summaryrefslogtreecommitdiff
path: root/src/library/scala/reflect/base/Types.scala
blob: 6e8ffc79847a089e8a0e8d1bc5002fc3b9582e07 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
package scala.reflect
package base

trait Types { self: Universe =>

  /** The base API that all types support */
  abstract class TypeBase {

    /** The term symbol associated with the type, or `NoSymbol` for types
     *  that do not refer to a term symbol.
     */
    def termSymbol: Symbol

    /** The type symbol associated with the type, or `NoSymbol` for types
     *  that do not refer to a type symbol.
     */
    def typeSymbol: Symbol
  }

  /** The type of Scala types, and also Scala type signatures.
   *  (No difference is internally made between the two).
   */
  type Type >: Null <: TypeBase

  /** A tag that preserves the identity of the `Type` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val TypeTagg: ClassTag[Type] // [Eugene++] rename!

  /** This constant is used as a special value that indicates that no meaningful type exists.
   */
  val NoType: Type

  /** This constant is used as a special value denoting the empty prefix in a path dependent type.
   *  For instance `x.type` is represented as `SingleType(NoPrefix, <x>)`, where `<x>` stands for
   *  the symbol for `x`.
   */
  val NoPrefix: Type

  /** The type of Scala singleton types, i.e. types that are inhabited
   *  by only one nun-null value. These include types of the forms
   *  {{{
   *    C.this.type
   *    C.super.type
   *    x.type
   *  }}}
   *  as well as constant types.
   */
  type SingletonType >: Null <: Type

  /** A tag that preserves the identity of the `SingletonType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val SingletonTypeTag: ClassTag[SingletonType]

  /** The `ThisType` type describes types of the form on the left with the
   *  correspnding ThisType representations to the right.
   *  {{{
   *     C.this.type             ThisType(C)
   *  }}}
   */
  type ThisType >: Null <: AnyRef with SingletonType

  /** A tag that preserves the identity of the `ThisType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val ThisTypeTag: ClassTag[ThisType]

  /** The constructor/deconstructor for `ThisType` instances. */
  val ThisType: ThisTypeExtractor

  /** An extractor class to create and pattern match with syntax `ThisType(sym)`
   *  where `sym` is the class prefix of the this type.
   */
  abstract class ThisTypeExtractor {
    def apply(sym: Symbol): Type // not ThisTypebecause of implementation details
    def unapply(tpe: ThisType): Option[Symbol]
  }

  /** The `SingleType` type describes types of any of the forms on the left,
   *  with their TypeRef representations to the right.
   *  {{{
   *     (T # x).type             SingleType(T, x)
   *     p.x.type                 SingleType(p.type, x)
   *     x.type                   SingleType(NoPrefix, x)
   *  }}}
   */
  type SingleType >: Null <: AnyRef with SingletonType

  /** A tag that preserves the identity of the `SingleType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val SingleTypeTag: ClassTag[SingleType]

  /** The constructor/deconstructor for `SingleType` instances. */
  val SingleType: SingleTypeExtractor

  /** An extractor class to create and pattern match with syntax `SingleType(pre, sym)`
   *  Here, `pre` is the prefix of the single-type, and `sym` is the stable value symbol
   *  referred to by the single-type.
   */
  abstract class SingleTypeExtractor {
    def apply(pre: Type, sym: Symbol): Type // not SingleTypebecause of implementation details
    def unapply(tpe: SingleType): Option[(Type, Symbol)]
  }

  /** The `SuperType` type is not directly written, but arises when `C.super` is used
   *  as a prefix in a `TypeRef` or `SingleType`. It's internal presentation is
   *  {{{
   *     SuperType(thistpe, supertpe)
   *  }}}
   *  Here, `thistpe` is the type of the corresponding this-type. For instance,
   *  in the type arising from C.super, the `thistpe` part would be `ThisType(C)`.
   *  `supertpe` is the type of the super class referred to by the `super`.
   */
  type SuperType >: Null <: AnyRef with SingletonType

  /** A tag that preserves the identity of the `SuperType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val SuperTypeTag: ClassTag[SuperType]

  /** The constructor/deconstructor for `SuperType` instances. */
  val SuperType: SuperTypeExtractor

  /** An extractor class to create and pattern match with syntax `SingleType(thistpe, supertpe)`
   */
  abstract class SuperTypeExtractor {
    def apply(thistpe: Type, supertpe: Type): Type // not SuperTypebecause of implementation details
    def unapply(tpe: SuperType): Option[(Type, Type)]
  }

  /** The `ConstantType` type is not directly written in user programs, but arises as the type of a constant.
   *  The REPL expresses constant types like   Int(11).  Here are some constants with their types.
   *  {{{
   *     1           ConstantType(Constant(1))
   *     "abc"       ConstantType(Constant("abc"))
   *  }}}
   */
  type ConstantType >: Null <: AnyRef with SingletonType

  /** A tag that preserves the identity of the `ConstantType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val ConstantTypeTag: ClassTag[ConstantType]

  /** The constructor/deconstructor for `ConstantType` instances. */
  val ConstantType: ConstantTypeExtractor

  /** An extractor class to create and pattern match with syntax `ConstantType(constant)`
   *  Here, `constant` is the constant value represented by the type.
   */
  abstract class ConstantTypeExtractor {
    def apply(value: Constant): ConstantType
    def unapply(tpe: ConstantType): Option[Constant]
  }

  /** The `TypeRef` type describes types of any of the forms on the left,
   *  with their TypeRef representations to the right.
   *  {{{
   *     T # C[T_1, ..., T_n]      TypeRef(T, C, List(T_1, ..., T_n))
   *     p.C[T_1, ..., T_n]        TypeRef(p.type, C, List(T_1, ..., T_n))
   *     C[T_1, ..., T_n]          TypeRef(NoPrefix, C, List(T_1, ..., T_n))
   *     T # C                     TypeRef(T, C, Nil)
   *     p.C                       TypeRef(p.type, C, Nil)
   *     C                         TypeRef(NoPrefix, C, Nil)
   *  }}}
   */
  type TypeRef >: Null <: AnyRef with Type

  /** A tag that preserves the identity of the `TypeRef` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val TypeRefTag: ClassTag[TypeRef]

  /** The constructor/deconstructor for `TypeRef` instances. */
  val TypeRef: TypeRefExtractor

  /** An extractor class to create and pattern match with syntax `TypeRef(pre, sym, args)`
   *  Here, `pre` is the prefix of the type reference, `sym` is the symbol
   *  referred to by the type reference, and `args` is a possible empty list of
   *  type argumenrts.
   */
  abstract class TypeRefExtractor {
    def apply(pre: Type, sym: Symbol, args: List[Type]): Type // not TypeRefbecause of implementation details
    def unapply(tpe: TypeRef): Option[(Type, Symbol, List[Type])]
  }

  /** A subtype of Type representing refined types as well as `ClassInfo` signatures.
   */
  type CompoundType >: Null <: AnyRef with Type

  /** A tag that preserves the identity of the `CompoundType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val CompoundTypeTag: ClassTag[CompoundType]

  /** The `RefinedType` type defines types of any of the forms on the left,
   *  with their RefinedType representations to the right.
   *  {{{
   *     P_1 with ... with P_m { D_1; ...; D_n}      RefinedType(List(P_1, ..., P_m), Scope(D_1, ..., D_n))
   *     P_1 with ... with P_m                       RefinedType(List(P_1, ..., P_m), Scope())
   *     { D_1; ...; D_n}                            RefinedType(List(AnyRef), Scope(D_1, ..., D_n))
   *  }}}
   */
  type RefinedType >: Null <: AnyRef with CompoundType

  /** A tag that preserves the identity of the `RefinedType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val RefinedTypeTag: ClassTag[RefinedType]

  /** The constructor/deconstructor for `RefinedType` instances. */
  val RefinedType: RefinedTypeExtractor

  /** An extractor class to create and pattern match with syntax `RefinedType(parents, decls)`
   *  Here, `parents` is the list of parent types of the class, and `decls` is the scope
   *  containing all declarations in the class.
   */
  abstract class RefinedTypeExtractor {
    def apply(parents: List[Type], decls: Scope): RefinedType

    /** An alternative constructor that passes in the synthetic classs symbol
     *  that backs the refined type. (Normally, a fresh class symbol is created automatically).
     */
    def apply(parents: List[Type], decls: Scope, clazz: Symbol): RefinedType
    def unapply(tpe: RefinedType): Option[(List[Type], Scope)]
  }

  /** The `ClassInfo` type signature is used to define parents and declarations
   *  of classes, traits, and objects. If a class, trait, or object C is declared like this
   *  {{{
   *     C extends P_1 with ... with P_m { D_1; ...; D_n}
   *  }}}
   *  its `ClassInfo` type has the following form:
   *  {{{
   *     ClassInfo(List(P_1, ..., P_m), Scope(D_1, ..., D_n), C)
   *  }}}
   */
  type ClassInfoType >: Null <: AnyRef with CompoundType

  /** A tag that preserves the identity of the `ClassInfoType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val ClassInfoTypeTag: ClassTag[ClassInfoType]

  /** The constructor/deconstructor for `ClassInfoType` instances. */
  val ClassInfoType: ClassInfoTypeExtractor

  /** An extractor class to create and pattern match with syntax `ClassInfo(parents, decls, clazz)`
   *  Here, `parents` is the list of parent types of the class, `decls` is the scope
   *  containing all declarations in the class, and `clazz` is the symbol of the class
   *  itself.
   */
  abstract class ClassInfoTypeExtractor {
    def apply(parents: List[Type], decls: Scope, typeSymbol: Symbol): ClassInfoType
    def unapply(tpe: ClassInfoType): Option[(List[Type], Scope, Symbol)]
  }

  /** The `MethodType` type signature is used to indicate parameters and result type of a method
   */
  type MethodType >: Null <: AnyRef with Type

  /** A tag that preserves the identity of the `MethodType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val MethodTypeTag: ClassTag[MethodType]

  /** The constructor/deconstructor for `MethodType` instances. */
  val MethodType: MethodTypeExtractor

  /** An extractor class to create and pattern match with syntax `MethodType(params, respte)`
   *  Here, `params` is a potentially empty list of parameter symbols of the method,
   *  and `restpe` is the result type of the method. If the method is curried, `restpe` would
   *  be another `MethodType`.
   *  Note: `MethodType(Nil, Int)` would be the type of a method defined with an empty parameter list.
   *  {{{
   *     def f(): Int
   *  }}}
   *  If the method is completely parameterless, as in
   *  {{{
   *     def f: Int
   *  }}}
   *  its type is a `NullaryMethodType`.
   */
  abstract class MethodTypeExtractor {
    def apply(params: List[Symbol], resultType: Type): MethodType
    def unapply(tpe: MethodType): Option[(List[Symbol], Type)]
  }

  /** The `NullaryMethodType` type signature is used for parameterless methods
   *  with declarations of the form `def foo: T`
   */
  type NullaryMethodType >: Null <: AnyRef with Type

  /** A tag that preserves the identity of the `NullaryMethodType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val NullaryMethodTypeTag: ClassTag[NullaryMethodType]

  /** The constructor/deconstructor for `NullaryMethodType` instances. */
  val NullaryMethodType: NullaryMethodTypeExtractor

  /** An extractor class to create and pattern match with syntax `NullaryMethodType(resultType)`.
   *  Here, `resultType` is the result type of the parameterless method.
   */
  abstract class NullaryMethodTypeExtractor {
    def apply(resultType: Type): NullaryMethodType
    def unapply(tpe: NullaryMethodType): Option[(Type)]
  }

  /** The `PolyType` type signature is used for polymorphic methods
   *  that have at least one type parameter.
   */
  type PolyType >: Null <: AnyRef with Type

  /** A tag that preserves the identity of the `PolyType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val PolyTypeTag: ClassTag[PolyType]

  /** The constructor/deconstructor for `PolyType` instances. */
  val PolyType: PolyTypeExtractor

  /** An extractor class to create and pattern match with syntax `PolyType(typeParams, resultType)`.
   *  Here, `typeParams` are the type parameters of the method and `resultType`
   *  is the type signature following the type parameters.
   */
  abstract class PolyTypeExtractor {
    def apply(typeParams: List[Symbol], resultType: Type): PolyType
    def unapply(tpe: PolyType): Option[(List[Symbol], Type)]
  }

  /** The `ExistentialType` type signature is used for existential types and
   *  wildcard types.
   */
  type ExistentialType >: Null <: AnyRef with Type

  /** A tag that preserves the identity of the `ExistentialType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val ExistentialTypeTag: ClassTag[ExistentialType]

  /** The constructor/deconstructor for `ExistentialType` instances. */
  val ExistentialType: ExistentialTypeExtractor

  /** An extractor class to create and pattern match with syntax
   *  `ExistentialType(quantified, underlying)`.
   *  Here, `quantified` are the type variables bound by the existential type and `underlying`
   *  is the type that's existentially quantified.
   */
  abstract class ExistentialTypeExtractor {
    def apply(quantified: List[Symbol], underlying: Type): ExistentialType
    def unapply(tpe: ExistentialType): Option[(List[Symbol], Type)]
  }

  /** The `AnnotatedType` type signature is used for annotated types of the
   *  for `<type> @<annotation>`.
   */
  type AnnotatedType >: Null <: AnyRef with Type

  /** A tag that preserves the identity of the `AnnotatedType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val AnnotatedTypeTag: ClassTag[AnnotatedType]

  /** The constructor/deconstructor for `AnnotatedType` instances. */
  val AnnotatedType: AnnotatedTypeExtractor

  /** An extractor class to create and pattern match with syntax
   * `AnnotatedType(annotations, underlying, selfsym)`.
   *  Here, `annotations` are the annotations decorating the underlying type `underlying`.
   *  `selfSym` is a symbol representing the annotated type itself.
   */
  abstract class AnnotatedTypeExtractor {
    def apply(annotations: List[AnnotationInfo], underlying: Type, selfsym: Symbol): AnnotatedType
    def unapply(tpe: AnnotatedType): Option[(List[AnnotationInfo], Type, Symbol)]
  }

  /** The `TypeBounds` type signature is used to indicate lower and upper type bounds
   *  of type parameters and abstract types. It is not a first-class type.
   *  If an abstract type or type parameter is declared with any of the forms
   *  on the left, its type signature is the TypeBounds type on the right.
   *  {{{
   *     T >: L <: U               TypeBounds(L, U)
   *     T >: L                    TypeBounds(L, Any)
   *     T <: U                    TypeBounds(Nothing, U)
   *  }}}
   */
  type TypeBounds >: Null <: AnyRef with Type

  /** A tag that preserves the identity of the `TypeBounds` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val TypeBoundsTag: ClassTag[TypeBounds]

  /** The constructor/deconstructor for `TypeBounds` instances. */
  val TypeBounds: TypeBoundsExtractor

  /** An extractor class to create and pattern match with syntax `TypeBound(lower, upper)`
   *  Here, `lower` is the lower bound of the `TypeBounds` pair, and `upper` is
   *  the upper bound.
   */
  abstract class TypeBoundsExtractor {
    def apply(lo: Type, hi: Type): TypeBounds
    def unapply(tpe: TypeBounds): Option[(Type, Type)]
  }

  /** An object representing an unknown type, used during type inference.
   *  If you see WildcardType outside of inference it is almost certainly a bug.
   */
  val WildcardType: Type

  /** BoundedWildcardTypes, used only during type inference, are created in
   *  two places that I can find:
   *
   *    1. If the expected type of an expression is an existential type,
   *       its hidden symbols are replaced with bounded wildcards.
   *    2. When an implicit conversion is being sought based in part on
   *       the name of a method in the converted type, a HasMethodMatching
   *       type is created: a MethodType with parameters typed as
   *       BoundedWildcardTypes.
   */
  type BoundedWildcardType >: Null <: AnyRef with Type

  /** A tag that preserves the identity of the `BoundedWildcardType` abstract type from erasure.
   *  Can be used for pattern matching, instance tests, serialization and likes.
   */
  implicit val BoundedWildcardTypeTag: ClassTag[BoundedWildcardType]

  val BoundedWildcardType: BoundedWildcardTypeExtractor

  abstract class BoundedWildcardTypeExtractor {
    def apply(bounds: TypeBounds): BoundedWildcardType
    def unapply(tpe: BoundedWildcardType): Option[TypeBounds]
  }
}