summaryrefslogtreecommitdiff
path: root/src/library/scala/collection/mutable/HashTable.scala
blob: f4a3d8dfa5b3acb677ceadd5e82898a62101e923 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2010, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://www.scala-lang.org/           **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */



package scala.collection
package mutable

/** This class can be used to construct data structures that are based
 *  on hashtables. Class `HashTable[A]` implements a hashtable
 *  that maps keys of type `A` to values of the fully abstract
 *  member type `Entry`. Classes that make use of `HashTable`
 *  have to provide an implementation for `Entry`.
 *
 *  There are mainly two parameters that affect the performance of a hashtable:
 *  the <i>initial size</i> and the <i>load factor</i>. The <i>size</i>
 *  refers to the number of <i>buckets</i> in the hashtable, and the <i>load
 *  factor</i> is a measure of how full the hashtable is allowed to get before
 *  its size is automatically doubled. Both parameters may be changed by
 *  overriding the corresponding values in class `HashTable`.
 *
 *  @author  Matthias Zenger
 *  @author  Martin Odersky
 *  @version 2.0, 31/12/2006
 *  @since   1
 *
 *  @tparam A     type of the elements contained in this hash table.
 */
trait HashTable[A] {
  import HashTable._

  protected type Entry >: Null <: HashEntry[A, Entry]

  /** The load factor for the hash table (in 0.001 step).
   */
  protected def loadFactor: Int = 750 // corresponds to 75%
  protected final val loadFactorDenum = 1000;

  /** The initial size of the hash table.
   */
  protected def initialSize: Int = 16

  /** The initial threshold
   */
  protected def initialThreshold: Int = newThreshold(initialCapacity)

  @transient private[collection] var _loadFactor = loadFactor

  /** The actual hash table.
   */
  @transient protected var table: Array[HashEntry[A, Entry]] = new Array(initialCapacity)

  /** The number of mappings contained in this hash table.
   */
  @transient protected var tableSize: Int = 0

  /** The next size value at which to resize (capacity * load factor).
   */
  @transient protected var threshold: Int = initialThreshold

  private def initialCapacity = capacity(initialSize)

  /**
   * Initializes the collection from the input stream. `f` will be called for each key/value pair
   * read from the input stream in the order determined by the stream. This is useful for
   * structures where iteration order is important (e.g. LinkedHashMap).
   */
  private[collection] def init[B](in: java.io.ObjectInputStream, f: (A, B) => Entry) {
    in.defaultReadObject

    _loadFactor = in.readInt
    assert(_loadFactor > 0)

    val size = in.readInt
    assert(size >= 0)

    //val smDefined = in.readBoolean

    table = new Array(capacity(size * loadFactorDenum / _loadFactor))
    threshold = newThreshold(table.size)

    //if (smDefined) sizeMapInit(table.size)

    var index = 0
    while (index < size) {
      addEntry(f(in.readObject.asInstanceOf[A], in.readObject.asInstanceOf[B]))
      index += 1
    }
  }

  /**
   * Serializes the collection to the output stream by saving the load factor, collection
   * size, collection keys and collection values. `value` is responsible for providing a value
   * from an entry.
   *
   * `foreach` determines the order in which the key/value pairs are saved to the stream. To
   * deserialize, `init` should be used.
   */
  private[collection] def serializeTo[B](out: java.io.ObjectOutputStream, value: Entry => B) {
    out.defaultWriteObject
    out.writeInt(loadFactor)
    out.writeInt(tableSize)
    //out.writeBoolean(isSizeMapDefined)
    foreachEntry { entry =>
      out.writeObject(entry.key)
      out.writeObject(value(entry))
    }
  }

  private def capacity(expectedSize: Int) = if (expectedSize == 0) 1 else powerOfTwo(expectedSize)

  /** Find entry with given key in table, null if not found.
   */
  protected def findEntry(key: A): Entry = {
    val h = index(elemHashCode(key))
    var e = table(h).asInstanceOf[Entry]
    while (e != null && !elemEquals(e.key, key)) e = e.next
    e
  }

  /** Add entry to table
   *  pre: no entry with same key exists
   */
  protected def addEntry(e: Entry) {
    val h = index(elemHashCode(e.key))
    e.next = table(h).asInstanceOf[Entry]
    table(h) = e
    tableSize = tableSize + 1
    sizeMapAdd(h)
    if (tableSize > threshold)
      resize(2 * table.length)
  }

  /** Remove entry from table if present.
   */
  protected def removeEntry(key: A) : Entry = {
    val h = index(elemHashCode(key))
    var e = table(h).asInstanceOf[Entry]
    if (e != null) {
      if (elemEquals(e.key, key)) {
        table(h) = e.next
        tableSize = tableSize - 1
        sizeMapRemove(h)
        return e
      } else {
        var e1 = e.next
        while (e1 != null && !elemEquals(e1.key, key)) {
          e = e1
          e1 = e1.next
        }
        if (e1 != null) {
          e.next = e1.next
          tableSize = tableSize - 1
          sizeMapRemove(h)
          return e1
        }
      }
    }
    null
  }

  /** An iterator returning all entries.
   */
  protected def entriesIterator: Iterator[Entry] = new Iterator[Entry] {
    val iterTable = table
    var idx = table.length - 1
    var es = iterTable(idx).asInstanceOf[Entry]
    scan()
    def hasNext = es != null
    def next = {
      val res = es
      es = es.next
      scan()
      res
    }
    def scan() {
      while (es == null && idx > 0) {
        idx = idx - 1
        es = iterTable(idx).asInstanceOf[Entry]
      }
    }
  }

  /*
   * We should implement this as a primitive operation over the underlying array, but it can
   * cause a behaviour change in edge cases where:
   * - Someone modifies a map during iteration
   * - The insertion point is close to the iteration point.
   *
   * The reason this happens is that the iterator prefetches the following element before
   * returning from next (to simplify the implementation of hasNext) while the natural
   * implementation of foreach does not.
   *
   * It should be mentioned that modifying a map during iteration leads to unpredictable
   * results with either implementation.
   */
  protected final def foreachEntry[C](f: Entry => C) { entriesIterator.foreach(f) }

  /** An iterator returning all entries */
  @deprecated("use entriesIterator instead")
  protected def entries: Iterator[Entry] = entriesIterator

  /** Remove all entries from table
   */
  protected def clearTable() {
    var i = table.length - 1
    while (i >= 0) { table(i) = null; i = i - 1 }
    tableSize = 0
    sizeMapReset(0)
  }

  private def newThreshold(size: Int) =
    ((size.toLong * _loadFactor)/loadFactorDenum).toInt

  private def resize(newSize: Int) {
    val oldTable = table
    table = new Array(newSize)
    sizeMapReset(table.length)
    var i = oldTable.length - 1
    while (i >= 0) {
      var e = oldTable(i)
      while (e != null) {
        val h = index(elemHashCode(e.key))
        val e1 = e.next
        e.next = table(h).asInstanceOf[Entry]
        table(h) = e
        e = e1
        sizeMapAdd(h)
      }
      i = i - 1
    }
    threshold = newThreshold(newSize)
  }

  protected def sizemap: Array[Int] = null
  private final def sizeMapBucketSize = 1 << 5

  /*
   * The following three sizeMap* functions (Add, Remove, Reset)
   * are used to update the size map of the hash table.
   *
   * The size map logically divides the hash table into `sizeMapBucketSize` element buckets
   * by keeping an integer entry for each such bucket. Each integer entry simply denotes
   * the number of elements in the corresponding bucket.
   *
   * By default the size map is not initialized, so these methods don't do anything, thus,
   * their impact on hash table performance is negligible. However, if the hash table
   * is converted into a parallel hash table, the size map is initialized, as it will be needed
   * there.
   */
  protected def sizeMapAdd(h: Int) = if (sizemap ne null) {
    // TODO
  }

  protected def sizeMapRemove(h: Int) = if (sizemap ne null) {
    // TODO
  }

  protected def sizeMapReset(nTableLength: Int) = if (sizemap ne null) {
    // TODO
  }

  // protected def sizeMapInit(nTableLength: Int) = sizemap = new Array[Int](nTableLength / sizeMapBucketSize)

  // protected def sizeMapDisable = sizemap = null

  protected def isSizeMapDefined = sizemap ne null

  protected def elemEquals(key1: A, key2: A): Boolean = (key1 == key2)

  protected def elemHashCode(key: A) = if (key == null) 0 else key.##

  protected final def improve(hcode: Int) = {
    var h: Int = hcode + ~(hcode << 9)
    h = h ^ (h >>> 14)
    h = h + (h << 4)
    h ^ (h >>> 10)
  }

  // Note:
  // we take the most significant bits of the hashcode, not the lower ones
  // this is of crucial importance when populating the table in parallel
  protected final def index(hcode: Int) = {
    val ones = table.length - 1
    (improve(hcode) >> (32 - java.lang.Integer.bitCount(ones))) & ones
  }
}

private[collection] object HashTable {

  /**
   * Returns a power of two >= `target`.
   */
  private[collection] def powerOfTwo(target: Int): Int = {
    /* See http://bits.stephan-brumme.com/roundUpToNextPowerOfTwo.html */
    var c = target - 1;
    c |= c >>>  1;
    c |= c >>>  2;
    c |= c >>>  4;
    c |= c >>>  8;
    c |= c >>> 16;
    c + 1;
  }
}