def map[B, That](f: A => B)(implicit bf: CanBuildFrom[Stream[A], B, That]): That = {
      def tailMap(coll: Stream[A]): Stream[B] = {
        var head: A = null.asInstanceOf[A]
        var tail: Stream[A] = coll
        while (true) {
          if (tail.isEmpty)
            return Stream.Empty
          head = tail.head
          tail = tail.tail
          if (p(head))
            return cons(f(head), tailMap(tail))
        }
        throw new RuntimeException()
      }

      if (isStreamBuilder(bf)) asThat(tailMap(Stream.this))
      else super.map(f)(bf)
    }

    override def flatMap[B, That](f: A => GenTraversableOnce[B])(implicit bf: CanBuildFrom[Stream[A], B, That]): That = {
      def tailFlatMap(coll: Stream[A]): Stream[B] = {
        var head: A = null.asInstanceOf[A]
        var tail: Stream[A] = coll
        while (true) {
          if (tail.isEmpty)
            return Stream.Empty
          head = tail.head
          tail = tail.tail
          if (p(head))
            return f(head).toStream append tailFlatMap(tail)
        }
        throw new RuntimeException()
      }

      if (isStreamBuilder(bf)) asThat(tailFlatMap(Stream.this))
      else super.flatMap(f)(bf)
    }

    override def foreach[U](f: A => U) =
      for (x <- self)
        if (p(x)) f(x)

    override def withFilter(q: A => Boolean): StreamWithFilter =
      new StreamWithFilter(x => p(x) && q(x))
  }

  /** A lazier Iterator than LinearSeqLike's. */
  override def iterator: Iterator[A] = new StreamIterator(self)

  /** Apply the given function `f` to each element of this linear sequence
   * (while respecting the order of the elements).
   *
   *  @param f The treatment to apply to each element.
   *  @note  Overridden here as final to trigger tail-call optimization, which
   *  replaces 'this' with 'tail' at each iteration. This is absolutely
   *  necessary for allowing the GC to collect the underlying stream as elements
   *  are consumed.
   *  @note  This function will force the realization of the entire stream
   *  unless the `f` throws an exception.
   */
  @tailrec
  override final def foreach[U](f: A => U) {
    if (!this.isEmpty) {
      f(head)
      tail.foreach(f)
    }
  }

  /** Stream specialization of foldLeft which allows GC to collect along the
   * way.
   *
   * @tparam B The type of value being accumulated.
   * @param z The initial value seeded into the function `op`.
   * @param op The operation to perform on successive elements of the `Stream`.
   * @return The accumulated value from successive applications of `op`.
   */
  @tailrec
  override final def foldLeft[B](z: B)(op: (B, A) => B): B = {
    if (this.isEmpty) z
    else tail.foldLeft(op(z, head))(op)
  }

  /** Stream specialization of reduceLeft which allows GC to collect
   *  along the way.
   *
   * @tparam B The type of value being accumulated.
   * @param f The operation to perform on successive elements of the `Stream`.
   * @return The accumulated value from successive applications of `f`.
   */
  override final def reduceLeft[B >: A](f: (B, A) => B): B = {
    if (this.isEmpty) throw new UnsupportedOperationException("empty.reduceLeft")
    else {
      var reducedRes: B = this.head
      var left = this.tail
      while (!left.isEmpty) {
        reducedRes = f(reducedRes, left.head)
        left = left.tail
      }
      reducedRes
    }
  }

  /** Returns all the elements of this stream that satisfy the predicate `p`
   * returning of [[scala.Tuple2]] of `Stream`s obeying the partition predicate
   * `p`. The order of the elements is preserved.
   *
   * @param p the predicate used to filter the stream.
   * @return the elements of this stream satisfying `p`.
   *
   * @example {{{
   * $naturalsEx
   * val parts = naturalsFrom(1) partition { _ % 2 == 0 }
   * parts._1 take 10 mkString ", "
   * // produces: "2, 4, 6, 8, 10, 12, 14, 16, 18, 20"
   * parts._2 take 10 mkString ", "
   * // produces: "1, 3, 5, 7, 9, 11, 13, 15, 17, 19"
   * }}}
   *
   */
  override def partition(p: A => Boolean): (Stream[A], Stream[A]) = (filter(p(_)), filterNot(p(_)))

  /** Returns a stream formed from this stream and the specified stream `that`
   * by associating each element of the former with the element at the same
   * position in the latter.
   *
   * If one of the two streams is longer than the other, its remaining elements
   * are ignored.
   *
   * The return type of this function may not be obvious.  The lazy aspect of
   * the returned value is different than that of `partition`.  In `partition`
   * we get back a [[scala.Tuple2]] of two lazy `Stream`s whereas here we get
   * back a single lazy `Stream` of [[scala.Tuple2]]s where the
   * [[scala.Tuple2]]'s type signature is `(A1, B)`.
   *
   * @tparam A1 The type of the first parameter of the zipped tuple
   * @tparam B The type of the second parameter of the zipped tuple
   * @tparam That The type of the returned `Stream`.
   * @return `Stream({a,,0,,,b,,0,,}, ...,
   *         {a,,min(m,n),,,b,,min(m,n),,)}` when
   *         `Stream(a,,0,,, ..., a,,m,,)
   *         zip Stream(b,,0,,, ..., b,,n,,)` is invoked.
   *
   * @example {{{
   * $naturalsEx
   * naturalsFrom(1) zip naturalsFrom(2) take 5 foreach println
   * // prints
   * // (1,2)
   * // (2,3)
   * // (3,4)
   * // (4,5)
   * // (5,6)
   * }}}
   */
  override final def zip[A1 >: A, B, That](that: scala.collection.GenIterable[B])(implicit bf: CanBuildFrom[Stream[A], (A1, B), That]): That =
    // we assume there is no other builder factory on streams and therefore know that That = Stream[(A1, B)]
    if (isStreamBuilder(bf)) asThat(
      if (this.isEmpty || that.isEmpty) Stream.Empty
      else cons((this.head, that.head), asStream[(A1, B)](this.tail zip that.tail))
    )
    else super.zip(that)(bf)

  /** Zips this iterable with its indices. `s.zipWithIndex` is equivalent to `s
   * zip s.indices`.
   *
   * This method is much like `zip` in that it returns a single lazy `Stream` of
   * [[scala.Tuple2]].
   *
   * @tparam A1 The type of the first element of the [[scala.Tuple2]] in the
   * resulting stream.
   * @tparam That The type of the resulting `Stream`.
   * @return `Stream({a,,0,,,0}, ..., {a,,n,,,n)}`
   *
   * @example {{{
   * $naturalsEx
   * (naturalsFrom(1) zipWithIndex) take 5 foreach println
   * // prints
   * // (1,0)
   * // (2,1)
   * // (3,2)
   * // (4,3)
   * // (5,4)
   * }}}
   */
  override def zipWithIndex[A1 >: A, That](implicit bf: CanBuildFrom[Stream[A], (A1, Int), That]): That =
    this.zip[A1, Int, That](Stream.from(0))

  /** Write all defined elements of this iterable into given string builder.
   *  The written text begins with the string `start` and is finished by the string
   *  `end`. Inside, the string representations of defined elements (w.r.t.
   *  the method `toString()`) are separated by the string `sep`. The method will
   *  not force evaluation of undefined elements. A tail of such elements will be
   * represented by a `"?"` instead.  A cyclic stream is represented by a `"..."`
   * at the point where the cycle repeats.
   *
   * @param b The [[collection.mutable.StringBuilder]] factory to which we need
   * to add the string elements.
   * @param start The prefix of the resulting string (e.g. "Stream(")
   * @param sep The separator between elements of the resulting string (e.g. ",")
   * @param end The end of the resulting string (e.g. ")")
   * @return The original [[collection.mutable.StringBuilder]] containing the
   * resulting string.
   */
  override def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder = {
    b append start
    if (!isEmpty) {
      b append head
      var cursor = this
      var n = 1
      if (cursor.tailDefined) {  // If tailDefined, also !isEmpty
        var scout = tail
        if (scout.isEmpty) {
          // Single element.  Bail out early.
          b append end
          return b
        }
        if (cursor ne scout) {
          cursor = scout
          if (scout.tailDefined) {
            scout = scout.tail
            // Use 2x 1x iterator trick for cycle detection; slow iterator can add strings
            while ((cursor ne scout) && scout.tailDefined) {
              b append sep append cursor.head
              n += 1
              cursor = cursor.tail
              scout = scout.tail
              if (scout.tailDefined) scout = scout.tail
            }
          }
        }
        if (!scout.tailDefined) {  // Not a cycle, scout hit an end
          while (cursor ne scout) {
            b append sep append cursor.head
            n += 1
            cursor = cursor.tail
          }
          if (cursor.nonEmpty) {
            b append sep append cursor.head
          }
        }
        else {
          // Cycle.
          // If we have a prefix of length P followed by a cycle of length C,
          // the scout will be at position (P%C) in the cycle when the cursor
          // enters it at P.  They'll then collide when the scout advances another
          // C - (P%C) ahead of the cursor.
          // If we run the scout P farther, then it will be at the start of
          // the cycle: (C - (P%C) + (P%C)) == C == 0.  So if another runner
          // starts at the beginning of the prefix, they'll collide exactly at
          // the start of the loop.
          var runner = this
          var k = 0
          while (runner ne scout) {
            runner = runner.tail
            scout = scout.tail
            k += 1
          }
          // Now runner and scout are at the beginning of the cycle.  Advance
          // cursor, adding to string, until it hits; then we'll have covered
          // everything once.  If cursor is already at beginning, we'd better
          // advance one first unless runner didn't go anywhere (in which case
          // we've already looped once).
          if ((cursor eq scout) && (k > 0)) {
            b append sep append cursor.head
            n += 1
            cursor = cursor.tail
          }
          while (cursor ne scout) {
            b append sep append cursor.head
            n += 1
            cursor = cursor.tail
          }
          // Subtract prefix length from total length for cycle reporting.
          // (Not currently used, but probably a good idea for the future.)
          n -= k
        }
      }
      if (!cursor.isEmpty) {
        // Either undefined or cyclic; we can check with tailDefined
        if (!cursor.tailDefined) b append sep append "?"
        else b append sep append "..."
      }
    }
    b append end
    b
  }

  override def mkString(sep: String): String = mkString("", sep, "")
  override def mkString: String = mkString("")
  override def mkString(start: String, sep: String, end: String): String = {
    this.force
    super.mkString(start, sep, end)
  }
  override def toString = super.mkString(stringPrefix + "(", ", ", ")")

  override def splitAt(n: Int): (Stream[A], Stream[A]) = (take(n), drop(n))

  /** Returns the `n` first elements of this `Stream` as another `Stream`, or
   * else the whole `Stream`, if it has less than `n` elements.
   *
   * The result of `take` is, again, a `Stream` meaning that it also does not
   * make any needless evaluations of the `Stream` itself, delaying that until
   * the usage of the resulting `Stream`.
   *
   * @param n the number of elements to take.
   * @return the `n` first elements of this stream.
   *
   * @example {{{
   * $naturalsEx
   * scala> naturalsFrom(5) take 5
   * res1: scala.collection.immutable.Stream[Int] = Stream(5, ?)
   *
   * scala> naturalsFrom(5) take 5 mkString ", "
   * // produces: "5, 6, 7, 8, 9"
   * }}}
   */
  override def take(n: Int): Stream[A] = (
    // Note that the n == 1 condition appears redundant but is not.
    // It prevents "tail" from being referenced (and its head being evaluated)
    // when obtaining the last element of the result. Such are the challenges
    // of working with a lazy-but-not-really sequence.
    if (n <= 0 || isEmpty) Stream.empty
    else if (n == 1) cons(head, Stream.empty)
    else cons(head, tail take n-1)
  )

  @tailrec final override def drop(n: Int): Stream[A] =
    if (n <= 0 || isEmpty) this
    else tail drop n-1

  /** A substream starting at index `from` and extending up to (but not including)
   *  index `until`.  This returns a `Stream` that is lazily evaluated.
   *
   * @param from    The index of the first element of the returned subsequence
   * @param until   The index of the element following the returned subsequence
   * @return A new string containing the elements requested from `start` until
   * `end`.
   *
   * @example {{{
   * naturalsFrom(0) slice(50, 60) mkString ", "
   * // produces: "50, 51, 52, 53, 54, 55, 56, 57, 58, 59"
   * }}}
   */
  override def slice(from: Int, until: Int): Stream[A] = {
    val lo = from max 0
    if (until <= lo || isEmpty) Stream.empty
    else this drop lo take (until - lo)
  }

  /** The stream without its last element.
   *
   * @return A new `Stream` containing everything but the last element.  If your
   * `Stream` represents an infinite series, this method will not return.
   *
   *  @throws UnsupportedOperationException if the stream is empty.
   */
  override def init: Stream[A] =
    if (isEmpty) super.init
    else if (tail.isEmpty) Stream.Empty
    else cons(head, tail.init)

  /** Returns the rightmost `n` elements from this iterable.
   *
   * @note Take serious caution here.  If the `Stream` represents an infinite
   * series then this function ''will not return''.  The right most elements of
   * an infinite series takes an infinite amount of time to produce.
   *
   *  @param n the number of elements to take
   *  @return The last `n` elements from this `Stream`.
   */
  override def takeRight(n: Int): Stream[A] = {
    var these: Stream[A] = this
    var lead = this drop n
    while (!lead.isEmpty) {
      these = these.tail
      lead = lead.tail
    }
    these
  }

  /**
   * @inheritdoc
   * $willTerminateInf
   */
  override def dropRight(n: Int): Stream[A] = {
    // We make dropRight work for possibly infinite streams by carrying
    // a buffer of the dropped size. As long as the buffer is full and the
    // rest is non-empty, we can feed elements off the buffer head.  When
    // the rest becomes empty, the full buffer is the dropped elements.
    def advance(stub0: List[A], stub1: List[A], rest: Stream[A]): Stream[A] = {
      if (rest.isEmpty) Stream.empty
      else if (stub0.isEmpty) advance(stub1.reverse, Nil, rest)
      else cons(stub0.head, advance(stub0.tail, rest.head :: stub1, rest.tail))
    }
    if (n <= 0) this
    else advance((this take n).toList, Nil, this drop n)
  }

  /** Returns the longest prefix of this `Stream` whose elements satisfy the
   * predicate `p`.
   *
   * @param p the test predicate.
   * @return A new `Stream` representing the values that satisfy the predicate
   * `p`.
   *
   * @example {{{
   + naturalsFrom(0) takeWhile { _ < 5 } mkString ", "
   * produces: "0, 1, 2, 3, 4"
   * }}}
   */
  override def takeWhile(p: A => Boolean): Stream[A] =
    if (!isEmpty && p(head)) cons(head, tail takeWhile p)
    else Stream.Empty

  /** Returns the a `Stream` representing the longest suffix of this iterable
   * whose first element does not satisfy the predicate `p`.
   *
   * @note This method realizes the entire `Stream` beyond the truth value of
   * the predicate `p`.
   *
   * @param p the test predicate.
   * @return A new `Stream` representing the results of applying `p` to the
   * original `Stream`.
   *
   * @example {{{
   * // Assume we have a Stream that takes the first 20 natural numbers
   * def naturalsLt50(i: Int): Stream[Int] = i #:: { if (i < 20) naturalsLt50(i * + 1) else Stream.Empty }
   * naturalsLt50(0) dropWhile { _ < 10 }
   * // produces: "10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20"
   * }}}
   */
  override def dropWhile(p: A => Boolean): Stream[A] = {
    var these: Stream[A] = this
    while (!these.isEmpty && p(these.head)) these = these.tail
    these
  }

  /** Builds a new stream from this stream in which any duplicates (as
   * determined by `==`) have been removed. Among duplicate elements, only the
   * first one is retained in the resulting `Stream`.
   *
   * @return A new `Stream` representing the result of applying distinctness to
   * the original `Stream`.
   * @example {{{
   * // Creates a Stream where every element is duplicated
   * def naturalsFrom(i: Int): Stream[Int] = i #:: { i #:: naturalsFrom(i + 1) }
   * naturalsFrom(1) take 6 mkString ", "
   * // produces: "1, 1, 2, 2, 3, 3"
   * (naturalsFrom(1) distinct) take 6 mkString ", "
   * // produces: "1, 2, 3, 4, 5, 6"
   * }}}
   */
  override def distinct: Stream[A] = {
    // This should use max memory proportional to N, whereas
    // recursively calling distinct on the tail is N^2.
    def loop(seen: Set[A], rest: Stream[A]): Stream[A] = {
      if (rest.isEmpty) rest
      else if (seen(rest.head)) loop(seen, rest.tail)
      else cons(rest.head, loop(seen + rest.head, rest.tail))
    }
    loop(Set(), this)
  }

  /** Returns a new sequence of given length containing the elements of this
   * sequence followed by zero or more occurrences of given elements.
   *
   * @tparam B The type of the value to pad with.
   * @tparam That The type contained within the resulting `Stream`.
   * @param len The number of elements to pad into the `Stream`.
   * @param elem The value of the type `B` to use for padding.
   * @return A new `Stream` representing the collection with values padding off
   * to the end. If your `Stream` represents an infinite series, this method will
   * not return.
   * @example {{{
   * def naturalsFrom(i: Int): Stream[Int] = i #:: { if (i < 5) naturalsFrom(i + 1) else Stream.Empty }
   * naturalsFrom(1) padTo(10, 0) foreach println
   * // prints
   * // 1
   * // 2
   * // 3
   * // 4
   * // 5
   * // 0
   * // 0
   * // 0
   * // 0
   * // 0
   * }}}
   */
  override def padTo[B >: A, That](len: Int, elem: B)(implicit bf: CanBuildFrom[Stream[A], B, That]): That = {
    def loop(len: Int, these: Stream[A]): Stream[B] =
      if (these.isEmpty) Stream.fill(len)(elem)
      else cons(these.head, loop(len - 1, these.tail))

    if (isStreamBuilder(bf)) asThat(loop(len, this))
    else super.padTo(len, elem)(bf)
  }

  /** A list consisting of all elements of this list in reverse order.
   *
   * @note This function must realize the entire `Stream` in order to perform
   * this operation so if your `Stream` represents an infinite sequence then
   * this function will never return.
   *
   * @return A new `Stream` containing the representing of the original `Stream`
   * in reverse order.
   *
   * @example {{{
   * def naturalsFrom(i: Int): Stream[Int] = i #:: { if (i < 5) naturalsFrom(i + 1) else Stream.Empty }
   * (naturalsFrom(1) reverse) foreach println
   * // prints
   * // 5
   * // 4
   * // 3
   * // 2
   * // 1
   * }}}
   */
  override def reverse: Stream[A] = {
    var result: Stream[A] = Stream.Empty
    var these = this
    while (!these.isEmpty) {
      val r = Stream.consWrapper(result).#::(these.head)
      r.tail // force it!
      result = r
      these = these.tail
    }
    result
  }

  /** Evaluates and concatenates all elements within the `Stream` into a new
   * flattened `Stream`.
   *
   * @tparam B The type of the elements of the resulting `Stream`.
   * @return A new `Stream` of type `B` of the flattened elements of `this`
   * `Stream`.
   * @example {{{
   * val sov: Stream[Vector[Int]] = Vector(0) #:: Vector(0, 0) #:: sov.zip(sov.tail).map { n => n._1 ++ n._2 }
   * sov.flatten take 10 mkString ", "
   * // produces: "0, 0, 0, 0, 0, 0, 0, 0, 0, 0"
   * }}}
   */
  override def flatten[B](implicit asTraversable: A => /*<:<!!!*/ GenTraversableOnce[B]): Stream[B] = {
    var st: Stream[A] = this
    while (st.nonEmpty) {
      val h = asTraversable(st.head)
      if (h.isEmpty) {
        st = st.tail
      } else {
        return h.toStream #::: st.tail.flatten
      }
    }
    Stream.empty
  }

  override def view = new StreamView[A, Stream[A]] {
    protected lazy val underlying = self.repr
    override def iterator = self.iterator
    override def length = self.length
    override def apply(idx: Int) = self.apply(idx)
  }

  /** Defines the prefix of this object's `toString` representation as `Stream`.
   */
  override def stringPrefix = "Stream"

}

/** A specialized, extra-lazy implementation of a stream iterator, so it can
 *  iterate as lazily as it traverses the tail.
 */
final class StreamIterator[+A] private() extends AbstractIterator[A] with Iterator[A] {
  def this(self: Stream[A]) {
    this()
    these = new LazyCell(self)
  }

  // A call-by-need cell.
  class LazyCell(st: => Stream[A]) {
    lazy val v = st
  }

  private var these: LazyCell = _

  def hasNext: Boolean = these.v.nonEmpty
  def next(): A =
    if (isEmpty) Iterator.empty.next()
    else {
      val cur    = these.v
      val result = cur.head
      these = new LazyCell(cur.tail)
      result
    }
  override def toStream = {
    val result = these.v
    these = new LazyCell(Stream.empty)
    result
  }
  override def toList   = toStream.toList
}

/**
 * The object `Stream` provides helper functions to manipulate streams.
 *
 * @author Martin Odersky, Matthias Zenger
 * @version 1.1 08/08/03
 * @since   2.8
 */
object Stream extends SeqFactory[Stream] {

  /** The factory for streams.
   *  @note Methods such as map/flatMap will not invoke the `Builder` factory,
   *        but will return a new stream directly, to preserve laziness.
   *        The new stream is then cast to the factory's result type.
   *        This means that every CanBuildFrom that takes a
   *        Stream as its From type parameter must yield a stream as its result parameter.
   *        If that assumption is broken, cast errors might result.
   */
  class StreamCanBuildFrom[A] extends GenericCanBuildFrom[A]

  implicit def canBuildFrom[A]: CanBuildFrom[Coll, A, Stream[A]] = new StreamCanBuildFrom[A]

  /** Creates a new builder for a stream */
  def newBuilder[A]: Builder[A, Stream[A]] = new StreamBuilder[A]

  import scala.collection.{Iterable, Seq, IndexedSeq}

  /** A builder for streams
   *  @note This builder is lazy only in the sense that it does not go downs the spine
   *        of traversables that are added as a whole. If more laziness can be achieved,
   *        this builder should be bypassed.
   */
  class StreamBuilder[A] extends scala.collection.mutable.LazyBuilder[A, Stream[A]] {
    def result: Stream[A] = parts.toStream flatMap (_.toStream)
  }

  object Empty extends Stream[Nothing] {
    override def isEmpty = true
    override def head = throw new NoSuchElementException("head of empty stream")
    override def tail = throw new UnsupportedOperationException("tail of empty stream")
    def tailDefined = false
  }

  /** The empty stream */
  override def empty[A]: Stream[A] = Empty

  /** A stream consisting of given elements */
  override def apply[A](xs: A*): Stream[A] = xs.toStream

  /** A wrapper class that adds `#::` for cons and `#:::` for concat as operations
   *  to streams.
   */
  class ConsWrapper[A](tl: => Stream[A]) {
    /** Construct a stream consisting of a given first element followed by elements
     *  from a lazily evaluated Stream.
     */
    def #::(hd: A): Stream[A] = cons(hd, tl)
    /** Construct a stream consisting of the concatenation of the given stream and
     *  a lazily evaluated Stream.
     */
    def #:::(prefix: Stream[A]): Stream[A] = prefix append tl
  }

  /** A wrapper method that adds `#::` for cons and `#:::` for concat as operations
   *  to streams.
   */
  implicit def consWrapper[A](stream: => Stream[A]): ConsWrapper[A] =
    new ConsWrapper[A](stream)

  /** An extractor that allows to pattern match streams with `#::`.
   */
  object #:: {
    def unapply[A](xs: Stream[A]): Option[(A, Stream[A])] =
      if (xs.isEmpty) None
      else Some((xs.head, xs.tail))
  }

  /** An alternative way of building and matching Streams using Stream.cons(hd, tl).
   */
  object cons {

    /** A stream consisting of a given first element and remaining elements
     *  @param hd   The first element of the result stream
     *  @param tl   The remaining elements of the result stream
     */
    def apply[A](hd: A, tl: => Stream[A]) = new Cons(hd, tl)

    /** Maps a stream to its head and tail */
    def unapply[A](xs: Stream[A]): Option[(A, Stream[A])] = #::.unapply(xs)
  }

  /** A lazy cons cell, from which streams are built. */
  @SerialVersionUID(-602202424901551803L)
  final class Cons[+A](hd: A, tl: => Stream[A]) extends Stream[A] {
    override def isEmpty = false
    override def head = hd
    @volatile private[this] var tlVal: Stream[A] = _
    @volatile private[this] var tlGen = tl _
    def tailDefined: Boolean = tlGen eq null
    override def tail: Stream[A] = {
      if (!tailDefined)
        synchronized {
          if (!tailDefined) {
            tlVal = tlGen()
            tlGen = null
          }
        }

      tlVal
    }
  }

  /** An infinite stream that repeatedly applies a given function to a start value.
   *
   *  @param start the start value of the stream
   *  @param f     the function that's repeatedly applied
   *  @return      the stream returning the infinite sequence of values `start, f(start), f(f(start)), ...`
   */
  def iterate[A](start: A)(f: A => A): Stream[A] = cons(start, iterate(f(start))(f))

  override def iterate[A](start: A, len: Int)(f: A => A): Stream[A] =
    iterate(start)(f) take len

  /**
   * Create an infinite stream starting at `start` and incrementing by
   * step `step`.
   *
   * @param start the start value of the stream
   * @param step the increment value of the stream
   * @return the stream starting at value `start`.
   */
  def from(start: Int, step: Int): Stream[Int] =
    cons(start, from(start+step, step))

  /**
   * Create an infinite stream starting at `start` and incrementing by `1`.
   *
   * @param start the start value of the stream
   * @return the stream starting at value `start`.
   */
  def from(start: Int): Stream[Int] = from(start, 1)

  /**
   * Create an infinite stream containing the given element expression (which
   * is computed for each occurrence).
   *
   * @param elem the element composing the resulting stream
   * @return the stream containing an infinite number of elem
   */
  def continually[A](elem: => A): Stream[A] = cons(elem, continually(elem))

  override def fill[A](n: Int)(elem: => A): Stream[A] =
    if (n <= 0) Empty else cons(elem, fill(n-1)(elem))

  override def tabulate[A](n: Int)(f: Int => A): Stream[A] = {
    def loop(i: Int): Stream[A] =
      if (i >= n) Empty else cons(f(i), loop(i+1))
    loop(0)
  }

  override def range[T: Integral](start: T, end: T, step: T): Stream[T] = {
    val num = implicitly[Integral[T]]
    import num._

    if (if (step < zero) start <= end else end <= start) Empty
    else cons(start, range(start + step, end, step))
  }

  private[immutable] def filteredTail[A](stream: Stream[A], p: A => Boolean) = {
    cons(stream.head, stream.tail filter p)
  }

  private[immutable] def collectedTail[A, B, That](head: B, stream: Stream[A], pf: PartialFunction[A, B], bf: CanBuildFrom[Stream[A], B, That]) = {
    cons(head, stream.tail.collect(pf)(bf).asInstanceOf[Stream[B]])
  }
}