summaryrefslogtreecommitdiff
path: root/src/reflect/scala/reflect/internal/Definitions.scala
blob: 69cdf5f04eae2704b6eb7cb778358c576ce3b856 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala
package reflect
package internal

import scala.language.postfixOps
import scala.annotation.{ switch, meta }
import scala.collection.{ mutable, immutable }
import Flags._
import scala.reflect.api.{Universe => ApiUniverse}

trait Definitions extends api.StandardDefinitions {
  self: SymbolTable =>

  import rootMirror.{getModuleByName, getPackage, getClassByName, getRequiredClass, getRequiredModule, getClassIfDefined, getModuleIfDefined, getPackageObject, getPackageIfDefined, getPackageObjectIfDefined, requiredClass, requiredModule}

  object definitions extends DefinitionsClass

  /** Since both the value parameter types and the result type may
   *  require access to the type parameter symbols, we model polymorphic
   *  creation as a function from those symbols to (formal types, result type).
   *  The Option is to distinguish between nullary methods and empty-param-list
   *  methods.
   */
  private type PolyMethodCreator = List[Symbol] => (Option[List[Type]], Type)

  private def enterNewClass(owner: Symbol, name: TypeName, parents: List[Type], flags: Long = 0L): ClassSymbol = {
    val clazz = owner.newClassSymbol(name, NoPosition, flags)
    clazz setInfoAndEnter ClassInfoType(parents, newScope, clazz) markAllCompleted
  }
  private def newMethod(owner: Symbol, name: TermName, formals: List[Type], restpe: Type, flags: Long): MethodSymbol = {
    val msym   = owner.newMethod(name.encode, NoPosition, flags)
    val params = msym.newSyntheticValueParams(formals)
    val info = if (owner.isJavaDefined) JavaMethodType(params, restpe) else MethodType(params, restpe)
    msym setInfo info markAllCompleted
  }
  private def enterNewMethod(owner: Symbol, name: TermName, formals: List[Type], restpe: Type, flags: Long = 0L): MethodSymbol =
    owner.info.decls enter newMethod(owner, name, formals, restpe, flags)

  // the scala value classes
  trait ValueClassDefinitions {
    self: DefinitionsClass =>

    import ClassfileConstants._

    private val nameToWeight = Map[Name, Int](
      tpnme.Byte   -> 2,
      tpnme.Char   -> 3,
      tpnme.Short  -> 4,
      tpnme.Int    -> 12,
      tpnme.Long   -> 24,
      tpnme.Float  -> 48,
      tpnme.Double -> 96
    )

    private val nameToTag = Map[Name, Char](
      tpnme.Byte    -> BYTE_TAG,
      tpnme.Char    -> CHAR_TAG,
      tpnme.Short   -> SHORT_TAG,
      tpnme.Int     -> INT_TAG,
      tpnme.Long    -> LONG_TAG,
      tpnme.Float   -> FLOAT_TAG,
      tpnme.Double  -> DOUBLE_TAG,
      tpnme.Boolean -> BOOL_TAG,
      tpnme.Unit    -> VOID_TAG
    )

    private[Definitions] def catastrophicFailure() =
      abort("Could not find value classes! This is a catastrophic failure.  scala " +
        scala.util.Properties.versionString)

    private def valueClassSymbol(name: TypeName): ClassSymbol = {
      getMember(ScalaPackageClass, name) match {
        case x: ClassSymbol => x
        case _              => catastrophicFailure()
      }
    }

    private[Definitions] def classesMap[T](f: Name => T) = symbolsMap(ScalaValueClassesNoUnit, f)
    private def symbolsMap[T](syms: List[Symbol], f: Name => T): Map[Symbol, T] = mapFrom(syms)(x => f(x.name))
    private def symbolsMapFilt[T](syms: List[Symbol], p: Name => Boolean, f: Name => T) = symbolsMap(syms filter (x => p(x.name)), f)

    private def boxedName(name: Name) = sn.Boxed(name.toTypeName)

    lazy val abbrvTag         = symbolsMap(ScalaValueClasses, nameToTag) withDefaultValue OBJECT_TAG
    lazy val numericWeight    = symbolsMapFilt(ScalaValueClasses, nameToWeight.keySet, nameToWeight)
    lazy val boxedModule      = classesMap(x => getModuleByName(boxedName(x)))
    lazy val boxedClass       = classesMap(x => getClassByName(boxedName(x)))
    lazy val refClass         = classesMap(x => getRequiredClass("scala.runtime." + x + "Ref"))
    lazy val volatileRefClass = classesMap(x => getRequiredClass("scala.runtime.Volatile" + x + "Ref"))

    def isNumericSubClass(sub: Symbol, sup: Symbol) = (
         (numericWeight contains sub)
      && (numericWeight contains sup)
      && (numericWeight(sup) % numericWeight(sub) == 0)
    )

    /** Is symbol a numeric value class? */
    def isNumericValueClass(sym: Symbol) = ScalaNumericValueClasses contains sym

    def isGetClass(sym: Symbol) = (
         sym.name == nme.getClass_ // this condition is for performance only, this is called from `Typer#stabilize`.
      && getClassMethods(sym)
    )

    lazy val UnitClass    = valueClassSymbol(tpnme.Unit)
    lazy val ByteClass    = valueClassSymbol(tpnme.Byte)
    lazy val ShortClass   = valueClassSymbol(tpnme.Short)
    lazy val CharClass    = valueClassSymbol(tpnme.Char)
    lazy val IntClass     = valueClassSymbol(tpnme.Int)
    lazy val LongClass    = valueClassSymbol(tpnme.Long)
    lazy val FloatClass   = valueClassSymbol(tpnme.Float)
    lazy val DoubleClass  = valueClassSymbol(tpnme.Double)
    lazy val BooleanClass = valueClassSymbol(tpnme.Boolean)
          def Boolean_and = getMemberMethod(BooleanClass, nme.ZAND)
          def Boolean_or  = getMemberMethod(BooleanClass, nme.ZOR)
          def Boolean_not = getMemberMethod(BooleanClass, nme.UNARY_!)

    lazy val UnitTpe      = UnitClass.tpe
    lazy val ByteTpe      = ByteClass.tpe
    lazy val ShortTpe     = ShortClass.tpe
    lazy val CharTpe      = CharClass.tpe
    lazy val IntTpe       = IntClass.tpe
    lazy val LongTpe      = LongClass.tpe
    lazy val FloatTpe     = FloatClass.tpe
    lazy val DoubleTpe    = DoubleClass.tpe
    lazy val BooleanTpe   = BooleanClass.tpe

    lazy val ScalaNumericValueClasses = ScalaValueClasses filterNot Set[Symbol](UnitClass, BooleanClass)
    lazy val ScalaValueClassesNoUnit  = ScalaValueClasses filterNot (_ eq UnitClass)
    lazy val ScalaValueClasses: List[ClassSymbol] = List(
      UnitClass,
      BooleanClass,
      ByteClass,
      ShortClass,
      CharClass,
      IntClass,
      LongClass,
      FloatClass,
      DoubleClass
    )
    def ScalaPrimitiveValueClasses: List[ClassSymbol] = ScalaValueClasses

    def underlyingOfValueClass(clazz: Symbol): Type =
      clazz.derivedValueClassUnbox.tpe.resultType

  }

  abstract class DefinitionsClass extends DefinitionsApi with ValueClassDefinitions {
    private var isInitialized = false
    def isDefinitionsInitialized = isInitialized

    // It becomes tricky to create dedicated objects for other symbols because
    // of initialization order issues.
    lazy val JavaLangPackage      = getPackage(TermName("java.lang"))
    lazy val JavaLangPackageClass = JavaLangPackage.moduleClass.asClass
    lazy val ScalaPackage         = getPackage(TermName("scala"))
    lazy val ScalaPackageClass    = ScalaPackage.moduleClass.asClass
    lazy val RuntimePackage       = getPackage(TermName("scala.runtime"))
    lazy val RuntimePackageClass  = RuntimePackage.moduleClass.asClass

    def javaTypeToValueClass(jtype: Class[_]): Symbol = jtype match {
      case java.lang.Void.TYPE      => UnitClass
      case java.lang.Byte.TYPE      => ByteClass
      case java.lang.Character.TYPE => CharClass
      case java.lang.Short.TYPE     => ShortClass
      case java.lang.Integer.TYPE   => IntClass
      case java.lang.Long.TYPE      => LongClass
      case java.lang.Float.TYPE     => FloatClass
      case java.lang.Double.TYPE    => DoubleClass
      case java.lang.Boolean.TYPE   => BooleanClass
      case _                        => NoSymbol
    }
    def valueClassToJavaType(sym: Symbol): Class[_] = sym match {
      case UnitClass    => java.lang.Void.TYPE
      case ByteClass    => java.lang.Byte.TYPE
      case CharClass    => java.lang.Character.TYPE
      case ShortClass   => java.lang.Short.TYPE
      case IntClass     => java.lang.Integer.TYPE
      case LongClass    => java.lang.Long.TYPE
      case FloatClass   => java.lang.Float.TYPE
      case DoubleClass  => java.lang.Double.TYPE
      case BooleanClass => java.lang.Boolean.TYPE
      case _            => null
    }

    /** Fully initialize the symbol, type, or scope.
     */
    def fullyInitializeSymbol(sym: Symbol): Symbol = {
      sym.initialize
      // Watch out for those darn raw types on method parameters
      if (sym.owner.initialize.isJavaDefined)
        sym.cookJavaRawInfo()

      fullyInitializeType(sym.info)
      fullyInitializeType(sym.tpe_*)
      sym
    }
    def fullyInitializeType(tp: Type): Type = {
      tp.typeParams foreach fullyInitializeSymbol
      mforeach(tp.paramss)(fullyInitializeSymbol)
      tp
    }
    def fullyInitializeScope(scope: Scope): Scope = {
      scope.sorted foreach fullyInitializeSymbol
      scope
    }
    /** Is this symbol a member of Object or Any? */
    def isUniversalMember(sym: Symbol) = ObjectClass isSubClass sym.owner

    /** Is this symbol unimportable? Unimportable symbols include:
     *  - constructors, because <init> is not a real name
     *  - private[this] members, which cannot be referenced from anywhere else
     *  - members of Any or Object, because every instance will inherit a
     *    definition which supersedes the imported one
     */
    def isUnimportable(sym: Symbol) = (
         (sym eq NoSymbol)
      || sym.isConstructor
      || sym.isPrivateLocal
    )
    def isUnimportableUnlessRenamed(sym: Symbol) = isUnimportable(sym) || isUniversalMember(sym)
    def isImportable(sym: Symbol) = !isUnimportable(sym)

    /** Is this type equivalent to Any, AnyVal, or AnyRef? */
    def isTrivialTopType(tp: Type) = (
         tp =:= AnyTpe
      || tp =:= AnyValTpe
      || tp =:= AnyRefTpe
    )

    def hasMultipleNonImplicitParamLists(member: Symbol): Boolean = hasMultipleNonImplicitParamLists(member.info)
    def hasMultipleNonImplicitParamLists(info: Type): Boolean = info match {
      case PolyType(_, restpe)                                   => hasMultipleNonImplicitParamLists(restpe)
      case MethodType(_, MethodType(p :: _, _)) if !p.isImplicit => true
      case _                                                     => false
    }

    private def fixupAsAnyTrait(tpe: Type): Type = tpe match {
      case ClassInfoType(parents, decls, clazz) =>
        if (parents.head.typeSymbol == AnyClass) tpe
        else {
          assert(parents.head.typeSymbol == ObjectClass, parents)
          ClassInfoType(AnyTpe :: parents.tail, decls, clazz)
        }
      case PolyType(tparams, restpe) =>
        PolyType(tparams, fixupAsAnyTrait(restpe))
    }

    // top types
    lazy val AnyClass    = enterNewClass(ScalaPackageClass, tpnme.Any, Nil, ABSTRACT) markAllCompleted
    lazy val AnyRefClass = newAlias(ScalaPackageClass, tpnme.AnyRef, ObjectTpe) markAllCompleted
    lazy val ObjectClass = getRequiredClass(sn.Object.toString)

    // Cached types for core monomorphic classes
    lazy val AnyRefTpe       = AnyRefClass.tpe
    lazy val AnyTpe          = AnyClass.tpe
    lazy val AnyValTpe       = AnyValClass.tpe
    lazy val BoxedUnitTpe    = BoxedUnitClass.tpe
    lazy val NothingTpe      = NothingClass.tpe
    lazy val NullTpe         = NullClass.tpe
    lazy val ObjectTpe       = ObjectClass.tpe
    lazy val SerializableTpe = SerializableClass.tpe
    lazy val StringTpe       = StringClass.tpe
    lazy val ThrowableTpe    = ThrowableClass.tpe

    lazy val ConstantTrue  = ConstantType(Constant(true))
    lazy val ConstantFalse = ConstantType(Constant(false))
    lazy val ConstantNull  = ConstantType(Constant(null))

    lazy val AnyValClass: ClassSymbol = (ScalaPackageClass.info member tpnme.AnyVal orElse {
      val anyval    = enterNewClass(ScalaPackageClass, tpnme.AnyVal, AnyTpe :: Nil, ABSTRACT)
      val av_constr = anyval.newClassConstructor(NoPosition)
      anyval.info.decls enter av_constr
      anyval markAllCompleted
    }).asInstanceOf[ClassSymbol]
      def AnyVal_getClass = getMemberMethod(AnyValClass, nme.getClass_)

    // bottom types
    lazy val RuntimeNothingClass  = getClassByName(fulltpnme.RuntimeNothing)
    lazy val RuntimeNullClass     = getClassByName(fulltpnme.RuntimeNull)

    sealed abstract class BottomClassSymbol(name: TypeName, parent: Symbol) extends ClassSymbol(ScalaPackageClass, NoPosition, name) {
      locally {
        this initFlags ABSTRACT | FINAL
        this setInfoAndEnter ClassInfoType(List(parent.tpe), newScope, this)
        this markAllCompleted
      }
      final override def isBottomClass = true
      final override def isThreadsafe(purpose: SymbolOps): Boolean = true
    }
    final object NothingClass extends BottomClassSymbol(tpnme.Nothing, AnyClass) {
      override def isSubClass(that: Symbol) = true
    }
    final object NullClass extends BottomClassSymbol(tpnme.Null, AnyRefClass) {
      override def isSubClass(that: Symbol) = (
           (that eq AnyClass)
        || (that ne NothingClass) && (that isSubClass ObjectClass)
      )
    }

    // exceptions and other throwables
    lazy val ClassCastExceptionClass        = requiredClass[ClassCastException]
    lazy val IndexOutOfBoundsExceptionClass = getClassByName(sn.IOOBException)
    lazy val InvocationTargetExceptionClass = getClassByName(sn.InvTargetException)
    lazy val MatchErrorClass                = requiredClass[MatchError]
    lazy val NonLocalReturnControlClass     = requiredClass[scala.runtime.NonLocalReturnControl[_]]
    lazy val NullPointerExceptionClass      = getClassByName(sn.NPException)
    lazy val ThrowableClass                 = getClassByName(sn.Throwable)
    lazy val UninitializedErrorClass        = requiredClass[UninitializedFieldError]

    lazy val UninitializedFieldConstructor = UninitializedErrorClass.primaryConstructor

    // fundamental reference classes
    lazy val PartialFunctionClass       = requiredClass[PartialFunction[_,_]]
    lazy val AbstractPartialFunctionClass = requiredClass[scala.runtime.AbstractPartialFunction[_,_]]
    lazy val SymbolClass                = requiredClass[scala.Symbol]
    lazy val StringClass                = requiredClass[java.lang.String]
    lazy val StringModule               = StringClass.linkedClassOfClass
    lazy val ClassClass                 = requiredClass[java.lang.Class[_]]
      def Class_getMethod               = getMemberMethod(ClassClass, nme.getMethod_)
    lazy val DynamicClass               = requiredClass[Dynamic]

    // fundamental modules
    lazy val SysPackage = getPackageObject("scala.sys")
      def Sys_error    = getMemberMethod(SysPackage, nme.error)

    // Modules whose members are in the default namespace
    // SI-5941: ScalaPackage and JavaLangPackage are never ever shared between mirrors
    // as a result, `Int` becomes `scala.Int` and `String` becomes `java.lang.String`
    // I could just change `isOmittablePrefix`, but there's more to it, so I'm leaving this as a todo for now
    lazy val UnqualifiedModules = List(PredefModule, ScalaPackage, JavaLangPackage)
    // Those modules and their module classes
    lazy val UnqualifiedOwners  = UnqualifiedModules.toSet ++ UnqualifiedModules.map(_.moduleClass)

    lazy val PredefModule               = requiredModule[scala.Predef.type]
         def Predef_wrapArray(tp: Type) = getMemberMethod(PredefModule, wrapArrayMethodName(tp))
         def Predef_???                 = getMemberMethod(PredefModule, nme.???)
    def isPredefMemberNamed(sym: Symbol, name: Name) = (
      (sym.name == name) && (sym.owner == PredefModule.moduleClass)
    )

    /** Specialization.
     */
    lazy val SpecializableModule  = requiredModule[Specializable]

    lazy val ScalaRunTimeModule = requiredModule[scala.runtime.ScalaRunTime.type]
    lazy val SymbolModule       = requiredModule[scala.Symbol.type]
         def Symbol_apply       = getMemberMethod(SymbolModule, nme.apply)

    // classes with special meanings
    lazy val StringAddClass             = requiredClass[scala.runtime.StringAdd]
    lazy val ScalaNumberClass           = requiredClass[scala.math.ScalaNumber]
    lazy val TraitSetterAnnotationClass = requiredClass[scala.runtime.TraitSetter]
    lazy val DelayedInitClass           = requiredClass[scala.DelayedInit]
      def delayedInitMethod = getMemberMethod(DelayedInitClass, nme.delayedInit)

    lazy val TypeConstraintClass   = requiredClass[scala.annotation.TypeConstraint]
    lazy val SingletonClass        = enterNewClass(ScalaPackageClass, tpnme.Singleton, AnyTpe :: Nil, ABSTRACT | TRAIT | FINAL) markAllCompleted
    lazy val SerializableClass     = requiredClass[scala.Serializable]
    lazy val JavaSerializableClass = requiredClass[java.io.Serializable] modifyInfo fixupAsAnyTrait
    lazy val ComparableClass       = requiredClass[java.lang.Comparable[_]] modifyInfo fixupAsAnyTrait
    lazy val JavaCloneableClass    = requiredClass[java.lang.Cloneable]
    lazy val JavaNumberClass       = requiredClass[java.lang.Number]
    lazy val JavaEnumClass         = requiredClass[java.lang.Enum[_]]
    lazy val RemoteInterfaceClass  = requiredClass[java.rmi.Remote]
    lazy val RemoteExceptionClass  = requiredClass[java.rmi.RemoteException]
    lazy val JavaUtilMap           = requiredClass[java.util.Map[_, _]]
    lazy val JavaUtilHashMap       = requiredClass[java.util.HashMap[_, _]]

    lazy val ByNameParamClass       = specialPolyClass(tpnme.BYNAME_PARAM_CLASS_NAME, COVARIANT)(_ => AnyTpe)
    lazy val JavaRepeatedParamClass = specialPolyClass(tpnme.JAVA_REPEATED_PARAM_CLASS_NAME, COVARIANT)(tparam => arrayType(tparam.tpe))
    lazy val RepeatedParamClass     = specialPolyClass(tpnme.REPEATED_PARAM_CLASS_NAME, COVARIANT)(tparam => seqType(tparam.tpe))

    def isByNameParamType(tp: Type)        = tp.typeSymbol == ByNameParamClass
    def isScalaRepeatedParamType(tp: Type) = tp.typeSymbol == RepeatedParamClass
    def isJavaRepeatedParamType(tp: Type)  = tp.typeSymbol == JavaRepeatedParamClass
    def isRepeatedParamType(tp: Type)      = isScalaRepeatedParamType(tp) || isJavaRepeatedParamType(tp)
    def isRepeated(param: Symbol)          = isRepeatedParamType(param.tpe_*)
    def isByName(param: Symbol)            = isByNameParamType(param.tpe_*)
    def isCastSymbol(sym: Symbol)          = sym == Any_asInstanceOf || sym == Object_asInstanceOf

    def isJavaVarArgsMethod(m: Symbol)      = m.isMethod && isJavaVarArgs(m.info.params)
    def isJavaVarArgs(params: Seq[Symbol])  = params.nonEmpty && isJavaRepeatedParamType(params.last.tpe)
    def isScalaVarArgs(params: Seq[Symbol]) = params.nonEmpty && isScalaRepeatedParamType(params.last.tpe)
    def isVarArgsList(params: Seq[Symbol])  = params.nonEmpty && isRepeatedParamType(params.last.tpe)
    def isVarArgTypes(formals: Seq[Type])   = formals.nonEmpty && isRepeatedParamType(formals.last)

    def firstParamType(tpe: Type): Type = tpe.paramTypes match {
      case p :: _ => p
      case _      => NoType
    }
    def isImplicitParamss(paramss: List[List[Symbol]]) = paramss match {
      case (p :: _) :: _ => p.isImplicit
      case _             => false
    }

    def hasRepeatedParam(tp: Type): Boolean = tp match {
      case MethodType(formals, restpe) => isScalaVarArgs(formals) || hasRepeatedParam(restpe)
      case PolyType(_, restpe)         => hasRepeatedParam(restpe)
      case _                           => false
    }

    // wrapping and unwrapping
    def dropByName(tp: Type): Type = elementExtract(ByNameParamClass, tp) orElse tp
    def dropRepeated(tp: Type): Type = (
      if (isJavaRepeatedParamType(tp)) elementExtract(JavaRepeatedParamClass, tp) orElse tp
      else if (isScalaRepeatedParamType(tp)) elementExtract(RepeatedParamClass, tp) orElse tp
      else tp
    )
    def repeatedToSingle(tp: Type): Type                     = elementExtract(RepeatedParamClass, tp) orElse elementExtract(JavaRepeatedParamClass, tp) orElse tp
     // We don't need to deal with JavaRepeatedParamClass here, as `repeatedToSeq` is only called in the patmat translation for Scala sources.
    def repeatedToSeq(tp: Type): Type                        = elementTransform(RepeatedParamClass, tp)(seqType) orElse tp
    def seqToRepeated(tp: Type): Type                        = elementTransform(SeqClass, tp)(scalaRepeatedType) orElse tp
    def isReferenceArray(tp: Type)                           = elementTest(ArrayClass, tp)(_ <:< AnyRefTpe)
    def isArrayOfSymbol(tp: Type, elem: Symbol)              = elementTest(ArrayClass, tp)(_.typeSymbol == elem)
    def elementType(container: Symbol, tp: Type): Type       = elementExtract(container, tp)

    // collections classes
    lazy val ConsClass          = requiredClass[scala.collection.immutable.::[_]]
    lazy val IteratorClass      = requiredClass[scala.collection.Iterator[_]]
    lazy val IterableClass      = requiredClass[scala.collection.Iterable[_]]
    lazy val ListClass          = requiredClass[scala.collection.immutable.List[_]]
    lazy val SeqClass           = requiredClass[scala.collection.Seq[_]]
    lazy val StringBuilderClass = requiredClass[scala.collection.mutable.StringBuilder]
    lazy val TraversableClass   = requiredClass[scala.collection.Traversable[_]]

    lazy val ListModule       = requiredModule[scala.collection.immutable.List.type]
         def List_apply       = getMemberMethod(ListModule, nme.apply)
    lazy val NilModule        = requiredModule[scala.collection.immutable.Nil.type]
    lazy val SeqModule        = requiredModule[scala.collection.Seq.type]

    // arrays and their members
    lazy val ArrayModule                   = requiredModule[scala.Array.type]
      lazy val ArrayModule_overloadedApply = getMemberMethod(ArrayModule, nme.apply)
           def ArrayModule_genericApply    = ArrayModule_overloadedApply.suchThat(_.paramss.flatten.last.tpe.typeSymbol == ClassTagClass) // [T: ClassTag](xs: T*): Array[T]
           def ArrayModule_apply(tp: Type) = ArrayModule_overloadedApply.suchThat(_.tpe.resultType =:= arrayType(tp)) // (p1: AnyVal1, ps: AnyVal1*): Array[AnyVal1]
    lazy val ArrayClass                    = getRequiredClass("scala.Array") // requiredClass[scala.Array[_]]
      lazy val Array_apply                 = getMemberMethod(ArrayClass, nme.apply)
      lazy val Array_update                = getMemberMethod(ArrayClass, nme.update)
      lazy val Array_length                = getMemberMethod(ArrayClass, nme.length)
      lazy val Array_clone                 = getMemberMethod(ArrayClass, nme.clone_)

    // reflection / structural types
    lazy val SoftReferenceClass     = requiredClass[java.lang.ref.SoftReference[_]]
    lazy val MethodClass            = getClassByName(sn.MethodAsObject)
    lazy val EmptyMethodCacheClass  = requiredClass[scala.runtime.EmptyMethodCache]
    lazy val MethodCacheClass       = requiredClass[scala.runtime.MethodCache]
      def methodCache_find          = getMemberMethod(MethodCacheClass, nme.find_)
      def methodCache_add           = getMemberMethod(MethodCacheClass, nme.add_)

    // XML
    lazy val ScalaXmlTopScope = getModuleIfDefined("scala.xml.TopScope")
    lazy val ScalaXmlPackage  = getPackageIfDefined(TermName("scala.xml"))

    // scala.reflect
    lazy val ReflectPackage              = requiredModule[scala.reflect.`package`.type]
    lazy val ReflectApiPackage           = getPackageObjectIfDefined("scala.reflect.api") // defined in scala-reflect.jar, so we need to be careful
    lazy val ReflectRuntimePackage       = getPackageObjectIfDefined("scala.reflect.runtime") // defined in scala-reflect.jar, so we need to be careful
         def ReflectRuntimeUniverse      = ReflectRuntimePackage.map(sym => getMemberValue(sym, nme.universe))
         def ReflectRuntimeCurrentMirror = ReflectRuntimePackage.map(sym => getMemberMethod(sym, nme.currentMirror))

    lazy val UniverseClass    = getClassIfDefined("scala.reflect.api.Universe") // defined in scala-reflect.jar, so we need to be careful
         def UniverseInternal = getMemberValue(UniverseClass, nme.internal)

    lazy val PartialManifestModule = requiredModule[scala.reflect.ClassManifestFactory.type]
    lazy val FullManifestClass     = requiredClass[scala.reflect.Manifest[_]]
    lazy val FullManifestModule    = requiredModule[scala.reflect.ManifestFactory.type]
    lazy val OptManifestClass      = requiredClass[scala.reflect.OptManifest[_]]
    lazy val NoManifest            = requiredModule[scala.reflect.NoManifest.type]

    lazy val TreesClass            = getClassIfDefined("scala.reflect.api.Trees") // defined in scala-reflect.jar, so we need to be careful

    lazy val ExprsClass            = getClassIfDefined("scala.reflect.api.Exprs") // defined in scala-reflect.jar, so we need to be careful
         def ExprClass             = ExprsClass.map(sym => getMemberClass(sym, tpnme.Expr))
         def ExprSplice            = ExprClass.map(sym => getMemberMethod(sym, nme.splice))
         def ExprValue             = ExprClass.map(sym => getMemberMethod(sym, nme.value))

    lazy val ClassTagModule         = requiredModule[scala.reflect.ClassTag[_]]
    lazy val ClassTagClass          = requiredClass[scala.reflect.ClassTag[_]]
    lazy val TypeTagsClass          = getClassIfDefined("scala.reflect.api.TypeTags") // defined in scala-reflect.jar, so we need to be careful

    lazy val ApiUniverseClass      = getClassIfDefined("scala.reflect.api.Universe") // defined in scala-reflect.jar, so we need to be careful
    lazy val JavaUniverseClass     = getClassIfDefined("scala.reflect.api.JavaUniverse") // defined in scala-reflect.jar, so we need to be careful

    lazy val MirrorClass           = getClassIfDefined("scala.reflect.api.Mirror") // defined in scala-reflect.jar, so we need to be careful

    lazy val TypeCreatorClass      = getClassIfDefined("scala.reflect.api.TypeCreator") // defined in scala-reflect.jar, so we need to be careful
    lazy val TreeCreatorClass      = getClassIfDefined("scala.reflect.api.TreeCreator") // defined in scala-reflect.jar, so we need to be careful

    private def Context_210               = if (settings.isScala211) NoSymbol else getClassIfDefined("scala.reflect.macros.Context") // needed under -Xsource:2.10
    lazy val BlackboxContextClass         = getClassIfDefined("scala.reflect.macros.blackbox.Context").orElse(Context_210) // defined in scala-reflect.jar, so we need to be careful

    lazy val WhiteboxContextClass         = getClassIfDefined("scala.reflect.macros.whitebox.Context").orElse(Context_210) // defined in scala-reflect.jar, so we need to be careful
         def MacroContextPrefix           = BlackboxContextClass.map(sym => getMemberMethod(sym, nme.prefix))
         def MacroContextPrefixType       = BlackboxContextClass.map(sym => getTypeMember(sym, tpnme.PrefixType))
         def MacroContextUniverse         = BlackboxContextClass.map(sym => getMemberMethod(sym, nme.universe))
         def MacroContextExprClass        = BlackboxContextClass.map(sym => getTypeMember(sym, tpnme.Expr))
         def MacroContextWeakTypeTagClass = BlackboxContextClass.map(sym => getTypeMember(sym, tpnme.WeakTypeTag))
         def MacroContextTreeType         = BlackboxContextClass.map(sym => getTypeMember(sym, tpnme.Tree))
    lazy val MacroImplAnnotation          = requiredClass[scala.reflect.macros.internal.macroImpl]

    lazy val StringContextClass           = requiredClass[scala.StringContext]

    // SI-8392 a reflection universe on classpath may not have
    // quasiquotes, if e.g. crosstyping with -Xsource on
    lazy val QuasiquoteClass             = if (ApiUniverseClass != NoSymbol) getMemberIfDefined(ApiUniverseClass, tpnme.Quasiquote) else NoSymbol
    lazy val QuasiquoteClass_api         = if (QuasiquoteClass != NoSymbol) getMember(QuasiquoteClass, tpnme.api) else NoSymbol
    lazy val QuasiquoteClass_api_apply   = if (QuasiquoteClass_api != NoSymbol) getMember(QuasiquoteClass_api, nme.apply) else NoSymbol
    lazy val QuasiquoteClass_api_unapply = if (QuasiquoteClass_api != NoSymbol) getMember(QuasiquoteClass_api, nme.unapply) else NoSymbol

    lazy val ScalaSignatureAnnotation = requiredClass[scala.reflect.ScalaSignature]
    lazy val ScalaLongSignatureAnnotation = requiredClass[scala.reflect.ScalaLongSignature]

    lazy val LambdaMetaFactory = getClassIfDefined("java.lang.invoke.LambdaMetafactory")
    lazy val MethodHandle = getClassIfDefined("java.lang.invoke.MethodHandle")

    // Option classes
    lazy val OptionClass: ClassSymbol   = requiredClass[Option[_]]
    lazy val OptionModule: ModuleSymbol = requiredModule[scala.Option.type]
    lazy val SomeClass: ClassSymbol     = requiredClass[Some[_]]
    lazy val NoneModule: ModuleSymbol   = requiredModule[scala.None.type]
    lazy val SomeModule: ModuleSymbol   = requiredModule[scala.Some.type]

    def compilerTypeFromTag(tt: ApiUniverse # WeakTypeTag[_]): Type = tt.in(rootMirror).tpe
    def compilerSymbolFromTag(tt: ApiUniverse # WeakTypeTag[_]): Symbol = tt.in(rootMirror).tpe.typeSymbol

    // The given symbol is a method with the right name and signature to be a runnable java program.
    def isJavaMainMethod(sym: Symbol) = (sym.name == nme.main) && (sym.info match {
      case MethodType(p :: Nil, restpe) => isArrayOfSymbol(p.tpe, StringClass) && restpe.typeSymbol == UnitClass
      case _                            => false
    })
    // The given class has a main method.
    def hasJavaMainMethod(sym: Symbol): Boolean =
      (sym.tpe member nme.main).alternatives exists isJavaMainMethod

    class VarArityClass(name: String, maxArity: Int, countFrom: Int = 0, init: Option[ClassSymbol] = None) extends VarArityClassApi {
      private val offset = countFrom - init.size
      private def isDefinedAt(i: Int) = i < seq.length + offset && i >= offset
      val seq: IndexedSeq[ClassSymbol] = (init ++: countFrom.to(maxArity).map { i => getRequiredClass("scala." + name + i) }).toVector
      def apply(i: Int) = if (isDefinedAt(i)) seq(i - offset) else NoSymbol
      def specificType(args: List[Type], others: Type*): Type = {
        val arity = args.length
        if (!isDefinedAt(arity)) NoType
        else appliedType(apply(arity), args ++ others: _*)
      }
    }
    // would be created synthetically for the default args. We call all objects in this method from the generated code
    // in JavaUniverseForce, so it is clearer to define this explicitly define this in source.
    object VarArityClass

    val MaxTupleArity, MaxProductArity, MaxFunctionArity = 22

    lazy val ProductClass          = new VarArityClass("Product", MaxProductArity, countFrom = 1, init = Some(UnitClass))
    lazy val TupleClass            = new VarArityClass("Tuple", MaxTupleArity, countFrom = 1)
    lazy val FunctionClass         = new VarArityClass("Function", MaxFunctionArity)
    lazy val AbstractFunctionClass = new VarArityClass("runtime.AbstractFunction", MaxFunctionArity)

    /** Creators for TupleN, ProductN, FunctionN. */
    def tupleType(elems: List[Type])                            = TupleClass.specificType(elems)
    def functionType(formals: List[Type], restpe: Type)         = FunctionClass.specificType(formals, restpe)
    def abstractFunctionType(formals: List[Type], restpe: Type) = AbstractFunctionClass.specificType(formals, restpe)

    def wrapArrayMethodName(elemtp: Type): TermName = elemtp.typeSymbol match {
      case ByteClass    => nme.wrapByteArray
      case ShortClass   => nme.wrapShortArray
      case CharClass    => nme.wrapCharArray
      case IntClass     => nme.wrapIntArray
      case LongClass    => nme.wrapLongArray
      case FloatClass   => nme.wrapFloatArray
      case DoubleClass  => nme.wrapDoubleArray
      case BooleanClass => nme.wrapBooleanArray
      case UnitClass    => nme.wrapUnitArray
      case _        =>
        if ((elemtp <:< AnyRefTpe) && !isPhantomClass(elemtp.typeSymbol)) nme.wrapRefArray
        else nme.genericWrapArray
    }

    def isTupleSymbol(sym: Symbol) = TupleClass.seq contains unspecializedSymbol(sym)
    def isFunctionSymbol(sym: Symbol) = FunctionClass.seq contains unspecializedSymbol(sym)
    def isProductNSymbol(sym: Symbol) = ProductClass.seq contains unspecializedSymbol(sym)

    def unspecializedSymbol(sym: Symbol): Symbol = {
      if (sym hasFlag SPECIALIZED) {
        // add initialization from its generic class constructor
        val genericName = nme.unspecializedName(sym.name)
        val member = sym.owner.info.decl(genericName.toTypeName)
        member
      }
      else sym
    }
    def unspecializedTypeArgs(tp: Type): List[Type] =
      (tp baseType unspecializedSymbol(tp.typeSymbolDirect)).typeArgs

    object MacroContextType {
      def unapply(tp: Type) = {
        def isOneOfContextTypes(tp: Type) =
          tp =:= BlackboxContextClass.tpe || tp =:= WhiteboxContextClass.tpe
        def isPrefix(sym: Symbol) =
          sym.allOverriddenSymbols.contains(MacroContextPrefixType)

        tp.dealias match {
          case RefinedType(List(tp), Scope(sym)) if isOneOfContextTypes(tp) && isPrefix(sym) => Some(tp)
          case tp if isOneOfContextTypes(tp) => Some(tp)
          case _ => None
        }
      }
    }

    def isMacroContextType(tp: Type) = MacroContextType.unapply(tp).isDefined

    def isWhiteboxContextType(tp: Type) =
      isMacroContextType(tp) && (tp <:< WhiteboxContextClass.tpe)

    private def macroBundleParamInfo(tp: Type) = {
      val ctor = tp.erasure.typeSymbol.primaryConstructor
      ctor.paramss match {
        case List(List(c)) =>
          val sym = c.info.typeSymbol
          val isContextCompatible = sym.isNonBottomSubClass(BlackboxContextClass) || sym.isNonBottomSubClass(WhiteboxContextClass)
          if (isContextCompatible) c.info else NoType
        case _ =>
          NoType
      }
    }

    def looksLikeMacroBundleType(tp: Type) =
      macroBundleParamInfo(tp) != NoType

    def isMacroBundleType(tp: Type) = {
      val isMonomorphic = tp.typeSymbol.typeParams.isEmpty
      val isContextCompatible = isMacroContextType(macroBundleParamInfo(tp))
      val hasSingleConstructor = !tp.declaration(nme.CONSTRUCTOR).isOverloaded
      val nonAbstract = !tp.erasure.typeSymbol.isAbstractClass
      isMonomorphic && isContextCompatible && hasSingleConstructor && nonAbstract
    }

    def isBlackboxMacroBundleType(tp: Type) = {
      val isBundle = isMacroBundleType(tp)
      val unwrappedContext = MacroContextType.unapply(macroBundleParamInfo(tp)).getOrElse(NoType)
      val isBlackbox = unwrappedContext =:= BlackboxContextClass.tpe
      isBundle && isBlackbox
    }

    def isListType(tp: Type)     = tp.typeSymbol.isNonBottomSubClass(ListClass)
    def isIterableType(tp: Type) = tp.typeSymbol.isNonBottomSubClass(IterableClass)

    // These "direct" calls perform no dealiasing. They are most needed when
    // printing types when one wants to preserve the true nature of the type.
    def isFunctionTypeDirect(tp: Type) = !tp.isHigherKinded && isFunctionSymbol(tp.typeSymbolDirect)
    def isTupleTypeDirect(tp: Type)    = !tp.isHigherKinded && isTupleSymbol(tp.typeSymbolDirect)

    // Note that these call .dealiasWiden and not .normalize, the latter of which
    // tends to change the course of events by forcing types.
    def isFunctionType(tp: Type)       = isFunctionTypeDirect(tp.dealiasWiden)
    def isTupleType(tp: Type)          = isTupleTypeDirect(tp.dealiasWiden)
    def tupleComponents(tp: Type)      = tp.dealiasWiden.typeArgs

    lazy val ProductRootClass: ClassSymbol = requiredClass[scala.Product]
      def Product_productArity          = getMemberMethod(ProductRootClass, nme.productArity)
      def Product_productElement        = getMemberMethod(ProductRootClass, nme.productElement)
      def Product_iterator              = getMemberMethod(ProductRootClass, nme.productIterator)
      def Product_productPrefix         = getMemberMethod(ProductRootClass, nme.productPrefix)
      def Product_canEqual              = getMemberMethod(ProductRootClass, nme.canEqual_)

      def productProj(z:Symbol, j: Int): TermSymbol = getMemberValue(z, nme.productAccessorName(j))

    /** if tpe <: ProductN[T1,...,TN], returns List(T1,...,TN) else Nil */
    @deprecated("No longer used", "2.11.0") def getProductArgs(tpe: Type): List[Type] = tpe.baseClasses find isProductNSymbol match {
      case Some(x)  => tpe.baseType(x).typeArgs
      case _        => Nil
    }

    @deprecated("No longer used", "2.11.0") def unapplyUnwrap(tpe:Type) = tpe.finalResultType.dealiasWiden match {
      case RefinedType(p :: _, _) => p.dealiasWiden
      case tp                     => tp
    }

    def getterMemberTypes(tpe: Type, getters: List[Symbol]): List[Type] =
      getters map (m => dropNullaryMethod(tpe memberType m))

    def dropNullaryMethod(tp: Type) = tp match {
      case NullaryMethodType(restpe) => restpe
      case _                         => tp
    }

    /** An implementation of finalResultType which does only what
     *  finalResultType is documented to do. Defining it externally to
     *  Type helps ensure people can't come to depend on accidental
     *  aspects of its behavior. This is all of it!
     */
    def finalResultType(tp: Type): Type = tp match {
      case PolyType(_, restpe)       => finalResultType(restpe)
      case MethodType(_, restpe)     => finalResultType(restpe)
      case NullaryMethodType(restpe) => finalResultType(restpe)
      case _                         => tp
    }
    /** Similarly, putting all the isStable logic in one place.
     *  This makes it like 1000x easier to see the overall logic
     *  of the method.
     */
    def isStable(tp: Type): Boolean = tp match {
      case _: SingletonType                             => true
      case NoPrefix                                     => true
      case TypeRef(_, NothingClass | SingletonClass, _) => true
      case TypeRef(_, sym, _) if sym.isAbstractType     => tp.bounds.hi.typeSymbol isSubClass SingletonClass
      case TypeRef(pre, sym, _) if sym.isModuleClass    => isStable(pre)
      case TypeRef(_, _, _) if tp ne tp.dealias         => isStable(tp.dealias)
      case TypeVar(origin, _)                           => isStable(origin)
      case AnnotatedType(_, atp)                        => isStable(atp)    // Really?
      case _: SimpleTypeProxy                           => isStable(tp.underlying)
      case _                                            => false
    }
    def isVolatile(tp: Type): Boolean = {
      // need to be careful not to fall into an infinite recursion here
      // because volatile checking is done before all cycles are detected.
      // the case to avoid is an abstract type directly or
      // indirectly upper-bounded by itself. See #2918
      def isVolatileAbstractType: Boolean = {
        def sym = tp.typeSymbol
        def volatileUpperBound = isVolatile(tp.bounds.hi)
        def safeIsVolatile = (
          if (volatileRecursions < TypeConstants.LogVolatileThreshold)
            volatileUpperBound
          // we can return true when pendingVolatiles contains sym, because
          // a cycle will be detected afterwards and an error will result anyway.
          else pendingVolatiles(sym) || {
            pendingVolatiles += sym
            try volatileUpperBound finally pendingVolatiles -= sym
          }
        )
        volatileRecursions += 1
        try safeIsVolatile finally volatileRecursions -= 1
      }
      /** A refined type P1 with ... with Pn { decls } is volatile if
       *  one of the parent types Pi is an abstract type, and
       *  either i > 1, or decls or a following parent Pj, j > 1, contributes
       *  an abstract member.
       *  A type contributes an abstract member if it has an abstract member which
       *  is also a member of the whole refined type. A scope `decls` contributes
       *  an abstract member if it has an abstract definition which is also
       *  a member of the whole type.
       */
      def isVolatileRefinedType: Boolean = {
        val RefinedType(parents, decls)         = tp
        def isVisibleDeferred(m: Symbol)        = m.isDeferred && ((tp nonPrivateMember m.name).alternatives contains m)
        def contributesAbstractMembers(p: Type) = p.deferredMembers exists isVisibleDeferred
        def dropConcreteParents                 = parents dropWhile (p => !p.typeSymbol.isAbstractType)

        (parents exists isVolatile) || {
          dropConcreteParents match {
            case Nil => false
            case ps  => (ps ne parents) || (ps.tail exists contributesAbstractMembers) || (decls exists isVisibleDeferred)
          }
        }
      }

      tp match {
        case ThisType(_)                              => false
        case SingleType(_, sym)                       => isVolatile(tp.underlying) && (sym.hasVolatileType || !sym.isStable)
        case NullaryMethodType(restpe)                => isVolatile(restpe)
        case PolyType(_, restpe)                      => isVolatile(restpe)
        case TypeRef(_, _, _) if tp ne tp.dealias     => isVolatile(tp.dealias)
        case TypeRef(_, sym, _) if sym.isAbstractType => isVolatileAbstractType
        case RefinedType(_, _)                        => isVolatileRefinedType
        case TypeVar(origin, _)                       => isVolatile(origin)
        case _: SimpleTypeProxy                       => isVolatile(tp.underlying)
        case _                                        => false
      }
    }

    private[this] var volatileRecursions: Int = 0
    private[this] val pendingVolatiles = mutable.HashSet[Symbol]()
    def abstractFunctionForFunctionType(tp: Type) = {
      assert(isFunctionType(tp), tp)
      abstractFunctionType(tp.typeArgs.init, tp.typeArgs.last)
    }
    def functionNBaseType(tp: Type): Type = tp.baseClasses find isFunctionSymbol match {
      case Some(sym) => tp baseType unspecializedSymbol(sym)
      case _         => tp
    }

    def isPartialFunctionType(tp: Type): Boolean = {
      val sym = tp.typeSymbol
      (sym eq PartialFunctionClass) || (sym eq AbstractPartialFunctionClass)
    }

    /** The single abstract method declared by type `tp` (or `NoSymbol` if it cannot be found).
     *
     * The method must be monomorphic and have exactly one parameter list.
     * The class defining the method is a supertype of `tp` that
     * has a public no-arg primary constructor.
     */
    def samOf(tp: Type): Symbol = if (!settings.Xexperimental) NoSymbol else {
      // if tp has a constructor, it must be public and must not take any arguments
      // (not even an implicit argument list -- to keep it simple for now)
      val tpSym  = tp.typeSymbol
      val ctor   = tpSym.primaryConstructor
      val ctorOk = !ctor.exists || (!ctor.isOverloaded && ctor.isPublic && ctor.info.params.isEmpty && ctor.info.paramSectionCount <= 1)

      if (tpSym.exists && ctorOk) {
        // find the single abstract member, if there is one
        // don't go out requiring DEFERRED members, as you will get them even if there's a concrete override:
        //    scala> abstract class X { def m: Int }
        //    scala> class Y extends X { def m: Int = 1}
        //    scala> typeOf[Y].deferredMembers
        //    Scopes(method m, method getClass)
        //
        //    scala> typeOf[Y].members.filter(_.isDeferred)
        //    Scopes()
        // must filter out "universal" members (getClass is deferred for some reason)
        val deferredMembers = (
          tp membersBasedOnFlags (excludedFlags = BridgeAndPrivateFlags, requiredFlags = METHOD)
          filter (mem => mem.isDeferredNotJavaDefault && !isUniversalMember(mem)) // TODO: test
        )

        // if there is only one, it's monomorphic and has a single argument list
        if (deferredMembers.size == 1 &&
            deferredMembers.head.typeParams.isEmpty &&
            deferredMembers.head.info.paramSectionCount == 1)
          deferredMembers.head
        else NoSymbol
      } else NoSymbol
    }

    def arrayType(arg: Type)         = appliedType(ArrayClass, arg)
    def byNameType(arg: Type)        = appliedType(ByNameParamClass, arg)
    def iteratorOfType(tp: Type)     = appliedType(IteratorClass, tp)
    def javaRepeatedType(arg: Type)  = appliedType(JavaRepeatedParamClass, arg)
    def optionType(tp: Type)         = appliedType(OptionClass, tp)
    def scalaRepeatedType(arg: Type) = appliedType(RepeatedParamClass, arg)
    def seqType(arg: Type)           = appliedType(SeqClass, arg)

    // FYI the long clunky name is because it's really hard to put "get" into the
    // name of a method without it sounding like the method "get"s something, whereas
    // this method is about a type member which just happens to be named get.
    def typeOfMemberNamedGet(tp: Type)   = typeArgOfBaseTypeOr(tp, OptionClass)(resultOfMatchingMethod(tp, nme.get)())
    def typeOfMemberNamedHead(tp: Type)  = typeArgOfBaseTypeOr(tp, SeqClass)(resultOfMatchingMethod(tp, nme.head)())
    def typeOfMemberNamedApply(tp: Type) = typeArgOfBaseTypeOr(tp, SeqClass)(resultOfMatchingMethod(tp, nme.apply)(IntTpe))
    def typeOfMemberNamedDrop(tp: Type)  = typeArgOfBaseTypeOr(tp, SeqClass)(resultOfMatchingMethod(tp, nme.drop)(IntTpe))
    def typesOfSelectors(tp: Type)       =
      if (isTupleType(tp)) tupleComponents(tp)
      else getterMemberTypes(tp, productSelectors(tp))

    // SI-8128 Still using the type argument of the base type at Seq/Option if this is an old-style (2.10 compatible)
    //         extractor to limit exposure to regressions like the reported problem with existentials.
    //         TODO fix the existential problem in the general case, see test/pending/pos/t8128.scala
    private def typeArgOfBaseTypeOr(tp: Type, baseClass: Symbol)(or: => Type): Type = (tp baseType baseClass).typeArgs match {
      case x :: Nil =>
        val x1 = x
        val x2 = repackExistential(x1)
        x2
      case _        => or
    }

    // Can't only check for _1 thanks to pos/t796.
    def hasSelectors(tp: Type) = (
         (tp.members containsName nme._1)
      && (tp.members containsName nme._2)
    )

    /** Returns the method symbols for members _1, _2, ..., _N
     *  which exist in the given type.
     */
    def productSelectors(tpe: Type): List[Symbol] = {
      def loop(n: Int): List[Symbol] = tpe member TermName("_" + n) match {
        case NoSymbol                => Nil
        case m if m.paramss.nonEmpty => Nil
        case m                       => m :: loop(n + 1)
      }
      // Since ErrorType always returns a symbol from a call to member, we
      // had better not start looking for _1, _2, etc. expecting it to run out.
      if (tpe.isErroneous) Nil else loop(1)
    }

    /** If `tp` has a term member `name`, the first parameter list of which
     *  matches `paramTypes`, and which either has no further parameter
     *  lists or only an implicit one, then the result type of the matching
     *  method. Otherwise, NoType.
     */
    def resultOfMatchingMethod(tp: Type, name: TermName)(paramTypes: Type*): Type = {
      def matchesParams(member: Symbol) = member.paramss match {
        case Nil        => paramTypes.isEmpty
        case ps :: rest => (rest.isEmpty || isImplicitParamss(rest)) && (ps corresponds paramTypes)(_.tpe =:= _)
      }
      tp member name filter matchesParams match {
        case NoSymbol => NoType
        case member   => (tp memberType member).finalResultType
      }
    }

    def ClassType(arg: Type) = if (phase.erasedTypes) ClassClass.tpe else appliedType(ClassClass, arg)

    /** Can we tell by inspecting the symbol that it will never
     *  at any phase have type parameters?
     */
    def neverHasTypeParameters(sym: Symbol) = sym match {
      case _: RefinementClassSymbol => true
      case _: ModuleClassSymbol     => true
      case _: ImplClassSymbol       => true
      case _                        =>
        (
             sym.isPrimitiveValueClass
          || sym.isAnonymousClass
          || sym.initialize.isMonomorphicType
        )
    }

    def EnumType(sym: Symbol) = {
      // given (in java): "class A { enum E { VAL1 } }"
      //  - sym: the symbol of the actual enumeration value (VAL1)
      //  - .owner: the ModuleClassSymbol of the enumeration (object E)
      //  - .linkedClassOfClass: the ClassSymbol of the enumeration (class E)
      // SI-6613 Subsequent runs of the resident compiler demand the phase discipline here.
      enteringPhaseNotLaterThan(picklerPhase)(sym.owner.linkedClassOfClass).tpe
    }

    /** Given a class symbol C with type parameters T1, T2, ... Tn
     *  which have upper/lower bounds LB1/UB1, LB1/UB2, ..., LBn/UBn,
     *  returns an existential type of the form
     *
     *    C[E1, ..., En] forSome { E1 >: LB1 <: UB1 ... en >: LBn <: UBn }.
     */
    def classExistentialType(prefix: Type, clazz: Symbol): Type = {
      val eparams = typeParamsToExistentials(clazz, clazz.unsafeTypeParams)
      newExistentialType(eparams, typeRef(prefix, clazz, eparams.map(_.tpeHK)))
    }

    // members of class scala.Any

    // TODO these aren't final! They are now overridden in AnyRef/Object. Prior to the fix
    //      for SI-8129, they were actually *overloaded* by the members in AnyRef/Object.
    //      We should unfinalize these, override in AnyValClass, and make the overrides final.
    //      Refchecks never actually looks at these, so it's just for consistency.
    lazy val Any_==       = enterNewMethod(AnyClass, nme.EQ, AnyTpe :: Nil, BooleanTpe, FINAL)
    lazy val Any_!=       = enterNewMethod(AnyClass, nme.NE, AnyTpe :: Nil, BooleanTpe, FINAL)

    lazy val Any_equals   = enterNewMethod(AnyClass, nme.equals_, AnyTpe :: Nil, BooleanTpe)
    lazy val Any_hashCode = enterNewMethod(AnyClass, nme.hashCode_, Nil, IntTpe)
    lazy val Any_toString = enterNewMethod(AnyClass, nme.toString_, Nil, StringTpe)
    lazy val Any_##       = enterNewMethod(AnyClass, nme.HASHHASH, Nil, IntTpe, FINAL)

    // Any_getClass requires special handling.  The return type is determined on
    // a per-call-site basis as if the function being called were actually:
    //
    //    // Assuming `target.getClass()`
    //    def getClass[T](target: T): Class[_ <: T]
    //
    // Since getClass is not actually a polymorphic method, this requires compiler
    // participation.  At the "Any" level, the return type is Class[_] as it is in
    // java.lang.Object.  Java also special cases the return type.
    lazy val Any_getClass     = enterNewMethod(AnyClass, nme.getClass_, Nil, getMemberMethod(ObjectClass, nme.getClass_).tpe.resultType, DEFERRED)
    lazy val Any_isInstanceOf = newT1NullaryMethod(AnyClass, nme.isInstanceOf_, FINAL)(_ => BooleanTpe)
    lazy val Any_asInstanceOf = newT1NullaryMethod(AnyClass, nme.asInstanceOf_, FINAL)(_.typeConstructor)

    lazy val primitiveGetClassMethods = Set[Symbol](Any_getClass, AnyVal_getClass) ++ (
      ScalaValueClasses map (_.tpe member nme.getClass_)
    )

    lazy val getClassMethods: Set[Symbol] = primitiveGetClassMethods + Object_getClass

  // A type function from T => Class[U], used to determine the return
    // type of getClass calls.  The returned type is:
    //
    //  1. If T is a value type, Class[T].
    //  2. If T is a phantom type (Any or AnyVal), Class[_].
    //  3. If T is a local class, Class[_ <: |T|].
    //  4. Otherwise, Class[_ <: T].
    //
    // Note: AnyVal cannot be Class[_ <: AnyVal] because if the static type of the
    // receiver is AnyVal, it implies the receiver is boxed, so the correct
    // class object is that of java.lang.Integer, not Int.
    //
    // TODO: If T is final, return type could be Class[T].  Should it?
    def getClassReturnType(tp: Type): Type = {
      val sym     = tp.typeSymbol

      if (phase.erasedTypes) ClassClass.tpe
      else if (isPrimitiveValueClass(sym)) ClassType(tp.widen)
      else {
        val eparams    = typeParamsToExistentials(ClassClass, ClassClass.typeParams)
        val upperBound = (
          if (isPhantomClass(sym)) AnyTpe
          else if (sym.isLocalClass) erasure.intersectionDominator(tp.parents)
          else tp.widen
        )

        existentialAbstraction(
          eparams,
          ClassType((eparams.head setInfo TypeBounds.upper(upperBound)).tpe)
        )
      }
    }

    /** Remove references to class Object (other than the head) in a list of parents */
    def removeLaterObjects(tps: List[Type]): List[Type] = tps match {
      case Nil      => Nil
      case x :: xs  => x :: xs.filterNot(_.typeSymbol == ObjectClass)
    }
    /** Remove all but one reference to class Object from a list of parents. */
    def removeRedundantObjects(tps: List[Type]): List[Type] = tps match {
      case Nil      => Nil
      case x :: xs  =>
        if (x.typeSymbol == ObjectClass)
          x :: xs.filterNot(_.typeSymbol == ObjectClass)
        else
          x :: removeRedundantObjects(xs)
    }

    /** The following transformations applied to a list of parents.
     *  If any parent is a class/trait, all parents which normalize to
     *  Object are discarded.  Otherwise, all parents which normalize
     *  to Object except the first one found are discarded.
     */
    def normalizedParents(parents: List[Type]): List[Type] = {
      if (parents exists (t => (t.typeSymbol ne ObjectClass) && t.typeSymbol.isClass))
        parents filterNot (_.typeSymbol eq ObjectClass)
      else
        removeRedundantObjects(parents)
    }

    /** Flatten curried parameter lists of a method type. */
    def allParameters(tpe: Type): List[Symbol] = tpe match {
      case MethodType(params, res) => params ::: allParameters(res)
      case _                       => Nil
    }

    def typeStringNoPackage(tp: Type) =
      "" + tp stripPrefix tp.typeSymbol.enclosingPackage.fullName + "."

    def briefParentsString(parents: List[Type]) =
      normalizedParents(parents) map typeStringNoPackage mkString " with "

    def parentsString(parents: List[Type]) =
      normalizedParents(parents) mkString " with "

    def valueParamsString(tp: Type) = tp match {
      case MethodType(params, _) => params map (_.defString) mkString ("(", ",", ")")
      case _                     => ""
    }

    // members of class java.lang.{ Object, String }
    lazy val Object_## = enterNewMethod(ObjectClass, nme.HASHHASH, Nil, IntTpe, FINAL)
    lazy val Object_== = enterNewMethod(ObjectClass, nme.EQ, AnyTpe :: Nil, BooleanTpe, FINAL)
    lazy val Object_!= = enterNewMethod(ObjectClass, nme.NE, AnyTpe :: Nil, BooleanTpe, FINAL)
    lazy val Object_eq = enterNewMethod(ObjectClass, nme.eq, AnyRefTpe :: Nil, BooleanTpe, FINAL)
    lazy val Object_ne = enterNewMethod(ObjectClass, nme.ne, AnyRefTpe :: Nil, BooleanTpe, FINAL)
    lazy val Object_isInstanceOf = newT1NoParamsMethod(ObjectClass, nme.isInstanceOf_Ob, FINAL | SYNTHETIC | ARTIFACT)(_ => BooleanTpe)
    lazy val Object_asInstanceOf = newT1NoParamsMethod(ObjectClass, nme.asInstanceOf_Ob, FINAL | SYNTHETIC | ARTIFACT)(_.typeConstructor)
    lazy val Object_synchronized = newPolyMethod(1, ObjectClass, nme.synchronized_, FINAL)(tps =>
      (Some(List(tps.head.typeConstructor)), tps.head.typeConstructor)
    )
    lazy val String_+ = enterNewMethod(StringClass, nme.raw.PLUS, AnyTpe :: Nil, StringTpe, FINAL)

    def Object_getClass  = getMemberMethod(ObjectClass, nme.getClass_)
    def Object_clone     = getMemberMethod(ObjectClass, nme.clone_)
    def Object_finalize  = getMemberMethod(ObjectClass, nme.finalize_)
    def Object_notify    = getMemberMethod(ObjectClass, nme.notify_)
    def Object_notifyAll = getMemberMethod(ObjectClass, nme.notifyAll_)
    def Object_equals    = getMemberMethod(ObjectClass, nme.equals_)
    def Object_hashCode  = getMemberMethod(ObjectClass, nme.hashCode_)
    def Object_toString  = getMemberMethod(ObjectClass, nme.toString_)

    // boxed classes
    lazy val ObjectRefClass         = requiredClass[scala.runtime.ObjectRef[_]]
    lazy val VolatileObjectRefClass = requiredClass[scala.runtime.VolatileObjectRef[_]]
    lazy val RuntimeStaticsModule   = getRequiredModule("scala.runtime.Statics")
    lazy val BoxesRunTimeModule     = getRequiredModule("scala.runtime.BoxesRunTime")
    lazy val BoxesRunTimeClass      = BoxesRunTimeModule.moduleClass
    lazy val BoxedNumberClass       = getClassByName(sn.BoxedNumber)
    lazy val BoxedCharacterClass    = getClassByName(sn.BoxedCharacter)
    lazy val BoxedBooleanClass      = getClassByName(sn.BoxedBoolean)
    lazy val BoxedByteClass         = requiredClass[java.lang.Byte]
    lazy val BoxedShortClass        = requiredClass[java.lang.Short]
    lazy val BoxedIntClass          = requiredClass[java.lang.Integer]
    lazy val BoxedLongClass         = requiredClass[java.lang.Long]
    lazy val BoxedFloatClass        = requiredClass[java.lang.Float]
    lazy val BoxedDoubleClass       = requiredClass[java.lang.Double]

    lazy val BoxedUnitClass         = requiredClass[scala.runtime.BoxedUnit]
    lazy val BoxedUnitModule        = getRequiredModule("scala.runtime.BoxedUnit")
      def BoxedUnit_UNIT            = getMemberValue(BoxedUnitModule, nme.UNIT)
      def BoxedUnit_TYPE            = getMemberValue(BoxedUnitModule, nme.TYPE_)

    // Annotation base classes
    lazy val AnnotationClass            = requiredClass[scala.annotation.Annotation]
    lazy val ClassfileAnnotationClass   = requiredClass[scala.annotation.ClassfileAnnotation]
    lazy val StaticAnnotationClass      = requiredClass[scala.annotation.StaticAnnotation]

    // Java retention annotations
    lazy val AnnotationRetentionAttr       = requiredClass[java.lang.annotation.Retention]
    lazy val AnnotationRetentionPolicyAttr = requiredClass[java.lang.annotation.RetentionPolicy]

    // Annotations
    lazy val BridgeClass                = requiredClass[scala.annotation.bridge]
    lazy val ElidableMethodClass        = requiredClass[scala.annotation.elidable]
    lazy val ImplicitNotFoundClass      = requiredClass[scala.annotation.implicitNotFound]
    lazy val MigrationAnnotationClass   = requiredClass[scala.annotation.migration]
    lazy val ScalaStrictFPAttr          = requiredClass[scala.annotation.strictfp]
    lazy val SwitchClass                = requiredClass[scala.annotation.switch]
    lazy val TailrecClass               = requiredClass[scala.annotation.tailrec]
    lazy val VarargsClass               = requiredClass[scala.annotation.varargs]
    lazy val uncheckedStableClass       = requiredClass[scala.annotation.unchecked.uncheckedStable]
    lazy val uncheckedVarianceClass     = requiredClass[scala.annotation.unchecked.uncheckedVariance]

    lazy val BeanPropertyAttr           = requiredClass[scala.beans.BeanProperty]
    lazy val BooleanBeanPropertyAttr    = requiredClass[scala.beans.BooleanBeanProperty]
    lazy val CompileTimeOnlyAttr        = getClassIfDefined("scala.annotation.compileTimeOnly")
    lazy val DeprecatedAttr             = requiredClass[scala.deprecated]
    lazy val DeprecatedNameAttr         = requiredClass[scala.deprecatedName]
    lazy val DeprecatedInheritanceAttr  = requiredClass[scala.deprecatedInheritance]
    lazy val DeprecatedOverridingAttr   = requiredClass[scala.deprecatedOverriding]
    lazy val NativeAttr                 = requiredClass[scala.native]
    lazy val RemoteAttr                 = requiredClass[scala.remote]
    lazy val ScalaInlineClass           = requiredClass[scala.inline]
    lazy val ScalaNoInlineClass         = requiredClass[scala.noinline]
    lazy val SerialVersionUIDAttr       = requiredClass[scala.SerialVersionUID]
    lazy val SerialVersionUIDAnnotation = AnnotationInfo(SerialVersionUIDAttr.tpe, List(), List(nme.value -> LiteralAnnotArg(Constant(0))))
    lazy val SpecializedClass           = requiredClass[scala.specialized]
    lazy val ThrowsClass                = requiredClass[scala.throws[_]]
    lazy val TransientAttr              = requiredClass[scala.transient]
    lazy val UncheckedClass             = requiredClass[scala.unchecked]
    lazy val UncheckedBoundsClass       = getClassIfDefined("scala.reflect.internal.annotations.uncheckedBounds")
    lazy val UnspecializedClass         = requiredClass[scala.annotation.unspecialized]
    lazy val VolatileAttr               = requiredClass[scala.volatile]

    // Meta-annotations
    lazy val BeanGetterTargetClass      = requiredClass[meta.beanGetter]
    lazy val BeanSetterTargetClass      = requiredClass[meta.beanSetter]
    lazy val FieldTargetClass           = requiredClass[meta.field]
    lazy val GetterTargetClass          = requiredClass[meta.getter]
    lazy val ParamTargetClass           = requiredClass[meta.param]
    lazy val SetterTargetClass          = requiredClass[meta.setter]
    lazy val ObjectTargetClass          = requiredClass[meta.companionObject]
    lazy val ClassTargetClass           = requiredClass[meta.companionClass]
    lazy val MethodTargetClass          = requiredClass[meta.companionMethod]    // TODO: module, moduleClass? package, packageObject?
    lazy val LanguageFeatureAnnot       = requiredClass[meta.languageFeature]

    // Language features
    lazy val languageFeatureModule      = getRequiredModule("scala.languageFeature")

    def isMetaAnnotation(sym: Symbol): Boolean = metaAnnotations(sym) || (
      // Trying to allow for deprecated locations
      sym.isAliasType && isMetaAnnotation(sym.info.typeSymbol)
    )
    lazy val metaAnnotations: Set[Symbol] = getPackage(TermName("scala.annotation.meta")).info.members filter (_ isSubClass StaticAnnotationClass) toSet

    // According to the scala.annotation.meta package object:
    // * By default, annotations on (`val`-, `var`- or plain) constructor parameters
    // * end up on the parameter, not on any other entity. Annotations on fields
    // * by default only end up on the field.
    def defaultAnnotationTarget(t: Tree): Symbol = t match {
      case ClassDef(_, _, _, _)                                  => ClassTargetClass
      case ModuleDef(_, _, _)                                    => ObjectTargetClass
      case vd @ ValDef(_, _, _, _) if vd.symbol.isParamAccessor  => ParamTargetClass
      case vd @ ValDef(_, _, _, _) if vd.symbol.isValueParameter => ParamTargetClass
      case ValDef(_, _, _, _)                                    => FieldTargetClass
      case DefDef(_, _, _, _, _, _)                              => MethodTargetClass
      case _                                                     => GetterTargetClass
    }

    lazy val AnnotationDefaultAttr: ClassSymbol = {
      val sym = RuntimePackageClass.newClassSymbol(tpnme.AnnotationDefaultATTR, NoPosition, 0L)
      sym setInfo ClassInfoType(List(AnnotationClass.tpe), newScope, sym)
      markAllCompleted(sym)
      RuntimePackageClass.info.decls.toList.filter(_.name == sym.name) match {
        case existing :: _ =>
          existing.asInstanceOf[ClassSymbol]
        case _ =>
          RuntimePackageClass.info.decls enter sym
          // This attribute needs a constructor so that modifiers in parsed Java code make sense
          sym.info.decls enter sym.newClassConstructor(NoPosition)
          sym
      }
    }

    private def fatalMissingSymbol(owner: Symbol, name: Name, what: String = "member", addendum: String = "") = {
      throw new FatalError(owner + " does not have a " + what + " " + name + addendum)
    }

    def getLanguageFeature(name: String, owner: Symbol = languageFeatureModule): Symbol = getMember(owner, newTypeName(name))

    def termMember(owner: Symbol, name: String): Symbol = owner.info.member(newTermName(name))

    def findNamedMember(fullName: Name, root: Symbol): Symbol = {
      val segs = nme.segments(fullName.toString, fullName.isTermName)
      if (segs.isEmpty || segs.head != root.simpleName) NoSymbol
      else findNamedMember(segs.tail, root)
    }
    def findNamedMember(segs: List[Name], root: Symbol): Symbol =
      if (segs.isEmpty) root
      else findNamedMember(segs.tail, root.info member segs.head)

    def getMember(owner: Symbol, name: Name): Symbol = {
      getMemberIfDefined(owner, name) orElse {
        if (phase.flatClasses && name.isTypeName && !owner.isPackageObjectOrClass) {
          val pkg = owner.owner
          val flatname = tpnme.flattenedName(owner.name, name)
          getMember(pkg, flatname)
        }
        else fatalMissingSymbol(owner, name)
      }
    }
    def getMemberValue(owner: Symbol, name: Name): TermSymbol = {
      getMember(owner, name.toTermName) match {
        case x: TermSymbol => x
        case _             => fatalMissingSymbol(owner, name, "member value")
      }
    }
    def getMemberModule(owner: Symbol, name: Name): ModuleSymbol = {
      getMember(owner, name.toTermName) match {
        case x: ModuleSymbol => x
        case NoSymbol        => fatalMissingSymbol(owner, name, "member object")
        case other           => fatalMissingSymbol(owner, name, "member object", addendum = s". A symbol ${other} of kind ${other.accurateKindString} already exists.")
      }
    }
    def getTypeMember(owner: Symbol, name: Name): TypeSymbol = {
      getMember(owner, name.toTypeName) match {
        case x: TypeSymbol => x
        case _             => fatalMissingSymbol(owner, name, "type member")
      }
    }
    def getMemberClass(owner: Symbol, name: Name): ClassSymbol = {
      getMember(owner, name.toTypeName) match {
        case x: ClassSymbol => x
        case _              => fatalMissingSymbol(owner, name, "member class")
      }
    }
    def getMemberMethod(owner: Symbol, name: Name): TermSymbol = {
      getMember(owner, name.toTermName) match {
        case x: TermSymbol => x
        case _             => fatalMissingSymbol(owner, name, "method")
      }
    }

    private lazy val erasurePhase = findPhaseWithName("erasure")
    def getMemberIfDefined(owner: Symbol, name: Name): Symbol =
      // findMember considered harmful after erasure; e.g.
      //
      // scala> exitingErasure(Symbol_apply).isOverloaded
      // res27: Boolean = true
      //
      enteringPhaseNotLaterThan(erasurePhase )(
        owner.info.nonPrivateMember(name)
      )

    /** Using getDecl rather than getMember may avoid issues with
     *  OverloadedTypes turning up when you don't want them, if you
     *  know the method in question is uniquely declared in the given owner.
     */
    def getDecl(owner: Symbol, name: Name): Symbol = {
      getDeclIfDefined(owner, name) orElse fatalMissingSymbol(owner, name, "decl")
    }
    def getDeclIfDefined(owner: Symbol, name: Name): Symbol =
      owner.info.nonPrivateDecl(name)

    private def newAlias(owner: Symbol, name: TypeName, alias: Type): AliasTypeSymbol =
      owner.newAliasType(name) setInfoAndEnter alias

    private def specialPolyClass(name: TypeName, flags: Long)(parentFn: Symbol => Type): ClassSymbol = {
      val clazz   = enterNewClass(ScalaPackageClass, name, Nil)
      val tparam  = clazz.newSyntheticTypeParam("T0", flags)
      val parents = List(AnyRefTpe, parentFn(tparam))

      clazz setInfo GenPolyType(List(tparam), ClassInfoType(parents, newScope, clazz)) markAllCompleted
    }

    def newPolyMethod(typeParamCount: Int, owner: Symbol, name: TermName, flags: Long)(createFn: PolyMethodCreator): MethodSymbol = {
      val msym    = owner.newMethod(name.encode, NoPosition, flags)
      val tparams = msym.newSyntheticTypeParams(typeParamCount)
      val mtpe    = createFn(tparams) match {
        case (Some(formals), restpe) => MethodType(msym.newSyntheticValueParams(formals), restpe)
        case (_, restpe)             => NullaryMethodType(restpe)
      }

      msym setInfoAndEnter genPolyType(tparams, mtpe) markAllCompleted
    }

    /** T1 means one type parameter.
     */
    def newT1NullaryMethod(owner: Symbol, name: TermName, flags: Long)(createFn: Symbol => Type): MethodSymbol = {
      newPolyMethod(1, owner, name, flags)(tparams => (None, createFn(tparams.head)))
    }
    def newT1NoParamsMethod(owner: Symbol, name: TermName, flags: Long)(createFn: Symbol => Type): MethodSymbol = {
      newPolyMethod(1, owner, name, flags)(tparams => (Some(Nil), createFn(tparams.head)))
    }

    /** Is symbol a phantom class for which no runtime representation exists? */
    lazy val isPhantomClass = Set[Symbol](AnyClass, AnyValClass, NullClass, NothingClass)
    /** Lists core classes that don't have underlying bytecode, but are synthesized on-the-fly in every reflection universe */
    lazy val syntheticCoreClasses = List(
      AnnotationDefaultAttr, // #2264
      RepeatedParamClass,
      JavaRepeatedParamClass,
      ByNameParamClass,
      AnyClass,
      AnyRefClass,
      AnyValClass,
      NullClass,
      NothingClass,
      SingletonClass
    )
    /** Lists core methods that don't have underlying bytecode, but are synthesized on-the-fly in every reflection universe */
    lazy val syntheticCoreMethods = List(
      Any_==,
      Any_!=,
      Any_equals,
      Any_hashCode,
      Any_toString,
      Any_getClass,
      Any_isInstanceOf,
      Any_asInstanceOf,
      Any_##,
      Object_eq,
      Object_ne,
      Object_==,
      Object_!=,
      Object_##,
      Object_synchronized,
      Object_isInstanceOf,
      Object_asInstanceOf,
      String_+
    )
    /** Lists core classes that do have underlying bytecode, but are adjusted on-the-fly in every reflection universe */
    lazy val hijackedCoreClasses = List(
      ComparableClass,
      JavaSerializableClass
    )
    /** Lists symbols that are synthesized or hijacked by the compiler.
     *
     *  Such symbols either don't have any underlying bytecode at all ("synthesized")
     *  or get loaded from bytecode but have their metadata adjusted ("hijacked").
     */
    lazy val symbolsNotPresentInBytecode = syntheticCoreClasses ++ syntheticCoreMethods ++ hijackedCoreClasses

    /** Is the symbol that of a parent which is added during parsing? */
    lazy val isPossibleSyntheticParent = ProductClass.seq.toSet[Symbol] + ProductRootClass + SerializableClass

    private lazy val boxedValueClassesSet = boxedClass.values.toSet[Symbol] + BoxedUnitClass

    /** Is symbol a value class? */
    def isPrimitiveValueClass(sym: Symbol) = ScalaValueClasses contains sym
    def isPrimitiveValueType(tp: Type)     = isPrimitiveValueClass(tp.typeSymbol)

    /** Is symbol a boxed value class, e.g. java.lang.Integer? */
    def isBoxedValueClass(sym: Symbol) = boxedValueClassesSet(sym)

    /** If symbol is a value class (boxed or not), return the unboxed
     *  value class.  Otherwise, NoSymbol.
     */
    def unboxedValueClass(sym: Symbol): Symbol =
      if (isPrimitiveValueClass(sym)) sym
      else if (sym == BoxedUnitClass) UnitClass
      else boxedClass.map(kvp => (kvp._2: Symbol, kvp._1)).getOrElse(sym, NoSymbol)

    /** Is type's symbol a numeric value class? */
    def isNumericValueType(tp: Type): Boolean = tp match {
      case TypeRef(_, sym, _) => isNumericValueClass(sym)
      case _                  => false
    }

    // todo: reconcile with javaSignature!!!
    def signature(tp: Type): String = {
      def erasure(tp: Type): Type = tp match {
        case st: SubType => erasure(st.supertype)
        case RefinedType(parents, _) => erasure(parents.head)
        case _ => tp
      }
      def flatNameString(sym: Symbol, separator: Char): String =
        if (sym == NoSymbol) ""   // be more resistant to error conditions, e.g. neg/t3222.scala
        else if (sym.isTopLevel) sym.javaClassName
        else flatNameString(sym.owner, separator) + nme.NAME_JOIN_STRING + sym.simpleName
      def signature1(etp: Type): String = {
        if (etp.typeSymbol == ArrayClass) "[" + signature1(erasure(etp.dealiasWiden.typeArgs.head))
        else if (isPrimitiveValueClass(etp.typeSymbol)) abbrvTag(etp.typeSymbol).toString()
        else "L" + flatNameString(etp.typeSymbol, '/') + ";"
      }
      val etp = erasure(tp)
      if (etp.typeSymbol == ArrayClass) signature1(etp)
      else flatNameString(etp.typeSymbol, '.')
    }

    // documented in JavaUniverse.init
    def init() {
      if (isInitialized) return
      ObjectClass.initialize
      ScalaPackageClass.initialize
      val forced1 = symbolsNotPresentInBytecode
      val forced2 = NoSymbol
      isInitialized = true
    } //init

    class UniverseDependentTypes(universe: Tree) {
      lazy val nameType         = universeMemberType(tpnme.Name)
      lazy val modsType         = universeMemberType(tpnme.Modifiers)
      lazy val flagsType        = universeMemberType(tpnme.FlagSet)
      lazy val symbolType       = universeMemberType(tpnme.Symbol)
      lazy val treeType         = universeMemberType(tpnme.Tree)
      lazy val caseDefType      = universeMemberType(tpnme.CaseDef)
      lazy val liftableType     = universeMemberType(tpnme.Liftable)
      lazy val unliftableType   = universeMemberType(tpnme.Unliftable)
      lazy val iterableTreeType = appliedType(IterableClass, treeType)
      lazy val listTreeType     = appliedType(ListClass, treeType)
      lazy val listListTreeType = appliedType(ListClass, listTreeType)

      def universeMemberType(name: TypeName) = universe.tpe.memberType(getTypeMember(universe.symbol, name))
    }

    /** Efficient access to member symbols which must be looked up each run. Access via `currentRun.runDefinitions` */
    final class RunDefinitions {
      lazy val StringAdd_+ = getMemberMethod(StringAddClass, nme.PLUS)

      // The given symbol represents either String.+ or StringAdd.+
      def isStringAddition(sym: Symbol) = sym == String_+ || sym == StringAdd_+

      lazy val StringContext_f = getMemberMethod(StringContextClass, nme.f)

      lazy val ArrowAssocClass = getMemberClass(PredefModule, TypeName("ArrowAssoc")) // SI-5731
      def isArrowAssoc(sym: Symbol) = sym.owner == ArrowAssocClass

      lazy val Boxes_isNumberOrBool  = getDecl(BoxesRunTimeClass, nme.isBoxedNumberOrBoolean)
      lazy val Boxes_isNumber        = getDecl(BoxesRunTimeClass, nme.isBoxedNumber)

      private def valueClassCompanion(name: TermName): ModuleSymbol = {
        getMember(ScalaPackageClass, name) match {
          case x: ModuleSymbol => x
          case _               => catastrophicFailure()
        }
      }

      private def valueCompanionMember(className: Name, methodName: TermName): TermSymbol =
        getMemberMethod(valueClassCompanion(className.toTermName).moduleClass, methodName)

      lazy val boxMethod        = classesMap(x => valueCompanionMember(x, nme.box))
      lazy val unboxMethod      = classesMap(x => valueCompanionMember(x, nme.unbox))
      lazy val isUnbox          = unboxMethod.values.toSet[Symbol]
      lazy val isBox            = boxMethod.values.toSet[Symbol]

      lazy val Boolean_and = definitions.Boolean_and
      lazy val Boolean_or = definitions.Boolean_or
      lazy val Boolean_not = definitions.Boolean_not

      lazy val Option_apply = getMemberMethod(OptionModule, nme.apply)
      lazy val List_apply = DefinitionsClass.this.List_apply

      /**
       * Is the given symbol `List.apply`?
       * To to avoid bootstrapping cycles, this return false if the given symbol or List itself is not initialized.
       */
      def isListApply(sym: Symbol) = sym.isInitialized && ListModule.hasCompleteInfo && sym == List_apply
      def isPredefClassOf(sym: Symbol) = if (PredefModule.hasCompleteInfo) sym == Predef_classOf else isPredefMemberNamed(sym, nme.classOf)

      lazy val TagMaterializers = Map[Symbol, Symbol](
        ClassTagClass    -> materializeClassTag,
        WeakTypeTagClass -> materializeWeakTypeTag,
        TypeTagClass     -> materializeTypeTag
      )
      lazy val TagSymbols = TagMaterializers.keySet
      lazy val Predef_conforms     = (getMemberIfDefined(PredefModule, nme.conforms)
                               orElse getMemberMethod(PredefModule, TermName("conforms"))) // TODO: predicate on -Xsource:2.10 (for now, needed for transition from M8 -> RC1)
      lazy val Predef_classOf      = getMemberMethod(PredefModule, nme.classOf)
      lazy val Predef_implicitly   = getMemberMethod(PredefModule, nme.implicitly)
      lazy val Predef_wrapRefArray = getMemberMethod(PredefModule, nme.wrapRefArray)
      lazy val Predef_???          = DefinitionsClass.this.Predef_???

      lazy val arrayApplyMethod       = getMemberMethod(ScalaRunTimeModule, nme.array_apply)
      lazy val arrayUpdateMethod      = getMemberMethod(ScalaRunTimeModule, nme.array_update)
      lazy val arrayLengthMethod      = getMemberMethod(ScalaRunTimeModule, nme.array_length)
      lazy val arrayCloneMethod       = getMemberMethod(ScalaRunTimeModule, nme.array_clone)
      lazy val ensureAccessibleMethod = getMemberMethod(ScalaRunTimeModule, nme.ensureAccessible)
      lazy val arrayClassMethod       = getMemberMethod(ScalaRunTimeModule, nme.arrayClass)
      lazy val traversableDropMethod  = getMemberMethod(ScalaRunTimeModule, nme.drop)

      lazy val GroupOfSpecializable = getMemberClass(SpecializableModule, tpnme.Group)

      lazy val WeakTypeTagClass = TypeTagsClass.map(sym => getMemberClass(sym, tpnme.WeakTypeTag))
      lazy val WeakTypeTagModule = TypeTagsClass.map(sym => getMemberModule(sym, nme.WeakTypeTag))
      lazy val TypeTagClass = TypeTagsClass.map(sym => getMemberClass(sym, tpnme.TypeTag))
      lazy val TypeTagModule = TypeTagsClass.map(sym => getMemberModule(sym, nme.TypeTag))
      lazy val MacroContextUniverse = DefinitionsClass.this.MacroContextUniverse

      lazy val materializeClassTag    = getMemberMethod(ReflectPackage, nme.materializeClassTag)
      lazy val materializeWeakTypeTag = ReflectApiPackage.map(sym => getMemberMethod(sym, nme.materializeWeakTypeTag))
      lazy val materializeTypeTag     = ReflectApiPackage.map(sym => getMemberMethod(sym, nme.materializeTypeTag))

      lazy val experimentalModule         = getMemberModule(languageFeatureModule, nme.experimental)
      lazy val MacrosFeature              = getLanguageFeature("macros", experimentalModule)
      lazy val DynamicsFeature            = getLanguageFeature("dynamics")
      lazy val PostfixOpsFeature          = getLanguageFeature("postfixOps")
      lazy val ReflectiveCallsFeature     = getLanguageFeature("reflectiveCalls")
      lazy val ImplicitConversionsFeature = getLanguageFeature("implicitConversions")
      lazy val HigherKindsFeature         = getLanguageFeature("higherKinds")
      lazy val ExistentialsFeature        = getLanguageFeature("existentials")

      lazy val ApiUniverseReify = ApiUniverseClass.map(sym => getMemberMethod(sym, nme.reify))

      lazy val ReflectRuntimeUniverse      = DefinitionsClass.this.ReflectRuntimeUniverse
      lazy val ReflectRuntimeCurrentMirror = DefinitionsClass.this.ReflectRuntimeCurrentMirror

      lazy val TreesTreeType         = TreesClass.map(sym => getTypeMember(sym, tpnme.Tree))
      object TreeType { def unapply(tpe: Type): Boolean = tpe.typeSymbol.overrideChain contains TreesTreeType }
      object SubtreeType { def unapply(tpe: Type): Boolean = tpe.typeSymbol.overrideChain exists (_.tpe <:< TreesTreeType.tpe) }

      object ExprClassOf { def unapply(tp: Type): Option[Type] = elementExtractOption(ExprClass, tp) }

      lazy val PartialManifestClass  = getTypeMember(ReflectPackage, tpnme.ClassManifest)
      lazy val ManifestSymbols = Set[Symbol](PartialManifestClass, FullManifestClass, OptManifestClass)

      def isPolymorphicSignature(sym: Symbol) = PolySigMethods(sym)
      private lazy val PolySigMethods: Set[Symbol] = Set[Symbol](MethodHandle.info.decl(sn.Invoke), MethodHandle.info.decl(sn.InvokeExact)).filter(_.exists)

      lazy val Scala_Java8_CompatPackage = rootMirror.getPackageIfDefined("scala.compat.java8")
      lazy val Scala_Java8_CompatPackage_JFunction = (0 to MaxFunctionArity).toArray map (i => getMemberIfDefined(Scala_Java8_CompatPackage.moduleClass, TypeName("JFunction" + i)))
    }
  }
}