summaryrefslogtreecommitdiff
path: root/src/reflect/scala/reflect/internal/Symbols.scala
blob: 16b2a23c23a15fe467e50b5c5a9d180d85849cab (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
 /* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala
package reflect
package internal

import scala.collection.{ mutable, immutable }
import scala.collection.mutable.ListBuffer
import util.{ Statistics, shortClassOfInstance }
import Flags._
import scala.annotation.tailrec
import scala.reflect.io.{ AbstractFile, NoAbstractFile }
import Variance._

trait Symbols extends api.Symbols { self: SymbolTable =>
  import definitions._
  import SymbolsStats._

  protected var ids = 0

  protected def nextId() = { ids += 1; ids }

  /** Used for deciding in the IDE whether we can interrupt the compiler */
  //protected var activeLocks = 0

  /** Used for debugging only */
  //protected var lockedSyms = scala.collection.immutable.Set[Symbol]()

  /** Used to keep track of the recursion depth on locked symbols */
  private var _recursionTable = immutable.Map.empty[Symbol, Int]
  def recursionTable = _recursionTable
  def recursionTable_=(value: immutable.Map[Symbol, Int]) = _recursionTable = value

  private var existentialIds = 0
  protected def nextExistentialId() = { existentialIds += 1; existentialIds }
  protected def freshExistentialName(suffix: String) = newTypeName("_" + nextExistentialId() + suffix)

  // Set the fields which point companions at one another.  Returns the module.
  def connectModuleToClass(m: ModuleSymbol, moduleClass: ClassSymbol): ModuleSymbol = {
    moduleClass.sourceModule = m
    m setModuleClass moduleClass
    m
  }

  /** Create a new free term.  Its owner is NoSymbol.
   */
  def newFreeTermSymbol(name: TermName, value: => Any, flags: Long = 0L, origin: String): FreeTermSymbol =
    new FreeTermSymbol(name, value, origin) initFlags flags

  /** Create a new free type.  Its owner is NoSymbol.
   */
  def newFreeTypeSymbol(name: TypeName, flags: Long = 0L, origin: String): FreeTypeSymbol =
    new FreeTypeSymbol(name, origin) initFlags flags

  /**
   * This map stores the original owner the first time the owner of a symbol is re-assigned.
   * The original owner of a symbol is needed in some places in the backend. Ideally, owners should
   * be versioned like the type history.
   */
  private val originalOwnerMap = perRunCaches.newMap[Symbol, Symbol]()

  // TODO - don't allow the owner to be changed without checking invariants, at least
  // when under some flag. Define per-phase invariants for owner/owned relationships,
  // e.g. after flatten all classes are owned by package classes, there are lots and
  // lots of these to be declared (or more realistically, discovered.)
  // could be private since 2.11.6, but left protected to avoid potential breakages (eg ensime)
  protected def saveOriginalOwner(sym: Symbol): Unit = {
    // some synthetic symbols have NoSymbol as owner initially
    if (sym.owner != NoSymbol) {
      if (originalOwnerMap contains sym) ()
      else defineOriginalOwner(sym, sym.rawowner)
    }
  }

  def defineOriginalOwner(sym: Symbol, owner: Symbol): Unit = {
    originalOwnerMap(sym) = owner
  }

  def symbolOf[T: WeakTypeTag]: TypeSymbol = weakTypeOf[T].typeSymbolDirect.asType

  abstract class SymbolContextApiImpl extends SymbolApi {
    this: Symbol =>

    def isFreeTerm: Boolean = false
    def asFreeTerm: FreeTermSymbol = throw new ScalaReflectionException(s"$this is not a free term")
    def isFreeType: Boolean = false
    def asFreeType: FreeTypeSymbol = throw new ScalaReflectionException(s"$this is not a free type")

    def isExistential: Boolean = this.isExistentiallyBound
    def isParamWithDefault: Boolean = this.hasDefault
    // `isByNameParam` is only true for a call-by-name parameter of a *method*,
    // an argument of the primary constructor seen in the class body is excluded by `isValueParameter`
    def isByNameParam: Boolean = this.isValueParameter && (this hasFlag BYNAMEPARAM)
    def isImplementationArtifact: Boolean = (this hasFlag BRIDGE) || (this hasFlag VBRIDGE) || (this hasFlag ARTIFACT)
    def isJava: Boolean = isJavaDefined
    def isVal: Boolean = isTerm && !isModule && !isMethod && !isMutable
    def isVar: Boolean = isTerm && !isModule && !isMethod && !isLazy && isMutable
    def isAbstract: Boolean = isAbstractClass || isDeferred || isAbstractType
    def isPrivateThis = (this hasFlag PRIVATE) && (this hasFlag LOCAL)
    def isProtectedThis = (this hasFlag PROTECTED) && (this hasFlag LOCAL)

    def newNestedSymbol(name: Name, pos: Position, newFlags: Long, isClass: Boolean): Symbol = name match {
      case n: TermName => newTermSymbol(n, pos, newFlags)
      case n: TypeName => if (isClass) newClassSymbol(n, pos, newFlags) else newNonClassSymbol(n, pos, newFlags)
    }

    def knownDirectSubclasses = {
      // See `getFlag` to learn more about the `isThreadsafe` call in the body of this method.
      if (!isCompilerUniverse && !isThreadsafe(purpose = AllOps)) initialize

      enclosingPackage.info.decls.foreach { sym =>
        if(sourceFile == sym.sourceFile) {
          sym.rawInfo.forceDirectSuperclasses
        }
      }

      if(!isPastTyper)
        updateAttachment(KnownDirectSubclassesCalled)

      children
    }

    def selfType = {
      // See `getFlag` to learn more about the `isThreadsafe` call in the body of this method.
      if (!isCompilerUniverse && !isThreadsafe(purpose = AllOps)) initialize
      typeOfThis
    }

    def baseClasses                       = info.baseClasses
    def module                            = sourceModule
    def thisPrefix: Type                  = thisType
    def superPrefix(supertpe: Type): Type = SuperType(thisType, supertpe)

    // These two methods used to call fullyInitializeSymbol on `this`.
    //
    // The only positive effect of that is, to the best of my knowledge, convenient printing
    // (if you print a signature of the symbol that's not fully initialized,
    // you might end up with weird <?>'s in value/type params)
    //
    // Another effect is obviously full initialization of that symbol,
    // but that one shouldn't be necessary from the public API standpoint,
    // because everything that matters auto-initializes at runtime,
    // and auto-initialization at compile-time is anyway dubious
    // (I've had spurious cyclic refs caused by calling typeSignature
    // that initialized parent, which was in the middle of initialization).
    //
    // Given that and also given the pressure of being uniform with info and infoIn,
    // I've removed calls to fullyInitializeSymbol from typeSignature and typeSignatureIn,
    // injected fullyInitializeSymbol in showDecl, and injected fullyInitializeType in runtime Type.toString
    // (the latter will make things a bit harder to debug in runtime universe, because
    // toString might now very rarely cause cyclic references, but we also have showRaw that doesn't do initialization).
    //
    // Auto-initialization in runtime Type.toString is one of the examples of why a cake-based design
    // isn't a very good idea for reflection API. Sometimes we want to same pretty name for both a compiler-facing
    // and a user-facing API that should have different behaviors (other examples here include isPackage, isCaseClass, etc).
    // Within a cake it's fundamentally impossible to achieve that.
    def typeSignature: Type               = info
    def typeSignatureIn(site: Type): Type = site memberInfo this

    def toType: Type = tpe
    def toTypeIn(site: Type): Type = site.memberType(this)
    def toTypeConstructor: Type = typeConstructor
    def setAnnotations(annots: AnnotationInfo*): this.type = { setAnnotations(annots.toList); this }

    def getter: Symbol = getterIn(owner)
    def setter: Symbol = setterIn(owner)

    def companion: Symbol = {
      if (isModule && !hasPackageFlag) companionSymbol
      else if (isModuleClass && !isPackageClass) sourceModule.companionSymbol
      else if (isClass && !isModuleClass && !isPackageClass) companionSymbol
      else NoSymbol
    }

    def infoIn(site: Type): Type = typeSignatureIn(site)
    def overrides: List[Symbol] = allOverriddenSymbols
    def paramLists: List[List[Symbol]] = paramss
  }

  private[reflect] case class SymbolKind(accurate: String, sanitized: String, abbreviation: String)

  protected def newStubSymbol(owner: Symbol,
                              name: Name,
                              missingMessage: String,
                              isPackage: Boolean = false): Symbol = {
    name match {
      case n: TypeName  => if (isPackage) new StubPackageClassSymbol(owner, n, missingMessage)
                           else new StubClassSymbol(owner, n, missingMessage)
      case _            => new StubTermSymbol(owner, name.toTermName, missingMessage)
    }
  }

  /** The class for all symbols */
  abstract class Symbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: Name)
          extends SymbolContextApiImpl
             with HasFlags
             with Annotatable[Symbol]
             with Attachable {
    // makes sure that all symbols that runtime reflection deals with are synchronized
    private def isSynchronized = this.isInstanceOf[scala.reflect.runtime.SynchronizedSymbols#SynchronizedSymbol]
    private def isAprioriThreadsafe = isThreadsafe(AllOps)
    assert(isCompilerUniverse || isSynchronized || isAprioriThreadsafe, s"unsafe symbol $initName (child of $initOwner) in runtime reflection universe")

    type AccessBoundaryType = Symbol
    type AnnotationType     = AnnotationInfo

    // TODO - don't allow names to be renamed in this unstructured fashion.
    // Rename as little as possible.  Enforce invariants on all renames.
    type TypeOfClonedSymbol >: Null <: Symbol { type NameType = Symbol.this.NameType }

    // Abstract here so TypeSymbol and TermSymbol can have a private[this] field
    // with the proper specific type.
    def rawname: NameType
    def name: NameType
    def name_=(n: Name): Unit = {
      if (shouldLogAtThisPhase) {
        def msg = s"In $owner, renaming $name -> $n"
        if (isSpecialized) debuglog(msg) else log(msg)
      }
    }
    def asNameType(n: Name): NameType

    // Syncnote: need not be protected, as only assignment happens in owner_=, which is not exposed to api
    // The null check is for NoSymbol, which can't pass a reference to itself to the constructor and also
    // can't call owner_= due to an assertion it contains.
    private[this] var _rawowner = if (initOwner eq null) this else initOwner
    private[this] var _rawflags: Long = _

    def rawowner = _rawowner
    def rawflags = _rawflags

    rawatt = initPos

    val id = nextId() // identity displayed when -uniqid
    //assert(id != 3390, initName)

    private[this] var _validTo: Period = NoPeriod

    if (traceSymbolActivity)
      traceSymbols.recordNewSymbol(this)

    def validTo = _validTo
    def validTo_=(x: Period) { _validTo = x}

    def setName(name: Name): this.type = { this.name = asNameType(name) ; this }

    // Update the surrounding scopes
    protected[this] def changeNameInOwners(name: Name) {
      if (owner.isClass) {
        var ifs = owner.infos
        while (ifs != null) {
          ifs.info.decls.rehash(this, name)
          ifs = ifs.prev
        }
      }
    }

    def rawFlagString(mask: Long): String = calculateFlagString(rawflags & mask)
    def rawFlagString: String             = rawFlagString(flagMask)
    def debugFlagString: String           = flagString(AllFlags)

    /** String representation of symbol's variance */
    def varianceString: String = variance.symbolicString

    override def flagMask =
      if (settings.debug && !isAbstractType) AllFlags
      else if (owner.isRefinementClass) ExplicitFlags & ~OVERRIDE
      else ExplicitFlags

    // make the error message more googlable
    def flagsExplanationString =
      if (isGADTSkolem) " (this is a GADT skolem)"
      else ""

    def shortSymbolClass = shortClassOfInstance(this)
    def symbolCreationString: String = (
      "%s%25s | %-40s | %s".format(
        if (settings.uniqid) "%06d | ".format(id) else "",
        shortSymbolClass,
        name.decode + " in " + owner,
        rawFlagString
      )
    )

// ------ creators -------------------------------------------------------------------

    final def newValue(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): TermSymbol =
      newTermSymbol(name, pos, newFlags)
    final def newVariable(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): TermSymbol =
      newTermSymbol(name, pos, MUTABLE | newFlags)
    final def newValueParameter(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): TermSymbol =
      newTermSymbol(name, pos, PARAM | newFlags)

    /** Create local dummy for template (owner of local blocks) */
    final def newLocalDummy(pos: Position): TermSymbol =
      newTermSymbol(nme.localDummyName(this), pos) setInfo NoType
    final def newMethod(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): MethodSymbol =
      createMethodSymbol(name, pos, METHOD | newFlags)
    final def newMethodSymbol(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): MethodSymbol =
      createMethodSymbol(name, pos, METHOD | newFlags)
    final def newLabel(name: TermName, pos: Position = NoPosition): MethodSymbol =
      newMethod(name, pos, LABEL)

    /** Propagates ConstrFlags (JAVA, specifically) from owner to constructor. */
    final def newConstructor(pos: Position, newFlags: Long = 0L): MethodSymbol =
      newMethod(nme.CONSTRUCTOR, pos, getFlag(ConstrFlags) | newFlags)

    /** Static constructor with info set. */
    def newStaticConstructor(pos: Position): MethodSymbol =
      newConstructor(pos, STATIC) setInfo UnitTpe

    /** Instance constructor with info set. */
    def newClassConstructor(pos: Position): MethodSymbol =
      newConstructor(pos) setInfo MethodType(Nil, this.tpe)

    def newLinkedModule(clazz: Symbol, newFlags: Long = 0L): ModuleSymbol = {
      val m = newModuleSymbol(clazz.name.toTermName, clazz.pos, MODULE | newFlags)
      connectModuleToClass(m, clazz.asInstanceOf[ClassSymbol])
    }
    final def newModule(name: TermName, pos: Position = NoPosition, newFlags0: Long = 0L): ModuleSymbol = {
      val newFlags = newFlags0 | MODULE
      val m = newModuleSymbol(name, pos, newFlags)
      val clazz = newModuleClass(name.toTypeName, pos, newFlags & ModuleToClassFlags)
      connectModuleToClass(m, clazz)
    }

    final def newPackage(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): ModuleSymbol = {
      assert(name == nme.ROOT || isPackageClass, this)
      newModule(name, pos, PackageFlags | newFlags)
    }

    final def newThisSym(name: TermName = nme.this_, pos: Position = NoPosition): TermSymbol =
      newTermSymbol(name, pos, SYNTHETIC)

    final def newImport(pos: Position): TermSymbol =
      newTermSymbol(nme.IMPORT, pos)

    def newModuleVarSymbol(accessor: Symbol): TermSymbol = {
      val newName  = nme.moduleVarName(accessor.name.toTermName)
      val newFlags = MODULEVAR | ( if (this.isClass) PrivateLocal | SYNTHETIC else 0 )
      val newInfo  = accessor.tpe.finalResultType
      val mval     = newVariable(newName, accessor.pos.focus, newFlags.toLong) addAnnotation VolatileAttr

      if (this.isClass)
        mval setInfoAndEnter newInfo
      else
        mval setInfo newInfo
    }

    final def newModuleSymbol(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): ModuleSymbol =
      newTermSymbol(name, pos, newFlags).asInstanceOf[ModuleSymbol]

    final def newModuleAndClassSymbol(name: Name, pos: Position, flags0: FlagSet): (ModuleSymbol, ClassSymbol) = {
      val flags = flags0 | MODULE
      val m = newModuleSymbol(name.toTermName, pos, flags)
      val c = newModuleClass(name.toTypeName, pos, flags & ModuleToClassFlags)
      connectModuleToClass(m, c)
      (m, c)
    }

    final def newModuleClassSymbol(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): ModuleClassSymbol =
      newClassSymbol(name, pos, newFlags).asInstanceOf[ModuleClassSymbol]

    final def newTypeSkolemSymbol(name: TypeName, origin: AnyRef, pos: Position = NoPosition, newFlags: Long = 0L): TypeSkolem =
      createTypeSkolemSymbol(name, origin, pos, newFlags)

    /** @param pre   type relative to which alternatives are seen.
     *  for instance:
     *  class C[T] {
     *    def m(x: T): T
     *    def m'(): T
     *  }
     *  val v: C[Int]
     *
     *  Then v.m  has symbol TermSymbol(flags = {OVERLOADED},
     *                                  tpe = OverloadedType(C[Int], List(m, m')))
     *  You recover the type of m doing a
     *
     *    m.tpe.asSeenFrom(pre, C)   (generally, owner of m, which is C here).
     *
     *  or:
     *
     *    pre.memberType(m)
     */
    final def newOverloaded(pre: Type, alternatives: List[Symbol]): TermSymbol = (
      newTermSymbol(alternatives.head.name.toTermName, alternatives.head.pos, OVERLOADED)
        setInfo OverloadedType(pre, alternatives)
    )

    final def newErrorValue(name: TermName): TermSymbol =
      newTermSymbol(name, pos, SYNTHETIC | IS_ERROR) setInfo ErrorType

    /** Symbol of a type definition  type T = ...
     */
    final def newAliasType(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): AliasTypeSymbol =
      createAliasTypeSymbol(name, pos, newFlags)

    /** Symbol of an abstract type  type T >: ... <: ...
     */
    final def newAbstractType(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): AbstractTypeSymbol =
      createAbstractTypeSymbol(name, pos, DEFERRED | newFlags)

    /** Symbol of a type parameter
     */
    final def newTypeParameter(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): TypeSymbol =
      newAbstractType(name, pos, PARAM | newFlags)

// is defined in SymbolCreations
//    final def newTypeSymbol(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): TypeSymbol =
//      (if ((newFlags & DEFERRED) != 0) new AbstractTypeSymbol(this, pos, name)
//       else new AbstractTypeSymbol(this, pos, name)) setFlag newFlags

    /** Symbol of an existential type T forSome { ... }
     */
    final def newExistential(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): TypeSymbol =
      newAbstractType(name, pos, EXISTENTIAL | newFlags)

    private def freshNamer: () => TermName = {
      var cnt = 0
      () => { cnt += 1; nme.syntheticParamName(cnt) }
    }

    /** Synthetic value parameters when parameter symbols are not available.
     *  Calling this method multiple times will re-use the same parameter names.
     */
    final def newSyntheticValueParams(argtypes: List[Type]): List[TermSymbol] =
      newSyntheticValueParams(argtypes, freshNamer)

    final def newSyntheticValueParams(argtypes: List[Type], freshName: () => TermName): List[TermSymbol] =
      argtypes map (tp => newSyntheticValueParam(tp, freshName()))

    /** Synthetic value parameter when parameter symbol is not available.
     *  Calling this method multiple times will re-use the same parameter name.
     */
    final def newSyntheticValueParam(argtype: Type, name: TermName = nme.syntheticParamName(1)): TermSymbol =
      newValueParameter(name, owner.pos.focus, SYNTHETIC) setInfo argtype

    def newSyntheticTypeParam(name: String, newFlags: Long): TypeSymbol = newTypeParameter(newTypeName(name), NoPosition, newFlags) setInfo TypeBounds.empty
    def newSyntheticTypeParams(num: Int): List[TypeSymbol]              = (0 until num).toList map (n => newSyntheticTypeParam("T" + n, 0L))

    /** Create a new existential type skolem with this symbol its owner,
     *  based on the given symbol and origin.
     */
    def newExistentialSkolem(basis: Symbol, origin: AnyRef): TypeSkolem =
      newExistentialSkolem(basis.name.toTypeName, basis.info, basis.flags, basis.pos, origin)

    /** Create a new existential type skolem with this symbol its owner, and the given other properties.
     */
    def newExistentialSkolem(name: TypeName, info: Type, flags: Long, pos: Position, origin: AnyRef): TypeSkolem = {
      val skolem = newTypeSkolemSymbol(name.toTypeName, origin, pos, (flags | EXISTENTIAL) & ~PARAM)
      skolem setInfo (info cloneInfo skolem)
    }

    // don't test directly -- use isGADTSkolem
    // used to single out a gadt skolem symbol in deskolemizeGADT
    // gadtskolems are created in adaptConstrPattern and removed at the end of typedCase
    final protected[Symbols] def GADT_SKOLEM_FLAGS = CASEACCESSOR | SYNTHETIC

    // flags set up to maintain TypeSkolem's invariant: origin.isInstanceOf[Symbol] == !hasFlag(EXISTENTIAL)
    // GADT_SKOLEM_FLAGS (== CASEACCESSOR | SYNTHETIC) used to single this symbol out in deskolemizeGADT
    // TODO: it would be better to allocate a new bit in the flag long for GADTSkolem rather than OR'ing together CASEACCESSOR | SYNTHETIC
    def newGADTSkolem(name: TypeName, origin: Symbol, info: Type): TypeSkolem =
      newTypeSkolemSymbol(name, origin, origin.pos, origin.flags & ~(EXISTENTIAL | PARAM) | GADT_SKOLEM_FLAGS) setInfo info

    final def freshExistential(suffix: String): TypeSymbol =
      newExistential(freshExistentialName(suffix), pos)

    /** Type skolems are type parameters ''seen from the inside''
     *  Assuming a polymorphic method m[T], its type is a PolyType which has a TypeParameter
     *  with name `T` in its typeParams list. While type checking the parameters, result type and
     *  body of the method, there's a local copy of `T` which is a TypeSkolem.
     */
    final def newTypeSkolem: TypeSkolem =
      owner.newTypeSkolemSymbol(name.toTypeName, this, pos, flags)

    final def newClass(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): ClassSymbol =
      newClassSymbol(name, pos, newFlags)

    /** A new class with its info set to a ClassInfoType with given scope and parents. */
    def newClassWithInfo(name: TypeName, parents: List[Type], scope: Scope, pos: Position = NoPosition, newFlags: Long = 0L): ClassSymbol = {
      val clazz = newClass(name, pos, newFlags)
      clazz setInfo ClassInfoType(parents, scope, clazz)
    }
    final def newErrorClass(name: TypeName): ClassSymbol =
      newClassWithInfo(name, Nil, new ErrorScope(this), pos, SYNTHETIC | IS_ERROR)

    final def newModuleClass(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): ModuleClassSymbol =
      newModuleClassSymbol(name, pos, newFlags | MODULE)

    final def newAnonymousFunctionClass(pos: Position = NoPosition, newFlags: Long = 0L): ClassSymbol =
      newClassSymbol(tpnme.ANON_FUN_NAME, pos, FINAL | SYNTHETIC | newFlags)

    final def newAnonymousFunctionValue(pos: Position, newFlags: Long = 0L): TermSymbol =
      newTermSymbol(nme.ANON_FUN_NAME, pos, SYNTHETIC | newFlags) setInfo NoType

    def newImplClass(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): ClassSymbol = {
      newClassSymbol(name, pos, newFlags | IMPLCLASS)
    }

    /** Refinement types P { val x: String; type T <: Number }
     *  also have symbols, they are refinementClasses
     */
    final def newRefinementClass(pos: Position): RefinementClassSymbol =
      createRefinementClassSymbol(pos, 0L)

    final def newErrorSymbol(name: Name): Symbol = name match {
      case x: TypeName  => newErrorClass(x)
      case x: TermName  => newErrorValue(x)
    }

    /** Creates a placeholder symbol for when a name is encountered during
     *  unpickling for which there is no corresponding classfile.  This defers
     *  failure to the point when that name is used for something, which is
     *  often to the point of never.
     */
    def newStubSymbol(name: Name, missingMessage: String, isPackage: Boolean = false): Symbol = {
      // Invoke the overriden `newStubSymbol` in Global that gives us access to typer
      Symbols.this.newStubSymbol(this, name, missingMessage, isPackage)
    }

    /** Given a field, construct a term symbol that represents the source construct that gave rise the field */
    def sugaredSymbolOrSelf = {
      val getter = getterIn(owner)
      if (getter == NoSymbol) {
        this
      } else {
        val result = owner.newValue(getter.name.toTermName, newFlags = getter.flags & ~Flags.METHOD).setPrivateWithin(getter.privateWithin).setInfo(getter.info.resultType)
        val setter = setterIn(owner)
        if (setter != NoSymbol) result.setFlag(Flags.MUTABLE)
        result
      }
    }

// ----- locking and unlocking ------------------------------------------------------

    // True if the symbol is unlocked.
    // True if the symbol is locked but still below the allowed recursion depth.
    // False otherwise
    private[scala] def lockOK: Boolean = {
      ((_rawflags & LOCKED) == 0L) ||
      ((settings.Yrecursion.value != 0) &&
       (recursionTable get this match {
         case Some(n) => (n <= settings.Yrecursion.value)
         case None => true }))
    }

    // Lock a symbol, using the handler if the recursion depth becomes too great.
    private[scala] def lock(handler: => Unit): Boolean = {
      if ((_rawflags & LOCKED) != 0L) {
        if (settings.Yrecursion.value != 0) {
          recursionTable get this match {
            case Some(n) =>
              if (n > settings.Yrecursion.value) {
                handler
                false
              } else {
                recursionTable += (this -> (n + 1))
                true
              }
            case None =>
              recursionTable += (this -> 1)
              true
          }
        } else { handler; false }
      } else {
        _rawflags |= LOCKED
        true
//        activeLocks += 1
//        lockedSyms += this
      }
    }

    // Unlock a symbol
    private[scala] def unlock() = {
      if ((_rawflags & LOCKED) != 0L) {
//        activeLocks -= 1
//        lockedSyms -= this
        _rawflags &= ~LOCKED
        if (settings.Yrecursion.value != 0)
          recursionTable -= this
      }
    }

// ----- tests ----------------------------------------------------------------------

    def isAliasType    = false
    def isAbstractType = false
    def isSkolem       = false

    /** A Type, but not a Class. */
    def isNonClassType = false

    /** The bottom classes are Nothing and Null, found in Definitions. */
    def isBottomClass  = false

    /** These are all tests for varieties of ClassSymbol, which has these subclasses:
     *  - ModuleClassSymbol
     *  - RefinementClassSymbol
     *  - PackageClassSymbol (extends ModuleClassSymbol)
     */
    def isAbstractClass         = false
    def isAnonOrRefinementClass = false
    def isAnonymousClass        = false
    def isCaseClass             = false
    def isConcreteClass         = false
    def isImplClass             = false   // the implementation class of a trait
    def isJavaInterface         = false
    def isNumericValueClass     = false
    def isPrimitiveValueClass   = false
    def isRefinementClass       = false
    override def isTrait        = false

    /** Qualities of Types, always false for TermSymbols.
     */
    def isContravariant         = false
    def isCovariant             = false
    def isExistentialSkolem     = false
    def isExistentiallyBound    = false
    def isGADTSkolem            = false
    def isTypeParameter         = false
    def isTypeParameterOrSkolem = false
    def isTypeSkolem            = false
    def isInvariant             = !isCovariant && !isContravariant

    /** Qualities of Terms, always false for TypeSymbols.
     */
    def isAccessor          = false
    def isBridge            = false
    def isCapturedVariable  = false
    def isClassConstructor  = false
    def isConstructor       = false
    def isEarlyInitialized  = false
    def isGetter            = false
    def isDefaultGetter     = false
    def isLocalDummy        = false
    def isMixinConstructor  = false
    def isOverloaded        = false
    def isSetter            = false
    def isSetterParameter   = false
    def isValue             = false
    def isValueParameter    = false
    def isVariable          = false
    def isTermMacro         = false

    /** Qualities of MethodSymbols, always false for TypeSymbols
     *  and other TermSymbols.
     */
    def isCaseAccessorMethod = false
    def isLiftedMethod       = false
    def isSourceMethod       = false
    def isVarargsMethod      = false
    override def isLabel     = false

    /** Package/package object tests */
    def isPackageClass         = false
    def isPackageObject        = false
    def isPackageObjectClass   = false
    def isPackageObjectOrClass = isPackageObject || isPackageObjectClass
    def isModuleOrModuleClass  = isModule || isModuleClass

    /** Overridden in custom objects in Definitions */
    def isRoot              = false
    def isRootPackage       = false
    def isRootSymbol        = false   // RootPackage and RootClass.  TODO: also NoSymbol.
    def isEmptyPackage      = false
    def isEmptyPackageClass = false

    /** Is this symbol an effective root for fullname string?
     */
    def isEffectiveRoot = false

    /** Can this symbol only be subclassed by bottom classes? This is assessed
     *  to be the case if it is final, and any type parameters are invariant.
     */
    def hasOnlyBottomSubclasses = {
      def loop(tparams: List[Symbol]): Boolean = tparams match {
        case Nil     => true
        case x :: xs => x.variance.isInvariant && loop(xs)
      }
      isClass && isFinal && loop(typeParams)
    }

    final def isLazyAccessor       = isLazy && lazyAccessor != NoSymbol
    final def isOverridableMember  = !(isClass || isEffectivelyFinal) && safeOwner.isClass

    /** Does this symbol denote a wrapper created by the repl? */
    final def isInterpreterWrapper = (
         (this hasFlag MODULE)
      && isTopLevel
      && nme.isReplWrapperName(name)
    )

    /** In our current architecture, symbols for top-level classes and modules
     *  are created as dummies. Package symbols just call newClass(name) or newModule(name) and
     *  consider their job done.
     *
     *  In order for such a dummy to provide meaningful info (e.g. a list of its members),
     *  it needs to go through unpickling. Unpickling is a process of reading Scala metadata
     *  from ScalaSignature annotations and assigning it to symbols and types.
     *
     *  A single unpickling session takes a top-level class or module, parses the ScalaSignature annotation
     *  and then reads metadata for the unpicklee, its companion (if any) and all their members recursively
     *  (i.e. the pickle not only contains info about directly nested classes/modules, but also about
     *  classes/modules nested into those and so on).
     *
     *  Unpickling is triggered automatically whenever info (info in compiler parlance) is called.
     *  This happens because package symbols assign completer thunks to the dummies they create.
     *  Therefore metadata loading happens lazily and transparently.
     *
     *  Almost transparently. Unfortunately metadata isn't limited to just signatures (i.e. lists of members).
     *  It also includes flags (which determine e.g. whether a class is sealed or not), annotations and privateWithin.
     *  This gives rise to unpleasant effects like in SI-6277, when a flag test called on an uninitialize symbol
     *  produces incorrect results.
     *
     *  One might think that the solution is simple: automatically call the completer
     *  whenever one needs flags, annotations and privateWithin - just like it's done for info.
     *  Unfortunately, this leads to weird crashes in scalac, and currently we can't attempt
     *  to fix the core of the compiler risk stability a few weeks before the final release.
     *  upd. Haha, "a few weeks before the final release". This surely sounds familiar :)
     *
     *  However we do need to fix this for runtime reflection, since this idiosyncrasy is not something
     *  we'd like to expose to reflection users. Therefore a proposed solution is to check whether we're in a
     *  runtime reflection universe, and if yes and if we've not yet loaded the requested info, then to commence initialization.
     */
    final def getFlag(mask: Long): Long = {
      if (!isCompilerUniverse && !isThreadsafe(purpose = FlagOps(mask))) initialize
      flags & mask
    }
    /** Does symbol have ANY flag in `mask` set? */
    final def hasFlag(mask: Long): Boolean = {
      // See `getFlag` to learn more about the `isThreadsafe` call in the body of this method.
      if (!isCompilerUniverse && !isThreadsafe(purpose = FlagOps(mask))) initialize
      (flags & mask) != 0
    }
    def hasFlag(mask: Int): Boolean = hasFlag(mask.toLong)

    /** Does symbol have ALL the flags in `mask` set? */
    final def hasAllFlags(mask: Long): Boolean = {
      // See `getFlag` to learn more about the `isThreadsafe` call in the body of this method.
      if (!isCompilerUniverse && !isThreadsafe(purpose = FlagOps(mask))) initialize
      (flags & mask) == mask
    }

    def setFlag(mask: Long): this.type   = { _rawflags |= mask ; this }
    def resetFlag(mask: Long): this.type = { _rawflags &= ~mask ; this }
    def resetFlags() { rawflags &= TopLevelCreationFlags }

    /** Default implementation calls the generic string function, which
     *  will print overloaded flags as <flag1/flag2/flag3>.  Subclasses
     *  of Symbol refine.
     */
    override def resolveOverloadedFlag(flag: Long): String = Flags.flagToString(flag)

    /** Set the symbol's flags to the given value, asserting
     *  that the previous value was 0.
     */
    def initFlags(mask: Long): this.type = {
      assert(rawflags == 0L, symbolCreationString)
      _rawflags = mask
      this
    }

    final def flags: Long = {
      if (Statistics.hotEnabled) Statistics.incCounter(flagsCount)
      val fs = _rawflags & phase.flagMask
      (fs | ((fs & LateFlags) >>> LateShift)) & ~((fs & AntiFlags) >>> AntiShift)
    }
    def flags_=(fs: Long) = _rawflags = fs
    def rawflags_=(x: Long) { _rawflags = x }

    final def hasGetter = isTerm && nme.isLocalName(name)

    /**
     * Nested modules which have no static owner when ModuleDefs are eliminated (refchecks) are
     * given the lateMETHOD flag, which makes them appear as methods after refchecks.
     *
     * Note: the lateMETHOD flag is added lazily in the info transformer of the RefChecks phase.
     * This means that forcing the `sym.info` may change the value of `sym.isMethod`. Forcing the
     * info is in the responsibility of the caller. Doing it eagerly here was tried (0ccdb151f) but
     * has proven to lead to bugs (SI-8907).
     *
     * Here's an example where one can see all four of FF FT TF TT for (isStatic, isMethod) at
     * various phases.
     *
     *   trait A1 { case class Quux() }
     *   object A2 extends A1 { object Flax }
     *   // --  namer         object Quux in trait A1
     *   // -M  flatten       object Quux in trait A1
     *   // S-  flatten       object Flax in object A2
     *   // -M  posterasure   object Quux in trait A1
     *   // -M  jvm           object Quux in trait A1
     *   // SM  jvm           object Quux in object A2
     *
     * So "isModuleNotMethod" exists not for its achievement in brevity, but to encapsulate the
     * relevant condition.
     */
    def isModuleNotMethod = isModule && !isMethod

    // After RefChecks, the `isStatic` check is mostly redundant: all non-static modules should
    // be methods (and vice versa). There's a corner case on the vice-versa with mixed-in module
    // symbols:
    //   trait T { object A }
    //   object O extends T
    // The module symbol A is cloned into T$impl (addInterfaces), and then cloned into O (mixin).
    // Since the original A is not static, it's turned into a method. The clone in O however is
    // static (owned by a module), but it's also a method.
    def isStaticModule = isModuleNotMethod && isStatic

    final def isInitializedToDefault = !isType && hasAllFlags(DEFAULTINIT | ACCESSOR)
    final def isThisSym = isTerm && owner.thisSym == this
    final def isError = hasFlag(IS_ERROR)
    final def isErroneous = isError || isInitialized && tpe_*.isErroneous

    def isHigherOrderTypeParameter = owner.isTypeParameterOrSkolem

    // class C extends D( { class E { ... } ... } ). Here, E is a class local to a constructor
    def isClassLocalToConstructor = false

    final def isDerivedValueClass =
      isClass && !hasFlag(PACKAGE | TRAIT) &&
      info.firstParent.typeSymbol == AnyValClass && !isPrimitiveValueClass

    final def isMethodWithExtension =
      isMethod && owner.isDerivedValueClass && !isParamAccessor && !isConstructor && !hasFlag(SUPERACCESSOR) && !isMacro && !isSpecialized

    final def isAnonymousFunction = isSynthetic && (name containsName tpnme.ANON_FUN_NAME)
    final def isDelambdafyFunction = isSynthetic && (name containsName tpnme.DELAMBDAFY_LAMBDA_CLASS_NAME)
    final def isDelambdafyTarget  = isArtifact && isMethod && (name containsName tpnme.ANON_FUN_NAME)
    final def isDefinedInPackage  = effectiveOwner.isPackageClass
    final def needsFlatClasses    = phase.flatClasses && rawowner != NoSymbol && !rawowner.isPackageClass

    // TODO introduce a flag for these?
    final def isPatternTypeVariable: Boolean =
      isAbstractType && !isExistential && !isTypeParameterOrSkolem && isLocalToBlock

    /** change name by appending $$<fully-qualified-name-of-class `base`>
     *  Do the same for any accessed symbols or setters/getters.
     *  Implementation in TermSymbol.
     */
    def expandName(base: Symbol) { }

    // In java.lang, Predef, or scala package/package object
    def isInDefaultNamespace = UnqualifiedOwners(effectiveOwner)

    /** The owner, skipping package objects.
     */
    def effectiveOwner = owner.skipPackageObject

    /** If this is a package object or its implementing class, its owner: otherwise this.
     */
    def skipPackageObject: Symbol = this

    /** If this is a constructor, its owner: otherwise this.
     */
    final def skipConstructor: Symbol = if (isConstructor) owner else this

    /** Conditions where we omit the prefix when printing a symbol, to avoid
     *  unpleasantries like Predef.String, $iw.$iw.Foo and <empty>.Bippy.
     */
    final def isOmittablePrefix = /*!settings.debug.value &&*/ (
         UnqualifiedOwners(skipPackageObject)
      || isEmptyPrefix
    )
    def isEmptyPrefix = (
         isEffectiveRoot                      // has no prefix for real, <empty> or <root>
      || isAnonOrRefinementClass              // has uninteresting <anon> or <refinement> prefix
      || nme.isReplWrapperName(name)          // has ugly $iw. prefix (doesn't call isInterpreterWrapper due to nesting)
    )
    def isFBounded = info match {
      case TypeBounds(_, _) => info.baseTypeSeq exists (_ contains this)
      case _                => false
    }

    /** Is symbol a monomorphic type?
     *  assumption: if a type starts out as monomorphic, it will not acquire
     *  type parameters in later phases.
     */
    final def isMonomorphicType =
      isType && {
        val info = originalInfo
        (    (info eq null)
          || (info.isComplete && !info.isHigherKinded)
        )
      }

    def isStrictFP          = hasAnnotation(ScalaStrictFPAttr) || (enclClass hasAnnotation ScalaStrictFPAttr)
    def isSerializable      = info.baseClasses.exists(p => p == SerializableClass || p == JavaSerializableClass)
    def hasBridgeAnnotation = hasAnnotation(BridgeClass)
    def isDeprecated        = hasAnnotation(DeprecatedAttr)
    def deprecationMessage  = getAnnotation(DeprecatedAttr) flatMap (_ stringArg 0)
    def deprecationVersion  = getAnnotation(DeprecatedAttr) flatMap (_ stringArg 1)
    def deprecatedParamName = getAnnotation(DeprecatedNameAttr) flatMap (_ symbolArg 0)
    def hasDeprecatedInheritanceAnnotation
                            = hasAnnotation(DeprecatedInheritanceAttr)
    def deprecatedInheritanceMessage
                            = getAnnotation(DeprecatedInheritanceAttr) flatMap (_ stringArg 0)
    def hasDeprecatedOverridingAnnotation
                            = hasAnnotation(DeprecatedOverridingAttr)
    def deprecatedOverridingMessage
                            = getAnnotation(DeprecatedOverridingAttr) flatMap (_ stringArg 0)

    // !!! when annotation arguments are not literal strings, but any sort of
    // assembly of strings, there is a fair chance they will turn up here not as
    // Literal(const) but some arbitrary AST.  However nothing in the compiler
    // prevents someone from writing a @migration annotation with a calculated
    // string.  So this needs attention.  For now the fact that migration is
    // private[scala] ought to provide enough protection.
    def hasMigrationAnnotation = hasAnnotation(MigrationAnnotationClass)
    def migrationMessage    = getAnnotation(MigrationAnnotationClass) flatMap { _.stringArg(0) }
    def migrationVersion    = getAnnotation(MigrationAnnotationClass) flatMap { _.stringArg(1) }
    def elisionLevel        = getAnnotation(ElidableMethodClass) flatMap { _.intArg(0) }
    def implicitNotFoundMsg = getAnnotation(ImplicitNotFoundClass) flatMap { _.stringArg(0) }

    def isCompileTimeOnly       = hasAnnotation(CompileTimeOnlyAttr)
    def compileTimeOnlyMessage  = getAnnotation(CompileTimeOnlyAttr) flatMap (_ stringArg 0)

    /** Is this symbol an accessor method for outer? */
    final def isOuterAccessor = hasFlag(STABLE | ARTIFACT) && (unexpandedName == nme.OUTER)

    /** Is this symbol an accessor method for outer? */
    final def isOuterField = isArtifact && (unexpandedName == nme.OUTER_LOCAL)

    /** Does this symbol denote a stable value, ignoring volatility?
     *
     * Stability and volatility are checked separately to allow volatile paths in patterns that amount to equality checks. SI-6815
     */
    final def isStable        = isTerm && !isMutable && !(hasFlag(BYNAMEPARAM)) && (!isMethod || hasStableFlag)
    final def hasVolatileType = tpe.isVolatile && !hasAnnotation(uncheckedStableClass)

    /** Does this symbol denote the primary constructor of its enclosing class? */
    final def isPrimaryConstructor =
      isConstructor && owner.primaryConstructor == this

    /** Does this symbol denote an auxiliary constructor of its enclosing class? */
    final def isAuxiliaryConstructor =
      isConstructor && !isPrimaryConstructor

    /** Is this symbol a synthetic apply or unapply method in a companion object of a case class? */
    // xeno-by: why this obscure use of the CASE flag? why not simply compare name with nme.apply and nme.unapply?
    final def isCaseApplyOrUnapply =
      isMethod && isCase && isSynthetic

    /** Is this symbol a synthetic copy method in a case class? */
    final def isCaseCopy =
      isMethod && owner.isCase && isSynthetic && name == nme.copy

    /** Is this symbol a trait which needs an implementation class? */
    final def needsImplClass = (
         isTrait
      && (!isInterface || hasFlag(lateINTERFACE))
      && !isImplClass
    )

    /** Is this a symbol which exists only in the implementation class, not in its trait? */
    final def isImplOnly = isPrivate || (
       (owner.isTrait || owner.isImplClass) && (
            hasAllFlags(LIFTED | MODULE | METHOD)
         || isConstructor
         || hasFlag(notPRIVATE | LIFTED) && !hasFlag(ACCESSOR | SUPERACCESSOR | MODULE)
       )
    )
    final def isModuleVar = hasFlag(MODULEVAR)

    /**
     * Is this symbol static (i.e. with no outer instance)?
     * Q: When exactly is a sym marked as STATIC?
     * A: If it's a member of a toplevel object, or of an object contained in a toplevel object, or
     * any number of levels deep.
     * http://groups.google.com/group/scala-internals/browse_thread/thread/d385bcd60b08faf6
     *
     * TODO: should this only be invoked on class / module symbols? because there's also `isStaticMember`.
     *
     * Note: the result of `isStatic` changes over time.
     *  - Lambdalift local definitions to the class level, the `owner` field is modified.
     *      object T { def foo { object O } }
     *    After lambdalift, the OModule.isStatic is true.
     *
     *  - After flatten, nested classes are moved to the package level. Invoking `owner` on a
     *    class returns a package class, for which `isStaticOwner` is true. For example,
     *      class C { object O }
     *    OModuleClass.isStatic is true after flatten. Using phase travel to get before flatten,
     *    method `owner` returns the class C.
     *
     * Why not make a stable version of `isStatic`? Maybe some parts of the compiler depend on the
     * current implementation. For example
     *   trait T { def foo = 1 }
     * The method `foo` in the implementation class T$impl will be `isStatic`, because trait
     * impl classes get the `lateMODULE` flag (T$impl.isStaticOwner is true).
     */
    def isStatic = (this hasFlag STATIC) || owner.isStaticOwner

    /** Is this symbol a static constructor? */
    final def isStaticConstructor: Boolean =
      isStaticMember && isClassConstructor

    /** Is this symbol a static member of its class? (i.e. needs to be implemented as a Java static?) */
    final def isStaticMember: Boolean =
      hasFlag(STATIC) || owner.isImplClass

    /** Does this symbol denote a class that defines static symbols? */
    final def isStaticOwner: Boolean =
      isPackageClass || isModuleClass && isStatic

    /** A helper function for isEffectivelyFinal. */
    private def isNotOverridden = (
      owner.isClass && (
           owner.isEffectivelyFinal
        || owner.isSealed && owner.children.forall(c => c.isEffectivelyFinal && (overridingSymbol(c) == NoSymbol))
      )
    )

    /** Is this symbol effectively final? I.e, it cannot be overridden */
    final def isEffectivelyFinal: Boolean = (
         (this hasFlag FINAL | PACKAGE)
      || isModuleOrModuleClass && (isTopLevel || !settings.overrideObjects)
      || isTerm && (
             isPrivate
          || isLocalToBlock
         )
    )
    /** Is this symbol effectively final or a concrete term member of sealed class whose children do not override it */
    final def isEffectivelyFinalOrNotOverridden: Boolean = isEffectivelyFinal || (isTerm && !isDeferred && isNotOverridden)

    /** Is this symbol owned by a package? */
    final def isTopLevel = owner.isPackageClass

    /** Is this symbol defined in a block? */
    @deprecated("Use isLocalToBlock instead", "2.11.0")
    final def isLocal: Boolean = owner.isTerm

    /** Is this symbol defined in a block? */
    final def isLocalToBlock: Boolean = owner.isTerm

    /** Is this symbol a constant? */
    final def isConstant: Boolean = isStable && isConstantType(tpe.resultType)

    /** Is this class nested in another class or module (not a package). Includes locally defined classes. */
    def isNestedClass = false

    /** Is this class locally defined?
     *  A class is local, if
     *   - it is anonymous, or
     *   - its owner is a value
     *   - it is defined within a local class
     */
    def isLocalClass = false

    /** Is this class or type defined as a structural refinement type?
     */
    final def isStructuralRefinement: Boolean =
      (isClass || isType || isModule) && info.dealiasWiden/*.underlying*/.isStructuralRefinement

    /** Is this a term symbol only defined in a refinement (so that it needs
     *  to be accessed by reflection)?
     */
    def isOnlyRefinementMember = (
         isTerm                  // Type members are unaffected
      && owner.isRefinementClass // owner must be a refinement class
      && isPossibleInRefinement  // any overridden symbols must also have refinement class owners
      && !isConstant             // Must not be a constant. Question: Can we exclude @inline methods as well?
      && isDeclaredByOwner       // Must be explicitly declared in the refinement (not synthesized from glb)
    )
    // "(owner.info decl name) == this" is inadequate, because "name" might
    // be overloaded in owner - and this might be an overloaded symbol.
    // TODO - make this cheaper and see where else we should be doing something similar.
    private def isDeclaredByOwner = (owner.info decl name).alternatives exists (alternatives contains _)

    final def isStructuralRefinementMember = owner.isStructuralRefinement && isPossibleInRefinement && isPublic
    final def isPossibleInRefinement       = (
         !isConstructor
      && allOverriddenSymbols.forall(_.owner.isRefinementClass) // this includes allOverriddenSymbols.isEmpty
    )

    /** A a member of class `base` is incomplete if
     *  (1) it is declared deferred or
     *  (2) it is abstract override and its super symbol in `base` is
     *      nonexistent or incomplete.
     */
    final def isIncompleteIn(base: Symbol): Boolean =
      this.isDeferred ||
      (this hasFlag ABSOVERRIDE) && {
        val supersym = superSymbolIn(base)
        supersym == NoSymbol || supersym.isIncompleteIn(base)
      }

    def exists: Boolean = !isTopLevel || {
      val isSourceLoader = rawInfo match {
        case sl: SymLoader => sl.fromSource
        case _             => false
      }
      def warnIfSourceLoader() {
        if (isSourceLoader)
          // Predef is completed early due to its autoimport; we used to get here when type checking its
          // parent LowPriorityImplicits. See comment in c5441dc for more elaboration.
          // Since the fix for SI-7335 Predef parents must be defined in Predef.scala, and we should not
          // get here anymore.
          devWarning(s"calling Symbol#exists with sourcefile based symbol loader may give incorrect results.");
      }

      rawInfo load this
      rawInfo != NoType || { warnIfSourceLoader(); false }
    }

    final def isInitialized: Boolean =
      validTo != NoPeriod

    /** We consider a symbol to be thread-safe, when multiple concurrent threads can call its methods
     *  (either directly or indirectly via public reflection or internal compiler infrastructure),
     *  without any locking and everything works as it should work.
     *
     *  In its basic form, `isThreadsafe` always returns false. Runtime reflection augments reflection infrastructure
     *  with threadsafety-tracking mechanism implemented in `SynchronizedSymbol` that communicates with underlying completers
     *  and can sometimes return true if the symbol has been completed to the point of thread safety.
     *
     *  The `purpose` parameter signifies whether we want to just check immutability of certain flags for the given mask.
     *  This is necessary to enable robust auto-initialization of `Symbol.flags` for runtime reflection, and is also quite handy
     *  in avoiding unnecessary initializations when requesting for flags that have already been set.
     */
    def isThreadsafe(purpose: SymbolOps): Boolean = false
    def markFlagsCompleted(mask: Long): this.type = this
    def markAllCompleted(): this.type = this

    /** Can this symbol be loaded by a reflective mirror?
     *
     *  Scalac relies on `ScalaSignature' annotation to retain symbols across compilation runs.
     *  Such annotations (also called "pickles") are applied on top-level classes and include information
     *  about all symbols reachable from the annotee. However, local symbols (e.g. classes or definitions local to a block)
     *  are typically unreachable and information about them gets lost.
     *
     *  This method is useful for macro writers who wish to save certain ASTs to be used at runtime.
     *  With `isLocatable' it's possible to check whether a tree can be retained as is, or it needs special treatment.
     */
    final def isLocatable: Boolean = {
      if (this == NoSymbol) return false
      if (isRoot || isRootPackage) return true

      if (!owner.isLocatable) return false
      if (owner.isTerm) return false
      if (isLocalDummy) return false

      if (isAliasType) return true
      if (isType && isNonClassType) return false
      if (isRefinementClass) return false
      true
    }

    /** The variance of this symbol. */
    def variance: Variance =
      if (isCovariant) Covariant
      else if (isContravariant) Contravariant
      else Invariant

    /** The sequence number of this parameter symbol among all type
     *  and value parameters of symbol's owner. -1 if symbol does not
     *  appear among the parameters of its owner.
     */
    def paramPos: Int = {
      def searchIn(tpe: Type, base: Int): Int = {
        def searchList(params: List[Symbol], fallback: Type): Int = {
          val idx = params indexOf this
          if (idx >= 0) idx + base
          else searchIn(fallback, base + params.length)
        }
        tpe match {
          case PolyType(tparams, res) => searchList(tparams, res)
          case MethodType(params, res) => searchList(params, res)
          case _ => -1
        }
      }
      searchIn(owner.info, 0)
    }

// ------ owner attribute --------------------------------------------------------------

    /**
     * The owner of a symbol. Changes over time to adapt to the structure of the trees:
     *  - Up to lambdalift, the owner is the lexically enclosing definition. For definitions
     *    in a local block, the owner is also the next enclosing definition.
     *  - After lambdalift, all local method and class definitions (those not owned by a class
     *    or package class) change their owner to the enclosing class. This is done through
     *    a destructive "sym.owner = sym.owner.enclClass". The old owner is saved by
     *    saveOriginalOwner.
     *  - After flatten, all classes are owned by a PackageClass. This is done through a
     *    phase check (if after flatten) in the (overridden) method "def owner" in
     *    ModuleSymbol / ClassSymbol. The `rawowner` field is not modified.
     *  - Owners are also changed in other situations, for example when moving trees into a new
     *    lexical context, e.g. in the named/default arguments transformation, or when translating
     *    extension method definitions.
     *
     * In general when seeking the owner of a symbol, one should call `owner`.
     * The other possibilities include:
     *   - call `safeOwner` if it is expected that the target may be NoSymbol
     *   - call `assertOwner` if it is an unrecoverable error if the target is NoSymbol
     *
     * `owner` behaves like `safeOwner`, but logs NoSymbol.owner calls under -Xdev.
     * `assertOwner` aborts compilation immediately if called on NoSymbol.
     */
    def owner: Symbol = {
      if (Statistics.hotEnabled) Statistics.incCounter(ownerCount)
      rawowner
    }
    final def safeOwner: Symbol   = if (this eq NoSymbol) NoSymbol else owner
    final def assertOwner: Symbol = if (this eq NoSymbol) abort("no-symbol does not have an owner") else owner

    /**
     * The initial owner of this symbol.
     */
    def originalOwner: Symbol = originalOwnerMap.getOrElse(this, rawowner)

    // TODO - don't allow the owner to be changed without checking invariants, at least
    // when under some flag. Define per-phase invariants for owner/owned relationships,
    // e.g. after flatten all classes are owned by package classes, there are lots and
    // lots of these to be declared (or more realistically, discovered.)
    def owner_=(owner: Symbol) {
      saveOriginalOwner(this)
      assert(isCompilerUniverse, "owner_= is not thread-safe; cannot be run in reflexive code")
      if (traceSymbolActivity)
        traceSymbols.recordNewSymbolOwner(this, owner)
      _rawowner = owner
    }

    def ownerChain: List[Symbol] = this :: owner.ownerChain

    // Non-classes skip self and return rest of owner chain; overridden in ClassSymbol.
    def enclClassChain: List[Symbol] = owner.enclClassChain

    def ownersIterator: Iterator[Symbol] = new Iterator[Symbol] {
      private var current = Symbol.this
      def hasNext = current ne NoSymbol
      def next = { val r = current; current = current.owner; r }
    }

    /** Same as `ownerChain contains sym` but more efficient, and
     *  with a twist for refinement classes (see RefinementClassSymbol.)
     */
    def hasTransOwner(sym: Symbol): Boolean = {
      var o = this
      while ((o ne sym) && (o ne NoSymbol)) o = o.owner
      (o eq sym)
    }

// ------ name attribute --------------------------------------------------------------

    @deprecated("Use unexpandedName", "2.11.0") def originalName: Name = unexpandedName

    /** If this symbol has an expanded name, its original (unexpanded) name,
     *  otherwise the name itself.
     */
    def unexpandedName: Name = nme.unexpandedName(name)

    /** The name of the symbol before decoding, e.g. `\$eq\$eq` instead of `==`.
     */
    def encodedName: String = name.toString

    /** The decoded name of the symbol, e.g. `==` instead of `\$eq\$eq`.
     */
    def decodedName: String = name.decode

    private def addModuleSuffix(n: Name): Name =
      if (needsModuleSuffix) n append nme.MODULE_SUFFIX_STRING else n

    def moduleSuffix: String = (
      if (needsModuleSuffix) nme.MODULE_SUFFIX_STRING
      else ""
    )
    /** Whether this symbol needs nme.MODULE_SUFFIX_STRING (aka $) appended on the java platform.
     */
    def needsModuleSuffix = (
         hasModuleFlag
      && !isMethod
      && !isImplClass
      && !isJavaDefined
    )
    /** These should be moved somewhere like JavaPlatform.
     */
    def javaSimpleName: Name = addModuleSuffix(simpleName.dropLocal)
    def javaBinaryName: Name = name.newName(javaBinaryNameString)
    def javaBinaryNameString: String = fullName('/', moduleSuffix)
    def javaClassName: String  = fullName('.', moduleSuffix)

    /** The encoded full path name of this symbol, where outer names and inner names
     *  are separated by `separator` characters.
     *  Never translates expansions of operators back to operator symbol.
     *  Never adds id.
     *  Drops package objects.
     */
    final def fullName(separator: Char): String = fullName(separator, "")

    private def fullName(separator: Char, suffix: CharSequence): String = {
      var b: java.lang.StringBuffer = null
      def loop(size: Int, sym: Symbol): Unit = {
        val symName = sym.name
        val nSize = symName.length - (if (symName.endsWith(nme.LOCAL_SUFFIX_STRING)) 1 else 0)
        if (sym.isRoot || sym.isRootPackage || sym == NoSymbol || sym.owner.isEffectiveRoot) {
          val capacity = size + nSize
          b = new java.lang.StringBuffer(capacity)
          b.append(chrs, symName.start, nSize)
        } else {
          loop(size + nSize + 1, sym.effectiveOwner.enclClass)
          b.append(separator)
          b.append(chrs, symName.start, nSize)
        }
      }
      loop(suffix.length(), this)
      b.append(suffix)
      b.toString
    }

    def fullNameAsName(separator: Char): Name = name.newName(fullName(separator, ""))

    /** The encoded full path name of this symbol, where outer names and inner names
     *  are separated by periods.
     */
    final def fullName: String = fullName('.')

    /**
     *  Symbol creation implementations.
     */

    protected def createAbstractTypeSymbol(name: TypeName, pos: Position, newFlags: Long): AbstractTypeSymbol =
      new AbstractTypeSymbol(this, pos, name) initFlags newFlags

    protected def createAliasTypeSymbol(name: TypeName, pos: Position, newFlags: Long): AliasTypeSymbol =
      new AliasTypeSymbol(this, pos, name) initFlags newFlags

    protected def createTypeSkolemSymbol(name: TypeName, origin: AnyRef, pos: Position, newFlags: Long): TypeSkolem =
      new TypeSkolem(this, pos, name, origin) initFlags newFlags

    protected def createClassSymbol(name: TypeName, pos: Position, newFlags: Long): ClassSymbol =
      new ClassSymbol(this, pos, name) initFlags newFlags

    protected def createModuleClassSymbol(name: TypeName, pos: Position, newFlags: Long): ModuleClassSymbol =
      new ModuleClassSymbol(this, pos, name) initFlags newFlags

    protected def createPackageClassSymbol(name: TypeName, pos: Position, newFlags: Long): PackageClassSymbol =
      new PackageClassSymbol(this, pos, name) initFlags newFlags

    protected def createRefinementClassSymbol(pos: Position, newFlags: Long): RefinementClassSymbol =
      new RefinementClassSymbol(this, pos) initFlags newFlags

    protected def createPackageObjectClassSymbol(pos: Position, newFlags: Long): PackageObjectClassSymbol =
      new PackageObjectClassSymbol(this, pos) initFlags newFlags

    protected def createImplClassSymbol(name: TypeName, pos: Position, newFlags: Long): ClassSymbol =
      new ClassSymbol(this, pos, name) with ImplClassSymbol initFlags newFlags

    protected def createMethodSymbol(name: TermName, pos: Position, newFlags: Long): MethodSymbol =
      new MethodSymbol(this, pos, name) initFlags newFlags

    protected def createModuleSymbol(name: TermName, pos: Position, newFlags: Long): ModuleSymbol =
      new ModuleSymbol(this, pos, name) initFlags newFlags

    protected def createPackageSymbol(name: TermName, pos: Position, newFlags: Long): ModuleSymbol =
      new ModuleSymbol(this, pos, name) initFlags newFlags

    protected def createValueParameterSymbol(name: TermName, pos: Position, newFlags: Long): TermSymbol =
      new TermSymbol(this, pos, name) initFlags newFlags

    protected def createValueMemberSymbol(name: TermName, pos: Position, newFlags: Long): TermSymbol =
      new TermSymbol(this, pos, name) initFlags newFlags

    final def newTermSymbol(name: TermName, pos: Position = NoPosition, newFlags: Long = 0L): TermSymbol = {
      // Package before Module, Module before Method, or we might grab the wrong guy.
      if ((newFlags & PACKAGE) != 0)
        createPackageSymbol(name, pos, newFlags | PackageFlags)
      else if ((newFlags & MODULE) != 0)
        createModuleSymbol(name, pos, newFlags)
      else if ((newFlags & METHOD) != 0)
        createMethodSymbol(name, pos, newFlags)
      else if ((newFlags & PARAM) != 0)
        createValueParameterSymbol(name, pos, newFlags)
      else
        createValueMemberSymbol(name, pos, newFlags)
    }

    final def newClassSymbol(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): ClassSymbol = {
      if (name == tpnme.REFINE_CLASS_NAME)
        createRefinementClassSymbol(pos, newFlags)
      else if ((newFlags & PACKAGE) != 0)
        createPackageClassSymbol(name, pos, newFlags | PackageFlags)
      else if (name == tpnme.PACKAGE)
        createPackageObjectClassSymbol(pos, newFlags)
      else if ((newFlags & MODULE) != 0)
        createModuleClassSymbol(name, pos, newFlags)
      else if ((newFlags & IMPLCLASS) != 0)
        createImplClassSymbol(name, pos, newFlags)
      else
        createClassSymbol(name, pos, newFlags)
    }

    final def newNonClassSymbol(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): TypeSymbol = {
      if ((newFlags & DEFERRED) != 0)
        createAbstractTypeSymbol(name, pos, newFlags)
      else
        createAliasTypeSymbol(name, pos, newFlags)
    }

    def newTypeSymbol(name: TypeName, pos: Position = NoPosition, newFlags: Long = 0L): TypeSymbol =
      newNonClassSymbol(name, pos, newFlags)

    /** The class or term up to which this symbol is accessible,
     *  or RootClass if it is public.  As java protected statics are
     *  otherwise completely inaccessible in scala, they are treated
     *  as public.
     */
    def accessBoundary(base: Symbol): Symbol = {
      if (hasFlag(PRIVATE) || isLocalToBlock) owner
      else if (hasAllFlags(PROTECTED | STATIC | JAVA)) enclosingRootClass
      else if (hasAccessBoundary && !phase.erasedTypes) privateWithin
      else if (hasFlag(PROTECTED)) base
      else enclosingRootClass
    }

    def isLessAccessibleThan(other: Symbol): Boolean = {
      val tb = this.accessBoundary(owner)
      val ob1 = other.accessBoundary(owner)
      val ob2 = ob1.linkedClassOfClass
      var o = tb
      while (o != NoSymbol && o != ob1 && o != ob2) {
        o = o.owner
      }
      o != NoSymbol && o != tb
    }

    /** See comment in HasFlags for how privateWithin combines with flags.
     */
    private[this] var _privateWithin: Symbol = _
    def privateWithin = {
      // See `getFlag` to learn more about the `isThreadsafe` call in the body of this method.
      if (!isCompilerUniverse && !isThreadsafe(purpose = AllOps)) initialize
      _privateWithin
    }
    def privateWithin_=(sym: Symbol) { _privateWithin = sym }
    def setPrivateWithin(sym: Symbol): this.type = { privateWithin_=(sym) ; this }

    /** Does symbol have a private or protected qualifier set? */
    final def hasAccessBoundary = (privateWithin != null) && (privateWithin != NoSymbol)

// ------ info and type -------------------------------------------------------------------

    private[Symbols] var infos: TypeHistory = null
    def originalInfo = {
      if (infos eq null) null
      else {
        var is = infos
        while (is.prev ne null) { is = is.prev }
        is.info
      }
    }

    /** The "type" of this symbol.  The type of a term symbol is its usual
     *  type.  A TypeSymbol is more complicated; see that class for elaboration.
     *  Since tpe forwards to tpe_*, if you call it on a type symbol with unapplied
     *  type parameters, the type returned will contain dummies types.  These will
     *  hide legitimate errors or create spurious ones if used as normal types.
     *
     *  For type symbols, `tpe` is different than `info`. `tpe` returns a typeRef
     *  to the type symbol, `info` returns the type information of the type symbol,
     *  e.g. a ClassInfoType for classes or a TypeBounds for abstract types.
     */
    final def tpe: Type = tpe_*

    /** typeConstructor throws an exception when called on term
     *  symbols; this is a more forgiving alternative.  Calls
     *  typeConstructor on TypeSymbols, returns info otherwise.
     */
    def tpeHK: Type = info

    /** Only applicable to TypeSymbols, it is the type corresponding
     *  to the symbol itself.  For instance, the type of a List might
     *  be List[Int] - the same symbol's typeConstructor is simply List.
     *  One might be tempted to write that as List[_], and in some
     *  contexts this is possible, but it is discouraged because it is
     *  syntactically indistinguishable from and easily confused with the
     *  type List[T] forSome { type T; }, which can also be written List[_].
     */
    def typeConstructor: Type = (
      // Avoiding a third override in NoSymbol to preserve bimorphism
      if (this eq NoSymbol)
        abort("no-symbol does not have a type constructor (this may indicate scalac cannot find fundamental classes)")
      else
        abort("typeConstructor inapplicable for " + this)
    )

    /** The type of this symbol, guaranteed to be of kind *.
     *  If there are unapplied type parameters, they will be
     *  substituted with dummy type arguments derived from the
     *  type parameters.  Such types are not valid in a general
     *  sense and will cause difficult-to-find bugs if allowed
     *  to roam free.
     *
     *  If you call tpe_* explicitly to obtain these types,
     *  you are responsible for them as if it they were your own
     *  minor children.
     */
    def tpe_* : Type = info

    // Alternate implementation of def tpe for warning about misuse,
    // disabled to keep the method maximally hotspot-friendly:
    // def tpe: Type = {
    //   val result = tpe_*
    //   if (settings.debug.value && result.typeArgs.nonEmpty)
    //     printCaller(s"""Call to ${this.tpe} created $result: call tpe_* or tpeHK""")("")
    //   result
    // }

    /** Get type info associated with symbol at current phase, after
     *  ensuring that symbol is initialized (i.e. type is completed).
     */
    def info: Type = try {
      var cnt = 0
      while (validTo == NoPeriod) {
        assert(infos ne null, this.name)
        assert(infos.prev eq null, this.name)
        val tp = infos.info

        if ((_rawflags & LOCKED) != 0L) { // rolled out once for performance
          lock {
            setInfo(ErrorType)
            throw CyclicReference(this, tp)
          }
        } else {
          _rawflags |= LOCKED
          // TODO another commented out lines - this should be solved in one way or another
//          activeLocks += 1
 //         lockedSyms += this
        }
        val current = phase
        try {
          assertCorrectThread()
          phase = phaseOf(infos.validFrom)
          tp.complete(this)
        } finally {
          unlock()
          phase = current
        }
        cnt += 1
        // allow for two completions:
        //   one: sourceCompleter to LazyType, two: LazyType to completed type
        if (cnt == 3) abort(s"no progress in completing $this: $tp")
      }
      rawInfo
    }
    catch {
      case ex: CyclicReference =>
        devWarning("... hit cycle trying to complete " + this.fullLocationString)
        throw ex
    }

    def info_=(info: Type) {
      assert(info ne null)
      infos = TypeHistory(currentPeriod, info, null)
      unlock()
      _validTo = if (info.isComplete) currentPeriod else NoPeriod
    }

    /** Set initial info. */
    def setInfo(info: Type): this.type  = { info_=(info); this }
    /** Modifies this symbol's info in place. */
    def modifyInfo(f: Type => Type): this.type = setInfo(f(info))
    /** Substitute second list of symbols for first in current info. */
    def substInfo(syms0: List[Symbol], syms1: List[Symbol]): this.type =
      if (syms0.isEmpty) this
      else modifyInfo(_.substSym(syms0, syms1))

    def setInfoOwnerAdjusted(info: Type): this.type = setInfo(info atOwner this)

    /** Set the info and enter this symbol into the owner's scope. */
    def setInfoAndEnter(info: Type): this.type = {
      setInfo(info)
      owner.info.decls enter this
      this
    }

    /** Set new info valid from start of this phase. */
    def updateInfo(info: Type): Symbol = {
      val pid = phaseId(infos.validFrom)
      assert(pid <= phase.id, (pid, phase.id))
      if (pid == phase.id) infos = infos.prev
      infos = TypeHistory(currentPeriod, info, infos)
      _validTo = if (info.isComplete) currentPeriod else NoPeriod
      this
    }

    def hasRawInfo: Boolean = infos ne null
    def hasCompleteInfo = hasRawInfo && rawInfo.isComplete

    // does not run adaptToNewRun, which is prone to trigger cycles (SI-8029)
    // TODO: give this a better name if you understand the intent of the caller.
    //       Is it something to do with `reallyExists` or `isStale`?
    final def rawInfoIsNoType: Boolean = {
      hasRawInfo && (infos.info eq NoType)
    }

    /** Return info without checking for initialization or completing */
    def rawInfo: Type = {
      var infos = this.infos
      assert(infos != null)
      val curPeriod = currentPeriod
      val curPid = phaseId(curPeriod)

      if (validTo != NoPeriod) {
        // skip any infos that concern later phases
        while (curPid < phaseId(infos.validFrom) && infos.prev != null)
          infos = infos.prev

        if (validTo < curPeriod) {
          assertCorrectThread()
          // adapt any infos that come from previous runs
          val current = phase
          try {
            infos = adaptInfos(infos)

            //assert(runId(validTo) == currentRunId, name)
            //assert(runId(infos.validFrom) == currentRunId, name)

            if (validTo < curPeriod) {
              var itr = infoTransformers.nextFrom(phaseId(validTo))
              infoTransformers = itr; // caching optimization
              while (itr.pid != NoPhase.id && itr.pid < current.id) {
                phase = phaseWithId(itr.pid)
                val info1 = itr.transform(this, infos.info)
                if (info1 ne infos.info) {
                  infos = TypeHistory(currentPeriod + 1, info1, infos)
                  this.infos = infos
                }
                _validTo = currentPeriod + 1 // to enable reads from same symbol during info-transform
                itr = itr.next
              }
              _validTo = if (itr.pid == NoPhase.id) curPeriod
                         else period(currentRunId, itr.pid)
            }
          } finally {
            phase = current
          }
        }
      }
      infos.info
    }

    // adapt to new run in fsc.
    private def adaptInfos(infos: TypeHistory): TypeHistory = {
      assert(isCompilerUniverse)
      if (infos == null || runId(infos.validFrom) == currentRunId) {
        infos
      } else if (infos ne infos.oldest) {
        // SI-8871 Discard all but the first element of type history. Specialization only works in the resident
        // compiler / REPL if re-run its info transformer in this run to correctly populate its
        // per-run caches, e.g. typeEnv
        adaptInfos(infos.oldest)
      } else {
        val prev1 = adaptInfos(infos.prev)
        if (prev1 ne infos.prev) prev1
        else {
          val pid = phaseId(infos.validFrom)

          _validTo = period(currentRunId, pid)
          phase   = phaseWithId(pid)

          val info1 = adaptToNewRunMap(infos.info)
          if (info1 eq infos.info) {
            infos.validFrom = validTo
            infos
          } else {
            this.infos = TypeHistory(validTo, info1, prev1)
            this.infos
          }
        }
      }
    }

    /** Raises a `MissingRequirementError` if this symbol is a `StubSymbol` */
    def failIfStub() {}

    /** Initialize the symbol */
    final def initialize: this.type = {
      if (!isInitialized) info
      this
    }
    def maybeInitialize = {
      try   { initialize ; true }
      catch { case _: CyclicReference => debuglog("Hit cycle in maybeInitialize of $this") ; false }
    }

    /** Was symbol's type updated during given phase? */
    final def hasTypeAt(pid: Phase#Id): Boolean = {
      assert(isCompilerUniverse)
      var infos = this.infos
      while ((infos ne null) && phaseId(infos.validFrom) > pid) infos = infos.prev
      infos ne null
    }

    /** Modify term symbol's type so that a raw type C is converted to an existential C[_]
     *
     * This is done in checkAccessible and overriding checks in refchecks
     * We can't do this on class loading because it would result in infinite cycles.
     */
    def cookJavaRawInfo(): this.type = {
      // only try once...
      if (phase.erasedTypes || (this hasFlag TRIEDCOOKING))
        return this

      this setFlag TRIEDCOOKING
      info  // force the current info
      if (isJavaDefined || isType && owner.isJavaDefined)
        this modifyInfo rawToExistential
      else if (isOverloaded)
        alternatives withFilter (_.isJavaDefined) foreach (_ modifyInfo rawToExistential)

      this
    }

    /** The logic approximately boils down to finding the most recent phase
     *  which immediately follows any of parser, namer, typer, or erasure.
     *  In effect that means this will return one of:
     *
     *    - packageobjects (follows namer)
     *    - superaccessors (follows typer)
     *    - lazyvals       (follows erasure)
     *    - null
     */
    private def unsafeTypeParamPhase = {
      var ph = phase
      while (ph.prev.keepsTypeParams)
        ph = ph.prev

      ph
    }
    /** The type parameters of this symbol, without ensuring type completion.
     *  assumption: if a type starts out as monomorphic, it will not acquire
     *  type parameters later.
     */
    // NOTE: overridden in SynchronizedSymbols with the code copy/pasted
    // don't forget to modify the code over there if you modify this method
    def unsafeTypeParams: List[Symbol] =
      if (isMonomorphicType) Nil
      else enteringPhase(unsafeTypeParamPhase)(rawInfo.typeParams)

    /** The type parameters of this symbol.
     *  assumption: if a type starts out as monomorphic, it will not acquire
     *  type parameters later.
     */
    // NOTE: overridden in SynchronizedSymbols with the code copy/pasted
    // don't forget to modify the code over there if you modify this method
    def typeParams: List[Symbol] =
      if (isMonomorphicType) Nil
      else {
        // analogously to the "info" getter, here we allow for two completions:
        //   one: sourceCompleter to LazyType, two: LazyType to completed type
        if (validTo == NoPeriod)
          enteringPhase(phaseOf(infos.validFrom))(rawInfo load this)
        if (validTo == NoPeriod)
          enteringPhase(phaseOf(infos.validFrom))(rawInfo load this)

        rawInfo.typeParams
      }

    /** The value parameter sections of this symbol.
     */
    def paramss: List[List[Symbol]] = info.paramss

    /** The least proper supertype of a class; includes all parent types
     *  and refinement where needed. You need to compute that in a situation like this:
     *  {
     *    class C extends P { ... }
     *    new C
     *  }
     */
    def classBound: Type = {
      val tp = refinedType(info.parents, owner)
      // SI-4589 refinedType only creates a new refinement class symbol before erasure; afterwards
      //         the first parent class is returned, to which we must not add members.
      if (!phase.erasedTypes) {
        val thistp = tp.typeSymbol.thisType
        val oldsymbuf = new ListBuffer[Symbol]
        val newsymbuf = new ListBuffer[Symbol]
        for (sym <- info.decls) {
          // todo: what about public references to private symbols?
          if (sym.isPublic && !sym.isConstructor) {
            oldsymbuf += sym
            newsymbuf += (
              if (sym.isClass)
                tp.typeSymbol.newAbstractType(sym.name.toTypeName, sym.pos).setInfo(sym.existentialBound)
              else
                sym.cloneSymbol(tp.typeSymbol))
          }
        }
        val oldsyms = oldsymbuf.toList
        val newsyms = newsymbuf.toList
        for (sym <- newsyms) {
          addMember(thistp, tp, sym modifyInfo (_ substThisAndSym(this, thistp, oldsyms, newsyms)))
        }
      }
      tp
    }

    /** If we quantify existentially over this symbol,
     *  the bound of the type variable that stands for it
     *  pre: symbol is a term, a class, or an abstract type (no alias type allowed)
     */
    def existentialBound: Type

    /** Reset symbol to initial state
     */
    def reset(completer: Type): this.type = {
      resetFlags()
      infos = null
      _validTo = NoPeriod
      //limit = NoPhase.id
      setInfo(completer)
    }

    /**
     * Adds the interface scala.Serializable to the parents of a ClassInfoType.
     * Note that the tree also has to be updated accordingly.
     */
    def makeSerializable() {
      info match {
        case ci @ ClassInfoType(_, _, _) =>
          setInfo(ci.copy(parents = ci.parents :+ SerializableTpe))
        case i =>
          abort("Only ClassInfoTypes can be made serializable: "+ i)
      }
    }

// ----- setters implemented in selected subclasses -------------------------------------

    def typeOfThis_=(tp: Type)       { throw new UnsupportedOperationException("typeOfThis_= inapplicable for " + this) }
    def sourceModule_=(sym: Symbol)  { throw new UnsupportedOperationException("sourceModule_= inapplicable for " + this) }
    def addChild(sym: Symbol)        { throw new UnsupportedOperationException("addChild inapplicable for " + this) }

// ----- annotations ------------------------------------------------------------

    // null is a marker that they still need to be obtained.
    private[this] var _annotations: List[AnnotationInfo] = Nil

    def annotationsString = if (annotations.isEmpty) "" else annotations.mkString("(", ", ", ")")

    /** After the typer phase (before, look at the definition's Modifiers), contains
     *  the annotations attached to member a definition (class, method, type, field).
     */
    def annotations: List[AnnotationInfo] = {
      // See `getFlag` to learn more about the `isThreadsafe` call in the body of this method.
      if (!isCompilerUniverse && !isThreadsafe(purpose = AllOps)) initialize
      _annotations
    }

    def setAnnotations(annots: List[AnnotationInfo]): this.type = {
      _annotations = annots
      this
    }

    def withAnnotations(annots: List[AnnotationInfo]): this.type =
      setAnnotations(annots ::: annotations)

    def withoutAnnotations: this.type =
      setAnnotations(Nil)

    def filterAnnotations(p: AnnotationInfo => Boolean): this.type =
      setAnnotations(annotations filter p)

    def addAnnotation(annot: AnnotationInfo): this.type =
      setAnnotations(annot :: annotations)

    // Convenience for the overwhelmingly common case
    def addAnnotation(sym: Symbol, args: Tree*): this.type = {
      // The assertion below is meant to prevent from issues like SI-7009 but it's disabled
      // due to problems with cycles while compiling Scala library. It's rather shocking that
      // just checking if sym is monomorphic type introduces nasty cycles. We are definitively
      // forcing too much because monomorphism is a local property of a type that can be checked
      // syntactically
      // assert(sym.initialize.isMonomorphicType, sym)
      addAnnotation(AnnotationInfo(sym.tpe, args.toList, Nil))
    }

    /** Use that variant if you want to pass (for example) an applied type */
    def addAnnotation(tp: Type, args: Tree*): this.type = {
      assert(tp.typeParams.isEmpty, tp)
      addAnnotation(AnnotationInfo(tp, args.toList, Nil))
    }

// ------ comparisons ----------------------------------------------------------------

    /** A total ordering between symbols that refines the class
     *  inheritance graph (i.e. subclass.isLess(superclass) always holds).
     *  the ordering is given by: (_.isType, -_.baseTypeSeq.length) for type symbols, followed by `id`.
     */
    final def isLess(that: Symbol): Boolean = {
      def baseTypeSeqLength(sym: Symbol) =
        if (sym.isAbstractType) 1 + sym.info.bounds.hi.baseTypeSeq.length
        else sym.info.baseTypeSeq.length
      if (this.isType)
        (that.isType &&
         { val diff = baseTypeSeqLength(this) - baseTypeSeqLength(that)
           diff > 0 || diff == 0 && this.id < that.id })
      else
        that.isType || this.id < that.id
    }

    /** A partial ordering between symbols.
     *  (this isNestedIn that) holds iff this symbol is defined within
     *  a class or method defining that symbol
     */
    final def isNestedIn(that: Symbol): Boolean =
      owner == that || owner != NoSymbol && (owner isNestedIn that)

    /** Is this class symbol a subclass of that symbol,
     *  and is this class symbol also different from Null or Nothing? */
    def isNonBottomSubClass(that: Symbol): Boolean = false

    /** Is this class symbol Null or Nothing,
     *  and (if Null) is `that` inhabited by null?
     *  If this is Nothing, of course, it is a
     *  subclass of `that` by definition.
     *
     *  TODO - what is implied by the fact that AnyVal now has
     *  infinitely many non-bottom subclasses, not only 9?
     */
    def isBottomSubClass(that: Symbol) = (
         (this eq NothingClass)
      || (this eq NullClass) && that.isClass && (that ne NothingClass) && !(that isNonBottomSubClass AnyValClass)
    )

    /** Overridden in NullClass and NothingClass for custom behavior.
     */
    def isSubClass(that: Symbol) = isNonBottomSubClass(that)

    final def isNumericSubClass(that: Symbol): Boolean =
      definitions.isNumericSubClass(this, that)

    final def isWeakSubClass(that: Symbol) =
      isSubClass(that) || isNumericSubClass(that)

// ------ overloaded alternatives ------------------------------------------------------

    def alternatives: List[Symbol] =
      if (isOverloaded) info.asInstanceOf[OverloadedType].alternatives
      else this :: Nil

    def filter(cond: Symbol => Boolean): Symbol =
      if (isOverloaded) {
        var changed = false
        var alts0: List[Symbol] = alternatives
        var alts1: List[Symbol] = Nil

        while (alts0.nonEmpty) {
          if (cond(alts0.head))
            alts1 ::= alts0.head
          else
            changed = true

          alts0 = alts0.tail
        }

        if (!changed) this
        else if (alts1.isEmpty) NoSymbol
        else if (alts1.tail.isEmpty) alts1.head
        else owner.newOverloaded(info.prefix, alts1.reverse)
      }
      else if (cond(this)) this
      else NoSymbol

    def suchThat(cond: Symbol => Boolean): Symbol = {
      val result = filter(cond)
      assert(!result.isOverloaded, result.alternatives)
      result
    }

// ------ cloneing -------------------------------------------------------------------

    /** A clone of this symbol. */
    final def cloneSymbol: TypeOfClonedSymbol =
      cloneSymbol(owner)

    /** A clone of this symbol, but with given owner. */
    final def cloneSymbol(newOwner: Symbol): TypeOfClonedSymbol =
      cloneSymbol(newOwner, _rawflags)
    final def cloneSymbol(newOwner: Symbol, newFlags: Long): TypeOfClonedSymbol =
      cloneSymbol(newOwner, newFlags, null)
    final def cloneSymbol(newOwner: Symbol, newFlags: Long, newName: Name): TypeOfClonedSymbol = {
      val clone = cloneSymbolImpl(newOwner, newFlags)
      ( clone
          setPrivateWithin privateWithin
          setInfo (this.info cloneInfo clone)
          setAnnotations this.annotations
      )
      this.attachments.all.foreach(clone.updateAttachment)
      if (clone.thisSym != clone)
        clone.typeOfThis = (clone.typeOfThis cloneInfo clone)

      if (newName ne null)
        clone setName asNameType(newName)

      clone
    }

    /** Internal method to clone a symbol's implementation with the given flags and no info. */
    def cloneSymbolImpl(owner: Symbol, newFlags: Long): TypeOfClonedSymbol

// ------ access to related symbols --------------------------------------------------

    /** The next enclosing class. */
    def enclClass: Symbol = if (isClass) this else owner.enclClass

    /** The next enclosing method. */
    def enclMethod: Symbol = if (isSourceMethod) this else owner.enclMethod

    /** The primary constructor of a class. */
    def primaryConstructor: Symbol = NoSymbol

    /** The self symbol (a TermSymbol) of a class with explicit self type, or else the
     *  symbol itself (a TypeSymbol).
     *
     *  WARNING: you're probably better off using typeOfThis, as it's more uniform across classes with and without self variables.
     *
     *  Example by Paul:
     *   scala> trait Foo1 { }
     *   scala> trait Foo2 { self => }
     *   scala> intp("Foo1").thisSym
     *   res0: $r.intp.global.Symbol = trait Foo1
     *
     *   scala> intp("Foo2").thisSym
     *   res1: $r.intp.global.Symbol = value self
     *
     *  Martin says: The reason `thisSym' is `this' is so that thisType can be this.thisSym.tpe.
     *  It's a trick to shave some cycles off.
     *
     *  Morale: DO:    if (clazz.typeOfThis.typeConstructor ne clazz.typeConstructor) ...
     *          DON'T: if (clazz.thisSym ne clazz) ...
     *
     */
    def thisSym: Symbol = this

    def hasSelfType = thisSym.tpeHK != this.tpeHK

    /** The type of `this` in a class, or else the type of the symbol itself. */
    def typeOfThis = thisSym.tpe_*

    /** If symbol is a class, the type `this.type` in this class,
     * otherwise `NoPrefix`.
     * We always have: thisType <:< typeOfThis
     */
    def thisType: Type = NoPrefix

    /** For a case class, the symbols of the accessor methods, one for each
     *  argument in the first parameter list of the primary constructor.
     *  The empty list for all other classes.
     *
     * This list will be sorted to correspond to the declaration order
     * in the constructor parameter
     */
    final def caseFieldAccessors: List[Symbol] = {
      // We can't rely on the ordering of the case field accessors within decls --
      // handling of non-public parameters seems to change the order (see SI-7035.)
      //
      // Luckily, the constrParamAccessors are still sorted properly, so sort the field-accessors using them
      // (need to undo name-mangling, including the sneaky trailing whitespace)
      //
      // The slightly more principled approach of using the paramss of the
      // primary constructor leads to cycles in, for example, pos/t5084.scala.
      val primaryNames = constrParamAccessors map (_.name.dropLocal)
      caseFieldAccessorsUnsorted.sortBy { acc =>
        primaryNames indexWhere { orig =>
          (acc.name == orig) || (acc.name startsWith (orig append "$"))
        }
      }
    }
    private final def caseFieldAccessorsUnsorted: List[Symbol] =
      (info.decls filter (_.isCaseAccessorMethod)).toList

    final def constrParamAccessors: List[Symbol] =
      info.decls.filter(sym => !sym.isMethod && sym.isParamAccessor).toList

    /** The symbol accessed by this accessor (getter or setter) function. */
    final def accessed: Symbol = {
      assert(hasAccessorFlag, this)
      val localField = owner.info decl localName

      if (localField == NoSymbol && this.hasFlag(MIXEDIN)) {
        // SI-8087: private[this] fields don't have a `localName`. When searching the accessed field
        // for a mixin accessor of such a field, we need to look for `name` instead.
        // The phase travel ensures that the field is found (`owner` is the trait class symbol, the
        // field gets removed from there in later phases).
        enteringPhase(picklerPhase)(owner.info).decl(name).suchThat(!_.isAccessor)
      } else {
        localField
      }
    }

    /** The module corresponding to this module class (note that this
     *  is not updated when a module is cloned), or NoSymbol if this is not a ModuleClass.
     */
    def sourceModule: Symbol = NoSymbol

    /** The implementation class of a trait.  If available it will be the
     *  symbol with the same owner, and the name of this symbol with $class
     *  appended to it.
     */
    final def implClass: Symbol = owner.info.decl(tpnme.implClassName(name))

    /** The class that is logically an outer class of given `clazz`.
     *  This is the enclosing class, except for classes defined locally to constructors,
     *  where it is the outer class of the enclosing class.
     */
    final def outerClass: Symbol =
      if (this == NoSymbol) {
        // ideally we shouldn't get here, but it's better to harden against this than suffer the infinite loop in SI-9133
        devWarningDumpStack("NoSymbol.outerClass", 15)
        NoSymbol
      } else if (owner.isClass) owner
      else if (isClassLocalToConstructor) owner.enclClass.outerClass
      else owner.outerClass

    /** For a paramaccessor: a superclass paramaccessor for which this symbol
     *  is an alias, NoSymbol for all others.
     */
    def alias: Symbol = NoSymbol

    /** For a lazy value, its lazy accessor. NoSymbol for all others. */
    def lazyAccessor: Symbol = NoSymbol

    /** If this is a lazy value, the lazy accessor; otherwise this symbol. */
    def lazyAccessorOrSelf: Symbol = if (isLazy) lazyAccessor else this

    /** If this is an accessor, the accessed symbol.  Otherwise, this symbol. */
    def accessedOrSelf: Symbol = if (hasAccessorFlag) accessed else this

    /** For an outer accessor: The class from which the outer originates.
     *  For all other symbols: NoSymbol
     */
    def outerSource: Symbol = NoSymbol

    /** The superclass of this class. */
    def superClass: Symbol = if (info.parents.isEmpty) NoSymbol else info.parents.head.typeSymbol
    def parentSymbols: List[Symbol] = info.parents map (_.typeSymbol)

    /** The directly or indirectly inherited mixins of this class
     *  except for mixin classes inherited by the superclass. Mixin classes appear
     *  in linearization order.
     */
    def mixinClasses: List[Symbol] = {
      val sc = superClass
      ancestors takeWhile (sc ne _)
    }

    /** All directly or indirectly inherited classes. */
    def ancestors: List[Symbol] = info.baseClasses drop 1

    @inline final def enclosingSuchThat(p: Symbol => Boolean): Symbol = {
      var sym = this
      while (sym != NoSymbol && !p(sym))
        sym = sym.owner
      sym
    }

    /** The package class containing this symbol, or NoSymbol if there
     *  is not one.
     *  TODO: formulate as enclosingSuchThat, after making sure
     *        we can start with current symbol rather than owner.
     *  TODO: Also harmonize with enclClass, enclMethod etc.
     */
    def enclosingPackageClass: Symbol = {
      var sym = this.owner
      while (sym != NoSymbol && !sym.isPackageClass)
        sym = sym.owner
      sym
    }

    /** The package class containing this symbol, or NoSymbol if there
     *  is not one. */
    def enclosingRootClass: Symbol = enclosingSuchThat(_.isRoot)

    /** The package containing this symbol, or NoSymbol if there
     *  is not one. */
    def enclosingPackage: Symbol = enclosingPackageClass.companionModule

    /** The method or class which logically encloses the current symbol.
     *  If the symbol is defined in the initialization part of a template
     *  this is the template's primary constructor, otherwise it is
     *  the physically enclosing method or class.
     *
     *  Example 1:
     *
     *  def f() { val x = { def g() = ...; g() } }
     *
     *  In this case the owner chain of `g` is `x`, followed by `f` and
     *  `g.logicallyEnclosingMember == f`.
     *
     *  Example 2:
     *
     *  class C {
     *    def <init> = { ... }
     *    val x = { def g() = ...; g() } }
     *  }
     *
     *  In this case the owner chain of `g` is `x`, followed by `C` but
     *  g.logicallyEnclosingMember is the primary constructor symbol `<init>`
     *  (or, for traits: `$init`) of `C`.
     *
     */
    final def logicallyEnclosingMember: Symbol =
      if (isLocalDummy) enclClass.primaryConstructor
      else if (isMethod || isClass || this == NoSymbol) this
      else if (this == NoSymbol) { devWarningDumpStack("NoSymbol.logicallyEnclosingMember", 15); this }
      else owner.logicallyEnclosingMember

    /** The top-level class containing this symbol. */
    def enclosingTopLevelClass: Symbol =
      if (isTopLevel) {
        if (isClass) this else moduleClass
      } else owner.enclosingTopLevelClass

    /** The top-level class or local dummy symbol containing this symbol. */
    def enclosingTopLevelClassOrDummy: Symbol =
      if (isTopLevel) {
        if (isClass) this else moduleClass.orElse(this)
      } else owner.enclosingTopLevelClassOrDummy

    /** Is this symbol defined in the same scope and compilation unit as `that` symbol? */
    def isCoDefinedWith(that: Symbol) = (
         !rawInfoIsNoType
      && (this.effectiveOwner == that.effectiveOwner)
      && (   !this.effectiveOwner.isPackageClass
          || (this.associatedFile eq NoAbstractFile)
          || (that.associatedFile eq NoAbstractFile)
          || (this.associatedFile.path == that.associatedFile.path)  // Cheap possibly wrong check, then expensive normalization
          || (this.associatedFile.canonicalPath == that.associatedFile.canonicalPath)
         )
    )

    /** The internal representation of classes and objects:
     *
     *  class Foo is "the class" or sometimes "the plain class"
     * object Foo is "the module"
     * class Foo$ is "the module class" (invisible to the user: it implements object Foo)
     *
     * class Foo  <
     *  ^  ^ (2)   \
     *  |  |  |     \
     *  | (5) |     (3)
     *  |  |  |       \
     * (1) v  v        \
     * object Foo (4)-> > class Foo$
     *
     * (1) companionClass
     * (2) companionModule
     * (3) linkedClassOfClass
     * (4) moduleClass
     * (5) companionSymbol
     */

    /** For a module: the class with the same name in the same package.
     *  For all others: NoSymbol
     *  Note: does not work for classes owned by methods, see Namers.companionClassOf
     *
     *  object Foo  .  companionClass -->  class Foo
     *
     *  !!! linkedClassOfClass depends on companionClass on the module class getting
     *  to the class.  As presently implemented this potentially returns class for
     *  any symbol except NoSymbol.
     */
    def companionClass: Symbol = flatOwnerInfo.decl(name.toTypeName).suchThat(_ isCoDefinedWith this)

    /** For a class: the module or case class factory with the same name in the same package.
     *  For all others: NoSymbol
     *  Note: does not work for modules owned by methods, see Namers.companionModuleOf
     *
     *  class Foo  .  companionModule -->  object Foo
     */
    def companionModule: Symbol = NoSymbol

    /** For a module: its linked class
     *  For a plain class: its linked module or case factory.
     *  Note: does not work for modules owned by methods, see Namers.companionSymbolOf
     *
     *  class Foo  <-- companionSymbol -->  object Foo
     */
    def companionSymbol: Symbol = NoSymbol

    /** For a module class: its linked class
     *   For a plain class: the module class of its linked module.
     *
     *  class Foo  <-- linkedClassOfClass -->  class Foo$
     */
    def linkedClassOfClass: Symbol = NoSymbol

    /**
     * Returns the rawInfo of the owner. If the current phase has flat classes,
     * it first applies all pending type maps to this symbol.
     *
     * assume this is the ModuleSymbol for B in the following definition:
     *   package p { class A { object B { val x = 1 } } }
     *
     * The owner after flatten is "package p" (see "def owner"). The flatten type map enters
     * symbol B in the decls of p. So to find a linked symbol ("object B" or "class B")
     * we need to apply flatten to B first. Fixes #2470.
     */
    protected final def flatOwnerInfo: Type = {
      if (needsFlatClasses)
        info
      owner.rawInfo
    }

    /** If this symbol is an implementation class, its interface, otherwise the symbol itself
     *  The method follows two strategies to determine the interface.
     *   - during or after erasure, it takes the last parent of the implementation class
     *     (which is always the interface, by convention)
     *   - before erasure, it looks up the interface name in the scope of the owner of the class.
     *     This only works for implementation classes owned by other classes or traits.
     *     !!! Why?
     */
    def toInterface: Symbol = this

    /** The module class corresponding to this module.
     */
    def moduleClass: Symbol = NoSymbol

    /** The non-private symbol whose type matches the type of this symbol
     *  in in given class.
     *
     *  @param ofclazz   The class containing the symbol's definition
     *  @param site      The base type from which member types are computed
     */
    final def matchingSymbol(ofclazz: Symbol, site: Type): Symbol =
      matchingSymbolInternal(site, ofclazz.info nonPrivateDecl name)

    /** The non-private member of `site` whose type and name match the type of this symbol. */
    final def matchingSymbol(site: Type, admit: Long = 0L): Symbol =
      matchingSymbolInternal(site, site.nonPrivateMemberAdmitting(name, admit))

    private def matchingSymbolInternal(site: Type, candidate: Symbol): Symbol = {
      def qualifies(sym: Symbol) = !sym.isTerm || ((site memberType this) matches (site memberType sym))
      //OPT cut down on #closures by special casing non-overloaded case
      if (candidate.isOverloaded) candidate filter qualifies
      else if (qualifies(candidate)) candidate
      else NoSymbol
    }

    /** The symbol, in class `baseClass`, that is overridden by this symbol.
     *
     *  @param baseClass is a base class of this symbol's owner.
     */
    final def overriddenSymbol(baseClass: Symbol): Symbol = (
      // concrete always overrides abstract, so don't let an abstract definition
      // claim to be overriding an inherited concrete one.
      matchingInheritedSymbolIn(baseClass) filter (res => res.isDeferred || !this.isDeferred)
    )

    private def matchingInheritedSymbolIn(baseClass: Symbol): Symbol =
      if (canMatchInheritedSymbols) matchingSymbol(baseClass, owner.thisType) else NoSymbol

    /** The symbol overriding this symbol in given subclass `ofclazz`.
     *
     *  @param ofclazz is a subclass of this symbol's owner
     */
    final def overridingSymbol(ofclazz: Symbol): Symbol = (
      if (canMatchInheritedSymbols)
        matchingSymbol(ofclazz, ofclazz.thisType)
      else
        NoSymbol
    )

    /** If false, this symbol cannot possibly participate in an override,
     *  either as overrider or overridee. For internal use; you should consult
     *  with isOverridingSymbol. This is used by isOverridingSymbol to escape
     *  the recursive knot.
     */
    private def canMatchInheritedSymbols = (
         owner.isClass
      && !this.isClass
      && !this.isConstructor
    )

    // All the symbols overridden by this symbol and this symbol at the head,
    // or Nil if this is NoSymbol.
    def overrideChain = (
      if (this eq NoSymbol) Nil
      else if (isOverridingSymbol) this :: allOverriddenSymbols
      else this :: Nil
    )

    /** Returns all symbols overridden by this symbol. */
    final def allOverriddenSymbols: List[Symbol] = {
      def loop(xs: List[Symbol]): List[Symbol] = xs match {
        case Nil     => Nil
        case x :: xs =>
          overriddenSymbol(x) match {
            case NoSymbol => loop(xs)
            case sym      => sym :: loop(xs)
          }
      }
      if (isOverridingSymbol) loop(owner.ancestors) else Nil
    }

    /** Equivalent to allOverriddenSymbols.nonEmpty, but more efficient. */
    lazy val isOverridingSymbol = (
         canMatchInheritedSymbols
      && owner.ancestors.exists(base => overriddenSymbol(base) != NoSymbol)
    )

    /** Equivalent to allOverriddenSymbols.head (or NoSymbol if no overrides) but more efficient. */
    def nextOverriddenSymbol: Symbol = {
      @tailrec def loop(bases: List[Symbol]): Symbol = bases match {
        case Nil          => NoSymbol
        case base :: rest =>
          val sym = overriddenSymbol(base)
          if (sym == NoSymbol) loop(rest) else sym
      }
      if (isOverridingSymbol) loop(owner.ancestors) else NoSymbol
    }

    /** Returns all symbols overridden by this symbol, plus all matching symbols
     *  defined in parents of the selftype.
     */
    final def extendedOverriddenSymbols: List[Symbol] = (
      if (canMatchInheritedSymbols)
        owner.thisSym.ancestors map overriddenSymbol filter (_ != NoSymbol)
      else
        Nil
    )

    @deprecated("Use `superSymbolIn` instead", "2.11.0")
    final def superSymbol(base: Symbol): Symbol = superSymbolIn(base)

    /** The symbol accessed by a super in the definition of this symbol when
     *  seen from class `base`. This symbol is always concrete.
     *  pre: `this.owner` is in the base class sequence of `base`.
     */
    final def superSymbolIn(base: Symbol): Symbol = {
      var bcs = base.info.baseClasses dropWhile (owner != _) drop 1
      var sym: Symbol = NoSymbol
      while (!bcs.isEmpty && sym == NoSymbol) {
        if (!bcs.head.isImplClass)
          sym = matchingSymbol(bcs.head, base.thisType).suchThat(!_.isDeferred)
        bcs = bcs.tail
      }
      sym
    }

    @deprecated("Use `getterIn` instead", "2.11.0")
    final def getter(base: Symbol): Symbol = getterIn(base)

    /** The getter of this value or setter definition in class `base`, or NoSymbol if none exists. */
    final def getterIn(base: Symbol): Symbol =
      base.info decl getterName filter (_.hasAccessorFlag)

    def getterName: TermName = name.getterName
    def setterName: TermName = name.setterName
    def localName: TermName  = name.localName

    @deprecated("Use `setterIn` instead", "2.11.0")
    final def setter(base: Symbol, hasExpandedName: Boolean = needsExpandedSetterName): Symbol =
      setterIn(base, hasExpandedName)

    /** The setter of this value or getter definition, or NoSymbol if none exists. */
    final def setterIn(base: Symbol, hasExpandedName: Boolean = needsExpandedSetterName): Symbol =
      base.info decl setterNameInBase(base, hasExpandedName) filter (_.hasAccessorFlag)

    def needsExpandedSetterName = (
      if (isMethod) hasStableFlag && !isLazy
      else hasNoFlags(LAZY | MUTABLE)
    )
    def setterNameInBase(base: Symbol, expanded: Boolean): TermName =
      if (expanded) nme.expandedSetterName(setterName, base) else setterName

    /** If this is a derived value class, return its unbox method
     *  or NoSymbol if it does not exist.
     */
    def derivedValueClassUnbox: Symbol = NoSymbol

     /** The case module corresponding to this case class
     *  @pre case class is a member of some other class or package
     */
    final def caseModule: Symbol = {
      var modname = name.toTermName
      if (privateWithin.isClass && !privateWithin.isModuleClass && !hasFlag(EXPANDEDNAME))
        modname = nme.expandedName(modname, privateWithin)
      initialize.owner.info.decl(modname).suchThat(_.isModule)
    }

    /** If this symbol is a type parameter skolem (not an existential skolem!)
     *  its corresponding type parameter, otherwise this */
    def deSkolemize: Symbol = this

    /** If this symbol is an existential skolem the location (a Tree or null)
     *  where it was unpacked. Resulttype is AnyRef because trees are not visible here. */
    def unpackLocation: AnyRef = null

    /** Remove private modifier from symbol `sym`s definition. If `sym` is a
     *  is not a constructor nor a static module rename it by expanding its name to avoid name clashes
     *  @param base  the fully qualified name of this class will be appended if name expansion is needed
     */
    final def makeNotPrivate(base: Symbol) {
      if (this.isPrivate) {
        setFlag(notPRIVATE)
        // Marking these methods final causes problems for proxies which use subclassing. If people
        // write their code with no usage of final, we probably shouldn't introduce it ourselves
        // unless we know it is safe. ... Unfortunately if they aren't marked final the inliner
        // thinks it can't inline them. So once again marking lateFINAL, and in genjvm we no longer
        // generate ACC_FINAL on "final" methods which are actually lateFINAL.
        if (isMethod && !isDeferred)
          setFlag(lateFINAL)
        if (!isStaticModule && !isClassConstructor) {
          expandName(base)
          if (isModule) moduleClass.makeNotPrivate(base)
        }
      }
    }

    /** Remove any access boundary and clear flags PROTECTED | PRIVATE.
     */
    def makePublic = this setPrivateWithin NoSymbol resetFlag AccessFlags

    /** The first parameter to the first argument list of this method,
     *  or NoSymbol if inapplicable.
     */
    def firstParam = info.params match {
      case p :: _ => p
      case _      => NoSymbol
    }

    // Desire to re-use the field in ClassSymbol which stores the source
    // file to also store the classfile, but without changing the behavior
    // of sourceFile (which is expected at least in the IDE only to
    // return actual source code.) So sourceFile has classfiles filtered out.
    final def sourceFile: AbstractFile =
      if ((associatedFile eq NoAbstractFile) || (associatedFile.path endsWith ".class")) null else associatedFile

    /** Overridden in ModuleSymbols to delegate to the module class.
     *  Never null; if there is no associated file, returns NoAbstractFile.
     */
    def associatedFile: AbstractFile = enclosingTopLevelClass.associatedFile
    def associatedFile_=(f: AbstractFile) { abort("associatedFile_= inapplicable for " + this) }

    /** If this is a sealed class, its known direct subclasses.
     *  Otherwise, the empty set.
     */
    def children: Set[Symbol] = Set()

    /** Recursively assemble all children of this symbol.
     */
    def sealedDescendants: Set[Symbol] = children.flatMap(_.sealedDescendants) + this

    @inline final def orElse(alt: => Symbol): Symbol = if (this ne NoSymbol) this else alt
    @inline final def andAlso(f: Symbol => Unit): Symbol = { if (this ne NoSymbol) f(this) ; this }
    @inline final def fold[T](none: => T)(f: Symbol => T): T = if (this ne NoSymbol) f(this) else none
    @inline final def map(f: Symbol => Symbol): Symbol = if (this eq NoSymbol) this else f(this)

    final def toOption: Option[Symbol] = if (exists) Some(this) else None


// ------ toString -------------------------------------------------------------------

    /** The simple name of this Symbol */
    final def simpleName: Name = name

    /** The String used to order otherwise identical sealed symbols.
     *  This uses data which is stable across runs and variable classpaths
     *  (the initial Name) before falling back on id, which varies depending
     *  on exactly when a symbol is loaded.
     */
    final def sealedSortName: String = initName + "#" + id

    /** String representation of symbol's definition key word */
    final def keyString: String =
      if (isJavaInterface) "interface"
      else if (isTrait && !isImplClass) "trait"
      else if (isClass) "class"
      else if (isType && !isParameter) "type"
      else if (isVariable) "var"
      else if (hasPackageFlag) "package"
      else if (isModule) "object"
      else if (isSourceMethod) "def"
      else if (isTerm && (!isParameter || isParamAccessor)) "val"
      else ""

    private def symbolKind: SymbolKind = {
      var kind =
        if (isTermMacro) ("term macro", "macro method", "MACM")
        else if (isInstanceOf[FreeTermSymbol]) ("free term", "free term", "FTE")
        else if (isInstanceOf[FreeTypeSymbol]) ("free type", "free type", "FTY")
        else if (isPackageClass) ("package class", "package", "PKC")
        else if (hasPackageFlag) ("package", "package", "PK")
        else if (isPackageObject) ("package object", "package", "PKO")
        else if (isPackageObjectClass) ("package object class", "package", "PKOC")
        else if (isAnonymousClass) ("anonymous class", "anonymous class", "AC")
        else if (isRefinementClass) ("refinement class", "", "RC")
        else if (isModule) ("module", "object", "MOD")
        else if (isModuleClass) ("module class", "object", "MODC")
        else if (isGetter) ("getter", if (isSourceMethod) "method" else "value", "GET")
        else if (isSetter) ("setter", if (isSourceMethod) "method" else "value", "SET")
        else if (isTerm && isLazy) ("lazy value", "lazy value", "LAZ")
        else if (isVariable) ("field", "variable", "VAR")
        else if (isImplClass) ("implementation class", "class", "IMPL")
        else if (isTrait) ("trait", "trait", "TRT")
        else if (isClass) ("class", "class", "CLS")
        else if (isType) ("type", "type", "TPE")
        else if (isClassConstructor && (owner.hasCompleteInfo && isPrimaryConstructor)) ("primary constructor", "constructor", "PCTOR")
        else if (isClassConstructor) ("constructor", "constructor", "CTOR")
        else if (isSourceMethod) ("method", "method", "METH")
        else if (isTerm) ("value", "value", "VAL")
        else ("", "", "???")
      if (isSkolem) kind = (kind._1, kind._2, kind._3 + "#SKO")
      SymbolKind(kind._1, kind._2, kind._3)
    }

    /** Accurate string representation of symbols' kind, suitable for developers. */
    final def accurateKindString: String =
      symbolKind.accurate

    /** String representation of symbol's kind, suitable for the masses. */
    private def sanitizedKindString: String =
      symbolKind.sanitized

    /** String representation of symbol's kind, suitable for the masses. */
    protected[scala] def abbreviatedKindString: String =
      symbolKind.abbreviation

    final def kindString: String =
      if (settings.debug.value) accurateKindString
      else sanitizedKindString

    /** If the name of the symbol's owner should be used when you care about
     *  seeing an interesting name: in such cases this symbol is e.g. a method
     *  parameter with a synthetic name, a constructor named "this", an object
     *  "package", etc.  The kind string, if non-empty, will be phrased relative
     *  to the name of the owner.
     */
    def hasMeaninglessName = (
         isSetterParameter        // x$1
      || isClassConstructor       // this
      || isRefinementClass        // <refinement>
      || (name == nme.PACKAGE)    // package
    )

    /** String representation of symbol's simple name.
     *  If !settings.debug translates expansions of operators back to operator symbol.
     *  E.g. $eq => =.
     *  If settings.uniqid, adds id.
     *  If settings.Yshowsymowners, adds owner's id
     *  If settings.Yshowsymkinds, adds abbreviated symbol kind.
     */
    def nameString: String = {
      val name_s = if (settings.debug.value) "" + unexpandedName else unexpandedName.dropLocal.decode
      val kind_s = if (settings.Yshowsymkinds.value) "#" + abbreviatedKindString else ""

      name_s + idString + kind_s
    }

    def fullNameString: String = {
      def recur(sym: Symbol): String = {
        if (sym.isRootSymbol || sym == NoSymbol) sym.nameString
        else if (sym.owner.isEffectiveRoot) sym.nameString
        else recur(sym.effectiveOwner.enclClass) + "." + sym.nameString
      }

      recur(this)
    }

    /** If settings.uniqid is set, the symbol's id, else "" */
    final def idString = {
      val id_s = if (settings.uniqid.value) "#"+id else ""
      val owner_s = if (settings.Yshowsymowners.value) "@"+owner.id else ""
      id_s + owner_s
    }

    /** String representation, including symbol's kind e.g., "class Foo", "method Bar".
     *  If hasMeaninglessName is true, uses the owner's name to disambiguate identity.
     */
    override def toString: String = {
      if (isPackageObjectOrClass && !settings.debug)
        s"package object ${owner.decodedName}"
      else compose(
        kindString,
        if (hasMeaninglessName) owner.decodedName + idString else nameString
      )
    }

    /** String representation of location.
     */
    def ownsString: String = {
      val owns = effectiveOwner
      if (owns.isClass && !owns.isEmptyPrefix) "" + owns else ""
    }

    /** String representation of location, plus a preposition.  Doesn't do much,
     *  for backward compatibility reasons.
     */
    def locationString: String = ownsString match {
      case ""   => ""
      case s    => " in " + s
    }
    def fullLocationString: String = toString + locationString
    def signatureString: String    = if (hasRawInfo) infoString(rawInfo) else "<_>"

    /** String representation of symbol's definition following its name */
    final def infoString(tp: Type): String = {
      def parents = (
        if (settings.debug.value) parentsString(tp.parents)
        else briefParentsString(tp.parents)
      )
      def isStructuralThisType = (
        // prevents disasters like SI-8158
        owner.isInitialized && owner.isStructuralRefinement && tp == owner.tpe
      )
      if (isType) typeParamsString(tp) + (
        if (isClass) " extends " + parents
        else if (isAliasType) " = " + tp.resultType
        else tp.resultType match {
          case rt @ TypeBounds(_, _) => "" + rt
          case rt                    => " <: " + rt
        }
      )
      else if (isModule) "" //  avoid "object X of type X.type"
      else tp match {
        case PolyType(tparams, res)    => typeParamsString(tp) + infoString(res)
        case NullaryMethodType(res)    => infoString(res)
        case MethodType(params, res)   => valueParamsString(tp) + infoString(res)
        case _ if isStructuralThisType => ": " + owner.name
        case _                         => ": " + tp
      }
    }

    def infosString = infos.toString
    def debugLocationString = {
      val pre = flagString match {
        case ""                  => ""
        case s if s contains ' ' => "(" + s + ") "
        case s                   => s + " "
      }
      pre + fullLocationString
    }

    private def defStringCompose(infoString: String) = compose(
      flagString,
      keyString,
      varianceString + nameString + infoString + flagsExplanationString
    )
    /** String representation of symbol's definition.  It uses the
     *  symbol's raw info to avoid forcing types.
     */
    def defString = defStringCompose(signatureString)

    /** String representation of symbol's definition, using the supplied
     *  info rather than the symbol's.
     */
    def defStringSeenAs(info: Type) = defStringCompose(infoString(info))

    /** Concatenate strings separated by spaces */
    private def compose(ss: String*) = ss filter (_ != "") mkString " "

    def isSingletonExistential =
      nme.isSingletonName(name) && (info.bounds.hi.typeSymbol isSubClass SingletonClass)

    /** String representation of existentially bound variable */
    def existentialToString =
      if (isSingletonExistential && !settings.debug.value)
        "val " + tpnme.dropSingletonName(name) + ": " + dropSingletonType(info.bounds.hi)
      else defString
  }
  implicit val SymbolTag = ClassTag[Symbol](classOf[Symbol])

  /** A class for term symbols */
  class TermSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TermName)
  extends Symbol(initOwner, initPos, initName) with TermSymbolApi {
    private[this] var _referenced: Symbol = NoSymbol
    privateWithin = NoSymbol

    type TypeOfClonedSymbol = TermSymbol

    private[this] var _rawname: TermName = initName
    def rawname = _rawname
    def name = {
      if (Statistics.hotEnabled) Statistics.incCounter(nameCount)
      _rawname
    }
    override def name_=(name: Name) {
      if (name != rawname) {
        super.name_=(name)   // logging
        changeNameInOwners(name)
        _rawname = name.toTermName
      }
    }
    final def asNameType(n: Name) = n.toTermName

    /** Term symbols with the exception of static parts of Java classes and packages.
     */
    override def isValue     = !(isModule && hasFlag(PACKAGE | JAVA))
    override def isVariable  = isMutable && !isMethod
    override def isTermMacro = hasFlag(MACRO)

    // interesting only for lambda lift. Captured variables are accessed from inner lambdas.
    override def isCapturedVariable = hasAllFlags(MUTABLE | CAPTURED) && !hasFlag(METHOD)

    override def companionSymbol: Symbol = companionClass
    override def moduleClass = if (isModule) referenced else NoSymbol

    override def isBridge           = this hasFlag BRIDGE
    override def isEarlyInitialized = this hasFlag PRESUPER
    override def isMethod           = this hasFlag METHOD
    override def isModule           = this hasFlag MODULE
    override def isOverloaded       = this hasFlag OVERLOADED
    /*** !!! TODO: shouldn't we do something like the following:
    override def isOverloaded       = (
      if (this.isInitialized)
        this hasFlag OVERLOADED
      else
        (infos ne null) && infos.info.isInstanceOf[OverloadedType]
    )
    ***/
    override def isValueParameter   = this hasFlag PARAM

    override def isSetterParameter  = isValueParameter && owner.isSetter
    override def isAccessor         = this hasFlag ACCESSOR
    override def isGetter           = isAccessor && !isSetter
    override def isDefaultGetter    = name containsName nme.DEFAULT_GETTER_STRING
    override def isSetter           = isAccessor && nme.isSetterName(name)  // todo: make independent of name, as this can be forged.
    override def isLocalDummy       = nme.isLocalDummyName(name)
    override def isClassConstructor = name == nme.CONSTRUCTOR
    override def isMixinConstructor = name == nme.MIXIN_CONSTRUCTOR
    override def isConstructor      = nme.isConstructorName(name)

    override def isPackageObject = isModule && (name == nme.PACKAGE)

    // The name in comments is what it is being disambiguated from.
    // TODO - rescue CAPTURED from BYNAMEPARAM so we can see all the names.
    override def resolveOverloadedFlag(flag: Long) = flag match {
      case DEFAULTPARAM => "<defaultparam>" // TRAIT
      case MIXEDIN      => "<mixedin>"      // EXISTENTIAL
      case LABEL        => "<label>"        // CONTRAVARIANT / INCONSTRUCTOR
      case PRESUPER     => "<presuper>"     // IMPLCLASS
      case BYNAMEPARAM  => if (this.isValueParameter) "<bynameparam>" else "<captured>" // COVARIANT
      case _            => super.resolveOverloadedFlag(flag)
    }

    def referenced: Symbol = _referenced
    def referenced_=(x: Symbol) { _referenced = x }

    def existentialBound = singletonBounds(this.tpe)

    def cloneSymbolImpl(owner: Symbol, newFlags: Long): TermSymbol =
      owner.newTermSymbol(name, pos, newFlags).copyAttrsFrom(this)

    def copyAttrsFrom(original: TermSymbol): this.type = {
      referenced = original.referenced
      this
    }

    private val validAliasFlags = SUPERACCESSOR | PARAMACCESSOR | MIXEDIN | SPECIALIZED

    override def alias: Symbol =
      if (hasFlag(validAliasFlags)) initialize.referenced
      else NoSymbol

    def setAlias(alias: Symbol): TermSymbol = {
      assert(alias != NoSymbol, this)
      assert(!alias.isOverloaded, alias)
      assert(hasFlag(validAliasFlags), this)

      referenced = alias
      this
    }

    override def outerSource: Symbol =
      // SI-6888 Approximate the name to workaround the deficiencies in `nme.originalName`
      //         in the face of classes named '$'. SI-2806 remains open to address the deeper problem.
      if (unexpandedName endsWith (nme.OUTER)) initialize.referenced
      else NoSymbol

    def setModuleClass(clazz: Symbol): TermSymbol = {
      assert(isModule, this)
      referenced = clazz
      this
    }

    def setLazyAccessor(sym: Symbol): TermSymbol = {
      assert(isLazy && (referenced == NoSymbol || referenced == sym), (this, debugFlagString, referenced, sym))
      referenced = sym
      this
    }

    override def lazyAccessor: Symbol = {
      assert(isLazy, this)
      referenced
    }

    /** change name by appending $$<fully-qualified-name-of-class `base`>
     *  Do the same for any accessed symbols or setters/getters
     */
    override def expandName(base: Symbol) {
      if (!hasFlag(EXPANDEDNAME)) {
        setFlag(EXPANDEDNAME)
        if (hasAccessorFlag && !isDeferred) {
          accessed.expandName(base)
        }
        else if (hasGetter) {
          getterIn(owner).expandName(base)
          setterIn(owner).expandName(base)
        }
        name = nme.expandedName(name.toTermName, base)
      }
    }
  }
  implicit val TermSymbolTag = ClassTag[TermSymbol](classOf[TermSymbol])

  /** A class for module symbols */
  class ModuleSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TermName)
  extends TermSymbol(initOwner, initPos, initName) with ModuleSymbolApi {
    private var flatname: TermName = null

    override def associatedFile = moduleClass.associatedFile
    override def associatedFile_=(f: AbstractFile) { moduleClass.associatedFile = f }

    override def moduleClass = referenced
    override def companionClass =
      flatOwnerInfo.decl(name.toTypeName).suchThat(sym => sym.isClass && (sym isCoDefinedWith this))

    override def owner = {
      if (Statistics.hotEnabled) Statistics.incCounter(ownerCount)
      // a module symbol may have the lateMETHOD flag after refchecks, see isModuleNotMethod
      if (!isMethod && needsFlatClasses) rawowner.owner
      else rawowner
    }
    override def name: TermName = {
      if (Statistics.hotEnabled) Statistics.incCounter(nameCount)
      if (!isMethod && needsFlatClasses) {
        if (flatname eq null)
          flatname = nme.flattenedName(rawowner.name, rawname)

        flatname
      }
      else rawname
    }
  }
  implicit val ModuleSymbolTag = ClassTag[ModuleSymbol](classOf[ModuleSymbol])

  /** A class for method symbols */
  class MethodSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TermName)
  extends TermSymbol(initOwner, initPos, initName) with MethodSymbolApi {
    private[this] var mtpePeriod       = NoPeriod
    private[this] var mtpePre: Type    = _
    private[this] var mtpeResult: Type = _
    private[this] var mtpeInfo: Type   = _

    override def isLabel         = this hasFlag LABEL
    override def isVarargsMethod = this hasFlag VARARGS
    override def isLiftedMethod  = this hasFlag LIFTED

    // TODO - this seems a strange definition for "isSourceMethod", given that
    // it does not make any specific effort to exclude synthetics.  Figure out what
    // this method is really for and what logic makes sense.
    override def isSourceMethod  = !(this hasFlag STABLE)  // exclude all accessors
    // unfortunately having the CASEACCESSOR flag does not actually mean you
    // are a case accessor (you can also be a field.)
    override def isCaseAccessorMethod = isCaseAccessor

    def typeAsMemberOf(pre: Type): Type = {
      if (mtpePeriod == currentPeriod) {
        if ((mtpePre eq pre) && (mtpeInfo eq info)) return mtpeResult
      } else if (isValid(mtpePeriod)) {
        mtpePeriod = currentPeriod
        if ((mtpePre eq pre) && (mtpeInfo eq info)) return mtpeResult
      }
      val res = pre.computeMemberType(this)
      mtpePeriod = currentPeriod
      mtpePre = pre
      mtpeInfo = info
      mtpeResult = res
      res
    }

    override def isVarargs: Boolean = definitions.isVarArgsList(paramss.flatten)

    override def returnType: Type = {
      def loop(tpe: Type): Type =
        tpe match {
          case NullaryMethodType(ret) => loop(ret)
          case MethodType(_, ret) => loop(ret)
          case PolyType(_, tpe) => loop(tpe)
          case tpe => tpe
        }
      loop(info)
    }

    override def exceptions = annotations flatMap ThrownException.unapply
  }
  implicit val MethodSymbolTag = ClassTag[MethodSymbol](classOf[MethodSymbol])

  class AliasTypeSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TypeName)
  extends TypeSymbol(initOwner, initPos, initName) {
    type TypeOfClonedSymbol = TypeSymbol
    override def variance = if (isLocalToThis) Bivariant else info.typeSymbol.variance
    override def isContravariant = variance.isContravariant
    override def isCovariant     = variance.isCovariant
    final override def isAliasType = true
    override def cloneSymbolImpl(owner: Symbol, newFlags: Long): TypeSymbol =
      owner.newNonClassSymbol(name, pos, newFlags)
  }

  /** Let's say you have a type definition
   *
   *  {{{
   *    type T <: Number
   *  }}}
   *
   *  and tsym is the symbol corresponding to T. Then
   *
   *  {{{
   *    tsym is an instance of AbstractTypeSymbol
   *    tsym.info == TypeBounds(Nothing, Number)
   *    tsym.tpe  == TypeRef(NoPrefix, T, List())
   *  }}}
   */
  class AbstractTypeSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TypeName)
  extends TypeSymbol(initOwner, initPos, initName) {
    type TypeOfClonedSymbol = TypeSymbol
    final override def isAbstractType = true
    override def existentialBound = this.info
    override def cloneSymbolImpl(owner: Symbol, newFlags: Long): TypeSymbol =
      owner.newNonClassSymbol(name, pos, newFlags)
  }

  /** A class of type symbols. Alias and abstract types are direct instances
   *  of this class. Classes are instances of a subclass.
   */
  abstract class TypeSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TypeName)
  extends Symbol(initOwner, initPos, initName) with TypeSymbolApi {
    privateWithin = NoSymbol
    private[this] var _rawname: TypeName = initName

    type TypeOfClonedSymbol >: Null <: TypeSymbol
    // cloneSymbolImpl still abstract in TypeSymbol.

    def rawname = _rawname
    def name = {
      if (Statistics.hotEnabled) Statistics.incCounter(nameCount)
      _rawname
    }
    final def asNameType(n: Name) = n.toTypeName

    override def isNonClassType = true

    override def resolveOverloadedFlag(flag: Long) = flag match {
      case TRAIT         => "<trait>"         // DEFAULTPARAM
      case EXISTENTIAL   => "<existential>"   // MIXEDIN
      case COVARIANT     => "<covariant>"     // BYNAMEPARAM / CAPTURED
      case CONTRAVARIANT => "<contravariant>" // LABEL / INCONSTRUCTOR (overridden again in ClassSymbol)
      case _             => super.resolveOverloadedFlag(flag)
    }

    private var tyconCache: Type = null
    private var tyconRunId = NoRunId
    private var tpeCache: Type = _
    private var tpePeriod = NoPeriod

    override def isAbstractType          = this hasFlag DEFERRED
    override def isContravariant         = this hasFlag CONTRAVARIANT
    override def isCovariant             = this hasFlag COVARIANT
    override def isExistentiallyBound    = this hasFlag EXISTENTIAL
    override def isTypeParameter         = isTypeParameterOrSkolem && !isSkolem
    override def isTypeParameterOrSkolem = this hasFlag PARAM

    /** Overridden in subclasses for which it makes sense.
     */
    def existentialBound: Type = abort("unexpected type: "+this.getClass+ " "+debugLocationString)

    // TODO - don't allow names to be renamed in this unstructured a fashion.
    // Rename as little as possible.  Enforce invariants on all renames.
    override def name_=(name: Name) {
      if (name != rawname) {
        super.name_=(name)  // logging
        changeNameInOwners(name)
        _rawname = name.toTypeName
      }
    }

    private def newPrefix = if (this hasFlag EXISTENTIAL | PARAM) NoPrefix else owner.thisType
    private def newTypeRef(targs: List[Type]) = typeRef(newPrefix, this, targs)

    /** A polymorphic type symbol has two distinct "types":
     *
     *  tpe_*  a TypeRef with: dummy type args, no unapplied type parameters, and kind *
     *  tpeHK  a TypeRef with: no type args, unapplied type parameters, and
     *           kind (*,*,...,*) => * depending on the number of tparams.
     *
     * The dummy type args in tpe_* are created by wrapping a TypeRef
     * around the type parameter symbols.  Types containing dummies will
     * hide errors or introduce spurious ones if they are passed around
     * as if normal types.  They should only be used in local operations
     * where they will either be discarded immediately after, or will
     * undergo substitution in which the dummies are replaced by actual
     * type arguments.
     */
    override def tpe_* : Type = {
      maybeUpdateTypeCache()
      tpeCache
    }
    override def typeConstructor: Type = {
      if (tyconCacheNeedsUpdate)
        setTyconCache(newTypeRef(Nil))
      tyconCache
    }
    override def tpeHK: Type = typeConstructor

    private def tyconCacheNeedsUpdate = (tyconCache eq null) || tyconRunId != currentRunId
    private def setTyconCache(tycon: Type) {
      tyconCache = tycon
      tyconRunId = currentRunId
      assert(tyconCache ne null, this)
    }

    private def maybeUpdateTypeCache() {
      if (tpePeriod != currentPeriod) {
        if (isValid(tpePeriod))
          tpePeriod = currentPeriod
        else
          updateTypeCache()   // perform the actual update
      }
    }
    private def updateTypeCache() {
      if (tpeCache eq NoType)
        throw CyclicReference(this, typeConstructor)

      if (isInitialized)
        tpePeriod = currentPeriod

      tpeCache = NoType // cycle marker
      val noTypeParams = phase.erasedTypes && this != ArrayClass || unsafeTypeParams.isEmpty
      tpeCache = newTypeRef(
        if (noTypeParams) Nil
        else unsafeTypeParams map (_.typeConstructor)
      )
      // Avoid carrying around different types in tyconCache and tpeCache
      // for monomorphic types.
      if (noTypeParams && tyconCacheNeedsUpdate)
        setTyconCache(tpeCache)
    }

    override def info_=(tp: Type) {
      tpePeriod = NoPeriod
      tyconCache = null
      super.info_=(tp)
    }

    final override def isNonBottomSubClass(that: Symbol): Boolean = (
      (this eq that) || this.isError || that.isError ||
      info.baseTypeIndex(that) >= 0
    )

    override def reset(completer: Type): this.type = {
      super.reset(completer)
      tpePeriod = NoPeriod
      tyconRunId = NoRunId
      this
    }

    /*** example:
     * public class Test3<T> {}
     * public class Test1<T extends Test3> {}
     * info for T in Test1 should be >: Nothing <: Test3[_]
     */

    if (Statistics.hotEnabled) Statistics.incCounter(typeSymbolCount)
  }
  implicit val TypeSymbolTag = ClassTag[TypeSymbol](classOf[TypeSymbol])

  /** A class for type parameters viewed from inside their scopes
   *
   *  @param origin  Can be either a tree, or a symbol, or null.
   *  If skolem got created from newTypeSkolem (called in Namers), origin denotes
   *  the type parameter from which the skolem was created. If it got created from
   *  skolemizeExistential, origin is either null or a Tree. If it is a Tree, it indicates
   *  where the skolem was introduced (this is important for knowing when to pack it
   *  again into ab Existential). origin is `null` only in skolemizeExistentials called
   *  from <:< or isAsSpecific, because here its value does not matter.
   *  I believe the following invariant holds:
   *
   *     origin.isInstanceOf[Symbol] == !hasFlag(EXISTENTIAL)
   */
  class TypeSkolem protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TypeName, origin: AnyRef)
  extends TypeSymbol(initOwner, initPos, initName) {
    type TypeOfClonedSymbol = TypeSkolem
    /** The skolemization level in place when the skolem was constructed */
    val level = skolemizationLevel

    final override def isSkolem = true

    // a type symbol bound by an existential type, for instance the T in
    // List[T] forSome { type T }
    override def isExistentialSkolem = this hasFlag EXISTENTIAL
    override def isGADTSkolem        = this hasAllFlags GADT_SKOLEM_FLAGS.toLong
    override def isTypeSkolem        = this hasFlag PARAM
    override def isAbstractType      = this hasFlag DEFERRED

    override def existentialBound = if (isAbstractType) this.info else super.existentialBound

    /** If typeskolem comes from a type parameter, that parameter, otherwise skolem itself */
    override def deSkolemize = origin match {
      case s: Symbol => s
      case _ => this
    }

    /** If type skolem comes from an existential, the tree where it was created */
    override def unpackLocation = origin

    //@M! (not deSkolemize.typeParams!!), also can't leave superclass definition: use info, not rawInfo
    override def typeParams = info.typeParams

    override def cloneSymbolImpl(owner: Symbol, newFlags: Long): TypeSkolem =
      owner.newTypeSkolemSymbol(name, origin, pos, newFlags)

    override def nameString: String =
      if (settings.debug.value) (super.nameString + "&" + level)
      else super.nameString
  }

  /** A class for class symbols */
  class ClassSymbol protected[Symbols] (initOwner: Symbol, initPos: Position, initName: TypeName)
  extends TypeSymbol(initOwner, initPos, initName) with ClassSymbolApi {
    type TypeOfClonedSymbol = ClassSymbol

    private[this] var flatname: TypeName            = _
    private[this] var _associatedFile: AbstractFile = _
    private[this] var thissym: Symbol               = this

    private[this] var thisTypeCache: Type      = _
    private[this] var thisTypePeriod           = NoPeriod

    override def resolveOverloadedFlag(flag: Long) = flag match {
      case INCONSTRUCTOR => "<inconstructor>" // INCONSTRUCTOR / CONTRAVARIANT / LABEL
      case EXISTENTIAL   => "<existential>"   // EXISTENTIAL / MIXEDIN
      case IMPLCLASS     => "<implclass>"     // IMPLCLASS / PRESUPER
      case _             => super.resolveOverloadedFlag(flag)
    }

    final override def isNonClassType = false
    final override def isAbstractType = false
    final override def isAliasType = false
    final override def isContravariant = false

    override def isAbstractClass           = this hasFlag ABSTRACT
    override def isCaseClass               = this hasFlag CASE
    override def isClassLocalToConstructor = this hasFlag INCONSTRUCTOR
    override def isImplClass               = this hasFlag IMPLCLASS
    override def isModuleClass             = this hasFlag MODULE
    override def isPackageClass            = this hasFlag PACKAGE
    override def isTrait                   = this hasFlag TRAIT

    override def isAnonOrRefinementClass = isAnonymousClass || isRefinementClass
    override def isAnonymousClass        = name containsName tpnme.ANON_CLASS_NAME
    override def isConcreteClass         = !(this hasFlag ABSTRACT | TRAIT)
    override def isJavaInterface         = hasAllFlags(JAVA | TRAIT)
    override def isNestedClass           = !isTopLevel
    override def isNumericValueClass     = definitions.isNumericValueClass(this)
    override def isNumeric               = isNumericValueClass
    override def isPackageObjectClass    = isModuleClass && (name == tpnme.PACKAGE)
    override def isPrimitiveValueClass   = definitions.isPrimitiveValueClass(this)
    override def isPrimitive             = isPrimitiveValueClass

    // The corresponding interface is the last parent by convention.
    private def lastParent = if (tpe.parents.isEmpty) NoSymbol else tpe.parents.last.typeSymbol
    override def toInterface: Symbol = (
      if (isImplClass) {
        if (phase.next.erasedTypes) lastParent
        else owner.info.decl(tpnme.interfaceName(name))
      }
      else super.toInterface
    )

    /** Is this class locally defined?
     *  A class is local, if
     *   - it is anonymous, or
     *   - its owner is a value
     *   - it is defined within a local class
     */
    override def isLocalClass = (
         isAnonOrRefinementClass
      || isLocalToBlock
      || !isTopLevel && owner.isLocalClass
    )

    override def enclClassChain = this :: owner.enclClassChain

    /** A helper method that factors the common code used the discover a
     *  companion module of a class. If a companion module exists, its symbol is
     *  returned, otherwise, `NoSymbol` is returned.
     */
    protected final def companionModule0: Symbol =
      flatOwnerInfo.decl(name.toTermName).suchThat(sym => sym.isModuleNotMethod && (sym isCoDefinedWith this))

    override def companionModule    = companionModule0
    override def companionSymbol    = companionModule0
    override def linkedClassOfClass = companionModule.moduleClass

    override def sourceModule       = if (isModuleClass) companionModule else NoSymbol

    override def existentialBound = GenPolyType(this.typeParams, TypeBounds.upper(this.classBound))

    def primaryConstructorName = if (this hasFlag TRAIT | IMPLCLASS) nme.MIXIN_CONSTRUCTOR else nme.CONSTRUCTOR

    override def primaryConstructor = {
      val c = info decl primaryConstructorName
      if (c.isOverloaded) c.alternatives.head else c
    }

    override def associatedFile = (
      if (!isTopLevel) super.associatedFile
      else {
        if (_associatedFile eq null) NoAbstractFile // guarantee not null, but save cost of initializing the var
        else _associatedFile
      }
    )
    override def associatedFile_=(f: AbstractFile) { _associatedFile = f }

    override def reset(completer: Type): this.type = {
      super.reset(completer)
      thissym = this
      this
    }

    /** the type this.type in this class */
    override def thisType: Type = {
      val period = thisTypePeriod
      if (period != currentPeriod) {
        if (!isValid(period)) thisTypeCache = ThisType(this)
        thisTypePeriod = currentPeriod
      }
      thisTypeCache
    }

    override def owner: Symbol = {
      if (Statistics.hotEnabled) Statistics.incCounter(ownerCount)
      if (needsFlatClasses) rawowner.owner else rawowner
    }

    override def name: TypeName = {
      if (Statistics.canEnable) Statistics.incCounter(nameCount)
      if (needsFlatClasses) {
        if (flatname eq null)
          flatname = tpnme.flattenedName(rawowner.name, rawname)

        flatname
      }
      else rawname
    }

    /** A symbol carrying the self type of the class as its type */
    override def thisSym: Symbol = thissym

    /** Sets the self type of the class */
    override def typeOfThis_=(tp: Type) {
      thissym = newThisSym(nme.this_, pos).setInfo(tp)
    }

    override def cloneSymbolImpl(owner: Symbol, newFlags: Long): ClassSymbol = {
      val clone = owner.newClassSymbol(name, pos, newFlags)
      if (thisSym != this) {
        clone.typeOfThis = typeOfThis
        clone.thisSym setName thisSym.name
      }
      clone.associatedFile = _associatedFile
      clone
    }

    override def derivedValueClassUnbox =
      // (info.decl(nme.unbox)) orElse      uncomment once we accept unbox methods
      (info.decls.find(_ hasAllFlags PARAMACCESSOR | METHOD) getOrElse
       NoSymbol)

    private[this] var childSet: Set[Symbol] = Set()
    override def children = childSet
    override def addChild(sym: Symbol) {
      if(!isPastTyper && hasAttachment[KnownDirectSubclassesCalled.type] && !childSet.contains(sym))
        globalError(s"knownDirectSubclasses of ${this.name} observed before subclass ${sym.name} registered")

      childSet = childSet + sym
    }

    def anonOrRefinementString = {
      if (hasCompleteInfo) {
        val label   = if (isAnonymousClass) "$anon:" else "refinement of"
        val parents = parentsString(info.parents map functionNBaseType filterNot (_.typeSymbol == SerializableClass))
        s"<$label $parents>"
      }
      else if (isAnonymousClass) "$anon"
      else nameString
    }
    override def toString = (
      if (isAnonOrRefinementClass) anonOrRefinementString
      else super.toString
    )

    if (Statistics.hotEnabled) Statistics.incCounter(classSymbolCount)
  }
  implicit val ClassSymbolTag = ClassTag[ClassSymbol](classOf[ClassSymbol])

  /** A class for module class symbols
   *  Note: Not all module classes are of this type; when unpickled, we get
   *  plain class symbols!
   */
  class ModuleClassSymbol protected[Symbols] (owner: Symbol, pos: Position, name: TypeName)
  extends ClassSymbol(owner, pos, name) {
    private[this] var module: Symbol        = _
    private[this] var typeOfThisCache: Type = _
    private[this] var typeOfThisPeriod      = NoPeriod

    private var implicitMembersCacheValue: Scope = EmptyScope
    private var implicitMembersCacheKey1: Type = NoType
    private var implicitMembersCacheKey2: ScopeEntry = null

    override def isModuleClass = true
    override def linkedClassOfClass = companionClass

    /** the self type of an object foo is foo.type, not class<foo>.this.type
     */
    override def typeOfThis = {
      val period = typeOfThisPeriod
      if (period != currentPeriod) {
        if (!isValid(period))
          typeOfThisCache = singleType(owner.thisType, sourceModule)
        typeOfThisPeriod = currentPeriod
      }
      typeOfThisCache
    }

    def implicitMembers: Scope = {
      val tp = info
      if ((implicitMembersCacheKey1 ne tp) || (implicitMembersCacheKey2 ne tp.decls.elems)) {
        // Skip a package object class, because the members are also in
        // the package and we wish to avoid spurious ambiguities as in pos/t3999.
        if (!isPackageObjectClass) {
          implicitMembersCacheValue = tp.implicitMembers
          implicitMembersCacheKey1 = tp
          implicitMembersCacheKey2 = tp.decls.elems
        }
      }
      implicitMembersCacheValue
    }
    // The null check seems to be necessary for the reifier.
    override def sourceModule = if (module ne null) module else companionModule
    override def sourceModule_=(module: Symbol) { this.module = module }
  }

  class PackageObjectClassSymbol protected[Symbols] (owner0: Symbol, pos0: Position)
  extends ModuleClassSymbol(owner0, pos0, tpnme.PACKAGE) {
    final override def isPackageObjectClass   = true
    final override def isPackageObjectOrClass = true
    final override def skipPackageObject      = owner
    final override def setName(name: Name): this.type = {
      abort("Can't rename a package object to " + name)
    }
  }

  trait ImplClassSymbol extends ClassSymbol {
    override def sourceModule = companionModule
    // override def isImplClass = true
    override def typeOfThis  = thisSym.tpe // don't use the ModuleClassSymbol typeOfThisCache.
  }

  class PackageClassSymbol protected[Symbols] (owner0: Symbol, pos0: Position, name0: TypeName)
  extends ModuleClassSymbol(owner0, pos0, name0) {
    override def sourceModule = companionModule
    override def enclClassChain = Nil
    override def isPackageClass = true
  }

  class RefinementClassSymbol protected[Symbols] (owner0: Symbol, pos0: Position)
  extends ClassSymbol(owner0, pos0, tpnme.REFINE_CLASS_NAME) {
    override def name_=(name: Name) {
      abort("Cannot set name of RefinementClassSymbol to " + name)
      super.name_=(name)
    }
    override def isRefinementClass       = true
    override def isAnonOrRefinementClass = true
    override def isLocalClass            = true
    override def hasMeaninglessName      = true
    override def companionModule: Symbol = NoSymbol

    /** The mentioned twist.  A refinement class has transowner X
     *  if any of its parents has transowner X.
     */
    override def hasTransOwner(sym: Symbol) = (
         super.hasTransOwner(sym)
      || info.parents.exists(_.typeSymbol hasTransOwner sym)
    )
  }
  trait StubSymbol extends Symbol {
    devWarning("creating stub symbol to defer error: " + missingMessage)

    def missingMessage: String

    /** Fail the stub by throwing a [[scala.reflect.internal.MissingRequirementError]]. */
    override final def failIfStub() =
      MissingRequirementError.signal(missingMessage)

    /** Fail the stub by reporting an error to the reporter, setting the IS_ERROR flag
      * on this symbol, and returning the dummy value `alt`.
      */
    private def fail[T](alt: T): T = {
      // Avoid issuing lots of redundant errors
      if (!hasFlag(IS_ERROR)) {
        globalError(pos, missingMessage)
        if (settings.debug.value)
          (new Throwable).printStackTrace

        this setFlag IS_ERROR
      }
      alt
    }
    // This one doesn't call fail because SpecializeTypes winds up causing
    // isMonomorphicType to be called, which calls this, which would fail us
    // in all the scenarios we're trying to keep from failing.
    override def originalInfo    = NoType
    override def associatedFile  = owner.associatedFile
    override def info            = fail(NoType)
    override def rawInfo         = fail(NoType)
    override def companionSymbol = fail(NoSymbol)
  }
  class StubClassSymbol(owner0: Symbol, name0: TypeName, val missingMessage: String) extends ClassSymbol(owner0, owner0.pos, name0) with StubSymbol
  class StubPackageClassSymbol(owner0: Symbol, name0: TypeName, val missingMessage: String) extends PackageClassSymbol(owner0, owner0.pos, name0) with StubSymbol
  class StubTermSymbol(owner0: Symbol, name0: TermName, val missingMessage: String) extends TermSymbol(owner0, owner0.pos, name0) with StubSymbol

  trait FreeSymbol extends Symbol {
    def origin: String
  }
  class FreeTermSymbol(name0: TermName, value0: => Any, val origin: String) extends TermSymbol(NoSymbol, NoPosition, name0) with FreeSymbol with FreeTermSymbolApi {
    final override def isFreeTerm = true
    final override def asFreeTerm = this
    def value = value0
  }
  implicit val FreeTermSymbolTag = ClassTag[FreeTermSymbol](classOf[FreeTermSymbol])

  class FreeTypeSymbol(name0: TypeName, val origin: String) extends TypeSkolem(NoSymbol, NoPosition, name0, NoSymbol) with FreeSymbol with FreeTypeSymbolApi {
    final override def isFreeType = true
    final override def asFreeType = this
  }
  implicit val FreeTypeSymbolTag = ClassTag[FreeTypeSymbol](classOf[FreeTypeSymbol])

  /** An object representing a missing symbol */
  class NoSymbol protected[Symbols]() extends Symbol(null, NoPosition, nme.NO_NAME) {
    final type NameType = TermName
    type TypeOfClonedSymbol = NoSymbol

    def asNameType(n: Name) = n.toTermName
    def rawname = nme.NO_NAME
    def name = nme.NO_NAME
    override def name_=(n: Name) = abort("Cannot set NoSymbol's name to " + n)

    // Syncnote: no need to synchronize this, because NoSymbol's initialization is triggered by JavaUniverse.init
    // which is called in universe's constructor - something that's inherently single-threaded
    setInfo(NoType)
    privateWithin = this

    override def info_=(info: Type) = {
      infos = TypeHistory(1, NoType, null)
      unlock()
      validTo = currentPeriod
    }
    override def flagMask = AllFlags
    override def exists = false
    override def isHigherOrderTypeParameter = false
    override def companionClass = NoSymbol
    override def companionModule = NoSymbol
    override def companionSymbol = NoSymbol
    override def isSubClass(that: Symbol) = false
    override def filter(cond: Symbol => Boolean) = this
    override def defString: String = toString
    override def locationString: String = ""
    override def enclClassChain = Nil
    override def enclClass: Symbol = this
    override def enclosingTopLevelClass: Symbol = this
    override def enclosingTopLevelClassOrDummy: Symbol = this
    override def enclosingPackageClass: Symbol = this
    override def enclMethod: Symbol = this
    override def associatedFile = NoAbstractFile
    override def owner: Symbol = {
      devWarningDumpStack("NoSymbol.owner", 15)
      this
    }
    override def ownerChain: List[Symbol] = Nil
    override def ownersIterator: Iterator[Symbol] = Iterator.empty
    override def alternatives: List[Symbol] = List()
    override def reset(completer: Type): this.type = this
    override def info: Type = NoType
    override def existentialBound: Type = NoType
    override def rawInfo: Type = NoType
    override def accessBoundary(base: Symbol): Symbol = enclosingRootClass
    def cloneSymbolImpl(owner: Symbol, newFlags: Long) = abort("NoSymbol.clone()")
  }

  protected def makeNoSymbol: NoSymbol = new NoSymbol

  lazy val NoSymbol: NoSymbol = makeNoSymbol

  /** Derives a new list of symbols from the given list by mapping the given
   *  list across the given function.  Then fixes the info of all the new symbols
   *  by substituting the new symbols for the original symbols.
   *
   *  @param    syms    the prototypical symbols
   *  @param    symFn   the function to create new symbols
   *  @return           the new list of info-adjusted symbols
   */
  def deriveSymbols(syms: List[Symbol], symFn: Symbol => Symbol): List[Symbol] = {
    val syms1 = mapList(syms)(symFn)
    mapList(syms1)(_ substInfo (syms, syms1))
  }

  /** Derives a new list of symbols from the given list by mapping the given
   *  list of `syms` and `as` across the given function.
   *  Then fixes the info of all the new symbols
   *  by substituting the new symbols for the original symbols.
   *
   *  @param    syms    the prototypical symbols
   *  @param    as      arguments to be passed to symFn together with symbols from syms (must be same length)
   *  @param    symFn   the function to create new symbols
   *  @return           the new list of info-adjusted symbols
   */
  def deriveSymbols2[A](syms: List[Symbol], as: List[A], symFn: (Symbol, A) => Symbol): List[Symbol] = {
    val syms1 = map2(syms, as)(symFn)
    mapList(syms1)(_ substInfo (syms, syms1))
  }

  /** Derives a new Type by first deriving new symbols as in deriveSymbols,
   *  then performing the same oldSyms => newSyms substitution on `tpe` as is
   *  performed on the symbol infos in deriveSymbols.
   *
   *  @param    syms    the prototypical symbols
   *  @param    symFn   the function to create new symbols
   *  @param    tpe     the prototypical type
   *  @return           the new symbol-substituted type
   */
  def deriveType(syms: List[Symbol], symFn: Symbol => Symbol)(tpe: Type): Type = {
    val syms1 = deriveSymbols(syms, symFn)
    tpe.substSym(syms, syms1)
  }

  /** Derives a new Type by first deriving new symbols as in deriveSymbols2,
   *  then performing the same oldSyms => newSyms substitution on `tpe` as is
   *  performed on the symbol infos in deriveSymbols.
   *
   *  @param    syms    the prototypical symbols
   *  @param    as      arguments to be passed to symFn together with symbols from syms (must be same length)
   *  @param    symFn   the function to create new symbols based on `as`
   *  @param    tpe     the prototypical type
   *  @return           the new symbol-substituted type
   */
  def deriveType2[A](syms: List[Symbol], as: List[A], symFn: (Symbol, A) => Symbol)(tpe: Type): Type = {
    val syms1 = deriveSymbols2(syms, as, symFn)
    tpe.substSym(syms, syms1)
  }

  /** Derives a new Type by instantiating the given list of symbols as
   *  WildcardTypes.
   *
   *  @param    syms    the symbols to replace
   *  @return           the new type with WildcardType replacing those syms
   */
  def deriveTypeWithWildcards(syms: List[Symbol])(tpe: Type): Type = {
    if (syms.isEmpty) tpe
    else tpe.instantiateTypeParams(syms, syms map (_ => WildcardType))
  }
  /** Convenience functions which derive symbols by cloning.
   */
  def cloneSymbols(syms: List[Symbol]): List[Symbol] =
    deriveSymbols(syms, _.cloneSymbol)
  def cloneSymbolsAtOwner(syms: List[Symbol], owner: Symbol): List[Symbol] =
    deriveSymbols(syms, _ cloneSymbol owner)

  /** Clone symbols and apply the given function to each new symbol's info.
   *
   *  @param    syms    the prototypical symbols
   *  @param    infoFn  the function to apply to the infos
   *  @return           the newly created, info-adjusted symbols
   */
  def cloneSymbolsAndModify(syms: List[Symbol], infoFn: Type => Type): List[Symbol] =
    mapList(cloneSymbols(syms))(_ modifyInfo infoFn)
  def cloneSymbolsAtOwnerAndModify(syms: List[Symbol], owner: Symbol, infoFn: Type => Type): List[Symbol] =
    mapList(cloneSymbolsAtOwner(syms, owner))(_ modifyInfo infoFn)

  /** Functions which perform the standard clone/substituting on the given symbols and type,
   *  then call the creator function with the new symbols and type as arguments.
   */
  def createFromClonedSymbols[T](syms: List[Symbol], tpe: Type)(creator: (List[Symbol], Type) => T): T = {
    val syms1 = cloneSymbols(syms)
    creator(syms1, tpe.substSym(syms, syms1))
  }
  def createFromClonedSymbolsAtOwner[T](syms: List[Symbol], owner: Symbol, tpe: Type)(creator: (List[Symbol], Type) => T): T = {
    val syms1 = cloneSymbolsAtOwner(syms, owner)
    creator(syms1, tpe.substSym(syms, syms1))
  }

  /** A deep map on a symbol's paramss.
   */
  def mapParamss[T](sym: Symbol)(f: Symbol => T): List[List[T]] = mmap(sym.info.paramss)(f)

  def existingSymbols(syms: List[Symbol]): List[Symbol] =
    syms filter (s => (s ne null) && (s ne NoSymbol))

  /** Return closest enclosing method, unless shadowed by an enclosing class. */
  // TODO Move back to ExplicitOuter when the other call site is removed.
  // no use of closures here in the interest of speed.
  final def closestEnclMethod(from: Symbol): Symbol =
    if (from.isSourceMethod) from
    else if (from.isClass) NoSymbol
    else closestEnclMethod(from.owner)

  /** An exception for cyclic references of symbol definitions */
  case class CyclicReference(sym: Symbol, info: Type)
  extends TypeError("illegal cyclic reference involving " + sym) {
    if (settings.debug.value) printStackTrace()
  }

  /** A class for type histories */
  private case class TypeHistory(var validFrom: Period, info: Type, prev: TypeHistory) {
    assert((prev eq null) || phaseId(validFrom) > phaseId(prev.validFrom), this)
    assert(validFrom != NoPeriod, this)

    private def phaseString = "%s: %s".format(phaseOf(validFrom), info)
    override def toString = toList reverseMap (_.phaseString) mkString ", "

    def toList: List[TypeHistory] = this :: ( if (prev eq null) Nil else prev.toList )

    def oldest: TypeHistory = if (prev == null) this else prev.oldest
  }

// ----- Hoisted closures and convenience methods, for compile time reductions -------

  private[scala] final val symbolIsPossibleInRefinement = (sym: Symbol) => sym.isPossibleInRefinement

  @tailrec private[scala] final
  def allSymbolsHaveOwner(syms: List[Symbol], owner: Symbol): Boolean = syms match {
    case sym :: rest => sym.owner == owner && allSymbolsHaveOwner(rest, owner)
    case _           => true
  }


// -------------- Statistics --------------------------------------------------------

  Statistics.newView("#symbols")(ids)


// -------------- Completion --------------------------------------------------------

  // is used to differentiate levels of thread-safety in `Symbol.isThreadsafe`
  case class SymbolOps(isFlagRelated: Boolean, mask: Long)
  val AllOps = SymbolOps(isFlagRelated = false, mask = 0L)
  def FlagOps(mask: Long) = SymbolOps(isFlagRelated = true, mask = mask)

  private def relevantSymbols(syms: Seq[Symbol]) = syms.flatMap(sym => List(sym, sym.moduleClass, sym.sourceModule))
  def markFlagsCompleted(syms: Symbol*)(mask: Long): Unit = relevantSymbols(syms).foreach(_.markFlagsCompleted(mask))
  def markAllCompleted(syms: Symbol*): Unit = relevantSymbols(syms).foreach(_.markAllCompleted)
}

object SymbolsStats {
  val typeSymbolCount     = Statistics.newCounter("#type symbols")
  val classSymbolCount    = Statistics.newCounter("#class symbols")
  val flagsCount          = Statistics.newCounter("#flags ops")
  val ownerCount          = Statistics.newCounter("#owner ops")
  val nameCount           = Statistics.newCounter("#name ops")
}