summaryrefslogtreecommitdiff
path: root/src/reflect/scala/reflect/internal/TreeGen.scala
blob: 720d8bfe4a5cbf3d7f4831cbda483861ac28f41f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
package scala
package reflect
package internal

import Flags._
import util._

abstract class TreeGen extends macros.TreeBuilder {
  val global: SymbolTable

  import global._
  import definitions._

  def rootId(name: Name)             = Select(Ident(nme.ROOTPKG), name)
  def rootScalaDot(name: Name)       = Select(rootId(nme.scala_) setSymbol ScalaPackage, name)
  def scalaDot(name: Name)           = Select(Ident(nme.scala_) setSymbol ScalaPackage, name)
  def scalaAnnotationDot(name: Name) = Select(scalaDot(nme.annotation), name)
  def scalaAnyRefConstrRaw           = scalaDot(tpnme.AnyRef)
  def scalaAnyRefConstr              = scalaAnyRefConstrRaw setSymbol AnyRefClass // used in ide

  def scalaFunctionConstr(argtpes: List[Tree], restpe: Tree, abstractFun: Boolean = false): Tree = {
    val cls = if (abstractFun)
      mkAttributedRef(AbstractFunctionClass(argtpes.length))
    else
      mkAttributedRef(FunctionClass(argtpes.length))
    AppliedTypeTree(cls, argtpes :+ restpe)
  }

  /** A creator for method calls, e.g. fn[T1, T2, ...](v1, v2, ...)
   *  There are a number of variations.
   *
   *  @param    receiver    symbol of the method receiver
   *  @param    methodName  name of the method to call
   *  @param    targs       type arguments (if Nil, no TypeApply node will be generated)
   *  @param    args        value arguments
   *  @return               the newly created trees.
   */
  def mkMethodCall(receiver: Symbol, methodName: Name, targs: List[Type], args: List[Tree]): Tree =
    mkMethodCall(Select(mkAttributedRef(receiver), methodName), targs, args)
  def mkMethodCall(method: Symbol, targs: List[Type], args: List[Tree]): Tree =
    mkMethodCall(mkAttributedRef(method), targs, args)
  def mkMethodCall(method: Symbol, args: List[Tree]): Tree =
    mkMethodCall(method, Nil, args)
  def mkMethodCall(target: Tree, args: List[Tree]): Tree =
    mkMethodCall(target, Nil, args)
  def mkMethodCall(receiver: Symbol, methodName: Name, args: List[Tree]): Tree =
    mkMethodCall(receiver, methodName, Nil, args)
  def mkMethodCall(receiver: Tree, method: Symbol, targs: List[Type], args: List[Tree]): Tree =
    mkMethodCall(Select(receiver, method), targs, args)

  def mkMethodCall(target: Tree, targs: List[Type], args: List[Tree]): Tree =
    Apply(mkTypeApply(target, targs map TypeTree), args)

  def mkNullaryCall(method: Symbol, targs: List[Type]): Tree =
    mkTypeApply(mkAttributedRef(method), targs map TypeTree)

  /** Builds a reference to value whose type is given stable prefix.
   *  The type must be suitable for this.  For example, it
   *  must not be a TypeRef pointing to an abstract type variable.
   */
  def mkAttributedQualifier(tpe: Type): Tree =
    mkAttributedQualifier(tpe, NoSymbol)

  /** Builds a reference to value whose type is given stable prefix.
   *  If the type is unsuitable, e.g. it is a TypeRef for an
   *  abstract type variable, then an Ident will be made using
   *  termSym as the Ident's symbol.  In that case, termSym must
   *  not be NoSymbol.
   */
  def mkAttributedQualifier(tpe: Type, termSym: Symbol): Tree = {
    def failMessage = "mkAttributedQualifier(" + tpe + ", " + termSym + ")"
    tpe match {
      case NoPrefix =>
        EmptyTree
      case ThisType(clazz) =>
        if (clazz.isEffectiveRoot) EmptyTree
        else mkAttributedThis(clazz)
      case SingleType(pre, sym) =>
        mkApplyIfNeeded(mkAttributedStableRef(pre, sym))
      case TypeRef(pre, sym, args) =>
        if (sym.isRoot) {
          mkAttributedThis(sym)
        } else if (sym.isModuleClass) {
          mkApplyIfNeeded(mkAttributedRef(pre, sym.sourceModule))
        } else if (sym.isModule || sym.isClass) {
          assert(phase.erasedTypes, failMessage)
          mkAttributedThis(sym)
        } else if (sym.isType) {
          assert(termSym != NoSymbol, failMessage)
          mkAttributedIdent(termSym) setType tpe
        } else {
          mkAttributedRef(pre, sym)
        }

      case ConstantType(value) =>
        Literal(value) setType tpe

      case AnnotatedType(_, atp, _) =>
        mkAttributedQualifier(atp)

      case RefinedType(parents, _) =>
        // I am unclear whether this is reachable, but
        // the following implementation looks logical -Lex
        val firstStable = parents.find(_.isStable)
        assert(!firstStable.isEmpty, failMessage + " parents = " + parents)
        mkAttributedQualifier(firstStable.get)

      case _ =>
        abort("bad qualifier received: " + failMessage)
    }
  }
  /** If this is a reference to a method with an empty
   *  parameter list, wrap it in an apply.
   */
  def mkApplyIfNeeded(qual: Tree) = qual.tpe match {
    case MethodType(Nil, restpe) => atPos(qual.pos)(Apply(qual, Nil) setType restpe)
    case _                       => qual
  }

  /** Builds a reference to given symbol with given stable prefix. */
  def mkAttributedRef(pre: Type, sym: Symbol): RefTree = {
    val qual = mkAttributedQualifier(pre)
    qual match {
      case EmptyTree                                  => mkAttributedIdent(sym)
      case This(clazz) if qual.symbol.isEffectiveRoot => mkAttributedIdent(sym)
      case _                                          => mkAttributedSelect(qual, sym)
    }
  }

  /** Builds a reference to given symbol. */
  def mkAttributedRef(sym: Symbol): RefTree =
    if (sym.owner.isClass) mkAttributedRef(sym.owner.thisType, sym)
    else mkAttributedIdent(sym)

  def mkUnattributedRef(sym: Symbol): RefTree = mkUnattributedRef(sym.fullNameAsName('.'))

  def mkUnattributedRef(fullName: Name): RefTree = {
    val hd :: tl = nme.segments(fullName.toString, assumeTerm = fullName.isTermName)
    tl.foldLeft(Ident(hd): RefTree)(Select(_,_))
  }

  /** Replaces tree type with a stable type if possible */
  def stabilize(tree: Tree): Tree = stableTypeFor(tree) match {
    case NoType => tree
    case tp     => tree setType tp
  }

  /** Computes stable type for a tree if possible */
  def stableTypeFor(tree: Tree): Type = (
    if (!treeInfo.admitsTypeSelection(tree)) NoType
    else tree match {
      case This(_)         => ThisType(tree.symbol)
      case Ident(_)        => singleType(tree.symbol.owner.thisType, tree.symbol)
      case Select(qual, _) => singleType(qual.tpe, tree.symbol)
      case _               => NoType
    }
  )

  /** Builds a reference with stable type to given symbol */
  def mkAttributedStableRef(pre: Type, sym: Symbol): Tree =
    stabilize(mkAttributedRef(pre, sym))

  def mkAttributedStableRef(sym: Symbol): Tree =
    stabilize(mkAttributedRef(sym))

  def mkAttributedThis(sym: Symbol): This =
    This(sym.name.toTypeName) setSymbol sym setType sym.thisType

  def mkAttributedIdent(sym: Symbol): RefTree =
    Ident(sym.name) setSymbol sym setType sym.tpeHK

  def mkAttributedSelect(qual: Tree, sym: Symbol): RefTree = {
    // Tests involving the repl fail without the .isEmptyPackage condition.
    if (qual.symbol != null && (qual.symbol.isEffectiveRoot || qual.symbol.isEmptyPackage))
      mkAttributedIdent(sym)
    else {
      // Have to recognize anytime a selection is made on a package
      // so it can be rewritten to foo.bar.`package`.name rather than
      // foo.bar.name if name is in the package object.
      // TODO - factor out the common logic between this and
      // the Typers method "isInPackageObject", used in typedIdent.
      val qualsym = (
        if (qual.tpe ne null) qual.tpe.typeSymbol
        else if (qual.symbol ne null) qual.symbol
        else NoSymbol
      )
      val needsPackageQualifier = (
           (sym ne null)
        && qualsym.isPackage
        && !(sym.isDefinedInPackage || sym.moduleClass.isDefinedInPackage) // SI-7817 work around strangeness in post-flatten `Symbol#owner`
      )
      val pkgQualifier =
        if (needsPackageQualifier) {
          // The owner of a symbol which requires package qualification may be the
          // package object iself, but it also could be any superclass of the package
          // object.  In the latter case, we must go through the qualifier's info
          // to obtain the right symbol.
          val packageObject = if (sym.owner.isModuleClass) sym.owner.sourceModule else qual.tpe member nme.PACKAGE
          Select(qual, nme.PACKAGE) setSymbol packageObject setType singleType(qual.tpe, packageObject)
        }
        else qual

      val tree = Select(pkgQualifier, sym)
      if (pkgQualifier.tpe == null) tree
      else tree setType (qual.tpe memberType sym)
    }
  }

  /** Builds a type application node if args.nonEmpty, returns fun otherwise. */
  def mkTypeApply(fun: Tree, targs: List[Tree]): Tree =
    if (targs.isEmpty) fun else TypeApply(fun, targs)
  def mkAppliedTypeTree(fun: Tree, targs: List[Tree]): Tree =
    if (targs.isEmpty) fun else AppliedTypeTree(fun, targs)
  def mkAttributedTypeApply(target: Tree, method: Symbol, targs: List[Type]): Tree =
    mkTypeApply(mkAttributedSelect(target, method), targs map TypeTree)

  private def mkSingleTypeApply(value: Tree, tpe: Type, what: Symbol, wrapInApply: Boolean) = {
    val tapp = mkAttributedTypeApply(value, what, tpe.dealias :: Nil)
    if (wrapInApply) Apply(tapp, Nil) else tapp
  }
  private def typeTestSymbol(any: Boolean) = if (any) Any_isInstanceOf else Object_isInstanceOf
  private def typeCastSymbol(any: Boolean) = if (any) Any_asInstanceOf else Object_asInstanceOf

  /** Builds an instance test with given value and type. */
  def mkIsInstanceOf(value: Tree, tpe: Type, any: Boolean = true, wrapInApply: Boolean = true): Tree =
    mkSingleTypeApply(value, tpe, typeTestSymbol(any), wrapInApply)

  /** Builds a cast with given value and type. */
  def mkAsInstanceOf(value: Tree, tpe: Type, any: Boolean = true, wrapInApply: Boolean = true): Tree =
    mkSingleTypeApply(value, tpe, typeCastSymbol(any), wrapInApply)

  /** Cast `tree` to `pt`, unless tpe is a subtype of pt, or pt is Unit.  */
  def maybeMkAsInstanceOf(tree: Tree, pt: Type, tpe: Type, beforeRefChecks: Boolean = false): Tree =
    if ((pt == UnitTpe) || (tpe <:< pt)) tree
    else atPos(tree.pos)(mkAsInstanceOf(tree, pt, any = true, wrapInApply = !beforeRefChecks))

  /** Apparently we smuggle a Type around as a Literal(Constant(tp))
   *  and the implementation of Constant#tpe is such that x.tpe becomes
   *  ClassType(value.asInstanceOf[Type]), i.e. java.lang.Class[Type].
   *  Can't find any docs on how/why it's done this way. See ticket
   *  SI-490 for some interesting comments from lauri alanko suggesting
   *  that the type given by classOf[T] is too strong and should be
   *  weakened so as not to suggest that classOf[List[String]] is any
   *  different from classOf[List[Int]].
   *
   *  !!! See deconstMap in Erasure for one bug this encoding has induced:
   *  I would be very surprised if there aren't more.
   */
  def mkClassOf(tp: Type): Tree =
    Literal(Constant(tp)) setType ConstantType(Constant(tp))

  /** Builds a list with given head and tail. */
  def mkNil: Tree = mkAttributedRef(NilModule)

  /** Builds a tree representing an undefined local, as in
   *    var x: T = _
   *  which is appropriate to the given Type.
   */
  def mkZero(tp: Type): Tree = tp.typeSymbol match {
    case NothingClass => mkMethodCall(Predef_???, Nil) setType NothingTpe
    case _            => Literal(mkConstantZero(tp)) setType tp
  }

  def mkConstantZero(tp: Type): Constant = tp.typeSymbol match {
    case UnitClass    => Constant(())
    case BooleanClass => Constant(false)
    case FloatClass   => Constant(0.0f)
    case DoubleClass  => Constant(0.0d)
    case ByteClass    => Constant(0.toByte)
    case ShortClass   => Constant(0.toShort)
    case IntClass     => Constant(0)
    case LongClass    => Constant(0L)
    case CharClass    => Constant(0.toChar)
    case _            => Constant(null)
  }

  /** Wrap an expression in a named argument. */
  def mkNamedArg(name: Name, tree: Tree): Tree = mkNamedArg(Ident(name), tree)
  def mkNamedArg(lhs: Tree, rhs: Tree): Tree = atPos(rhs.pos)(AssignOrNamedArg(lhs, rhs))

  /** Builds a tuple */
  def mkTuple(elems: List[Tree]): Tree =
    if (elems.isEmpty) Literal(Constant(()))
    else Apply(
      Select(mkAttributedRef(TupleClass(elems.length).caseModule), nme.apply),
      elems)

  // tree1 AND tree2
  def mkAnd(tree1: Tree, tree2: Tree): Tree =
    Apply(Select(tree1, Boolean_and), List(tree2))

  // tree1 OR tree2
  def mkOr(tree1: Tree, tree2: Tree): Tree =
    Apply(Select(tree1, Boolean_or), List(tree2))

  def mkRuntimeUniverseRef: Tree = {
    assert(ReflectRuntimeUniverse != NoSymbol)
    mkAttributedRef(ReflectRuntimeUniverse) setType singleType(ReflectRuntimeUniverse.owner.thisPrefix, ReflectRuntimeUniverse)
  }

  def mkSeqApply(arg: Tree): Apply = {
    val factory = Select(gen.mkAttributedRef(SeqModule), nme.apply)
    Apply(factory, List(arg))
  }

  def mkSuperInitCall: Select = Select(Super(This(tpnme.EMPTY), tpnme.EMPTY), nme.CONSTRUCTOR)

  /** Generates a template with constructor corresponding to
   *
   *  constrmods (vparams1_) ... (vparams_n) preSuper { presupers }
   *  extends superclass(args_1) ... (args_n) with mixins { self => body }
   *
   *  This gets translated to
   *
   *  extends superclass with mixins { self =>
   *    presupers' // presupers without rhs
   *    vparamss   // abstract fields corresponding to value parameters
   *    def <init>(vparamss) {
   *      presupers
   *      super.<init>(args)
   *    }
   *    body
   *  }
   */
  def mkTemplate(parents: List[Tree], self: ValDef, constrMods: Modifiers,
                 vparamss: List[List[ValDef]], body: List[Tree], superPos: Position = NoPosition): Template = {
    /* Add constructor to template */

    // create parameters for <init> as synthetic trees.
    var vparamss1 = mmap(vparamss) { vd =>
      atPos(vd.pos.focus) {
        val mods = Modifiers(vd.mods.flags & (IMPLICIT | DEFAULTPARAM | BYNAMEPARAM) | PARAM | PARAMACCESSOR)
        ValDef(mods withAnnotations vd.mods.annotations, vd.name, vd.tpt.duplicate, vd.rhs.duplicate)
      }
    }
    val (edefs, rest) = body span treeInfo.isEarlyDef
    val (evdefs, etdefs) = edefs partition treeInfo.isEarlyValDef
    val gvdefs = evdefs map {
      case vdef @ ValDef(_, _, tpt, _) =>
        copyValDef(vdef)(
        // atPos for the new tpt is necessary, since the original tpt might have no position
        // (when missing type annotation for ValDef for example), so even though setOriginal modifies the
        // position of TypeTree, it would still be NoPosition. That's what the author meant.
        tpt = atPos(vdef.pos.focus)(TypeTree() setOriginal tpt setPos tpt.pos.focus),
        rhs = EmptyTree
      )
    }
    val lvdefs = evdefs collect { case vdef: ValDef => copyValDef(vdef)(mods = vdef.mods | PRESUPER) }

    val constr = {
      if (constrMods.isTrait) {
        if (body forall treeInfo.isInterfaceMember) None
        else Some(
          atPos(wrappingPos(superPos, lvdefs)) (
            DefDef(NoMods, nme.MIXIN_CONSTRUCTOR, Nil, ListOfNil, TypeTree(), Block(lvdefs, Literal(Constant())))))
      }
      else {
        // convert (implicit ... ) to ()(implicit ... ) if its the only parameter section
        if (vparamss1.isEmpty || !vparamss1.head.isEmpty && vparamss1.head.head.mods.isImplicit)
          vparamss1 = List() :: vparamss1
        val superCall = pendingSuperCall // we can't know in advance which of the parents will end up as a superclass
                                         // this requires knowing which of the parents is a type macro and which is not
                                         // and that's something that cannot be found out before typer
                                         // (the type macros aren't in the trunk yet, but there is a plan for them to land there soon)
                                         // this means that we don't know what will be the arguments of the super call
                                         // therefore here we emit a dummy which gets populated when the template is named and typechecked
        Some(
          // TODO: previously this was `wrappingPos(superPos, lvdefs ::: argss.flatten)`
          // is it going to be a problem that we can no longer include the `argss`?
          atPos(wrappingPos(superPos, lvdefs)) (
            DefDef(constrMods, nme.CONSTRUCTOR, List(), vparamss1, TypeTree(), Block(lvdefs ::: List(superCall), Literal(Constant())))))
      }
    }
    constr foreach (ensureNonOverlapping(_, parents ::: gvdefs, focus = false))
    // Field definitions for the class - remove defaults.
    val fieldDefs = vparamss.flatten map (vd => copyValDef(vd)(mods = vd.mods &~ DEFAULTPARAM, rhs = EmptyTree))

    global.Template(parents, self, gvdefs ::: fieldDefs ::: constr ++: etdefs ::: rest)
  }

  def mkParents(ownerMods: Modifiers, parents: List[Tree], parentPos: Position = NoPosition) =
    if (ownerMods.isCase) parents ::: List(scalaDot(tpnme.Product), scalaDot(tpnme.Serializable))
    else if (parents.isEmpty) atPos(parentPos)(scalaAnyRefConstrRaw) :: Nil
    else parents

  def mkClassDef(mods: Modifiers, name: TypeName, tparams: List[TypeDef], templ: Template): ClassDef = {
    val isInterface = mods.isTrait && (templ.body forall treeInfo.isInterfaceMember)
    val mods1 = if (isInterface) (mods | Flags.INTERFACE) else mods
    ClassDef(mods1, name, tparams, templ)
  }

  /** Create positioned tree representing an object creation <new parents { stats }
   *  @param npos  the position of the new
   *  @param cpos  the position of the anonymous class starting with parents
   */
  def mkNew(parents: List[Tree], self: ValDef, stats: List[Tree],
            npos: Position, cpos: Position): Tree =
    if (parents.isEmpty)
      mkNew(List(scalaAnyRefConstr), self, stats, npos, cpos)
    else if (parents.tail.isEmpty && stats.isEmpty) {
      // `Parsers.template` no longer differentiates tpts and their argss
      // e.g. `C()` will be represented as a single tree Apply(Ident(C), Nil)
      // instead of parents = Ident(C), argss = Nil as before
      // this change works great for things that are actually templates
      // but in this degenerate case we need to perform postprocessing
      val app = treeInfo.dissectApplied(parents.head)
      atPos(npos union cpos) { New(app.callee, app.argss) }
    } else {
      val x = tpnme.ANON_CLASS_NAME
      atPos(npos union cpos) {
        Block(
          List(
            atPos(cpos) {
              ClassDef(
                Modifiers(FINAL), x, Nil,
                mkTemplate(parents, self, NoMods, ListOfNil, stats, cpos.focus))
            }),
          atPos(npos) {
            New(
              Ident(x) setPos npos.focus,
              Nil)
          }
        )
      }
    }

  /** Create a tree representing the function type (argtpes) => restpe */
  def mkFunctionTypeTree(argtpes: List[Tree], restpe: Tree): Tree =
    AppliedTypeTree(rootScalaDot(newTypeName("Function" + argtpes.length)), argtpes ::: List(restpe))

  /** Create block of statements `stats`  */
  def mkBlock(stats: List[Tree]): Tree =
    if (stats.isEmpty) Literal(Constant(()))
    else if (!stats.last.isTerm) Block(stats, Literal(Constant(())))
    else if (stats.length == 1) stats.head
    else Block(stats.init, stats.last)

  def mkTreeOrBlock(stats: List[Tree]) = stats match {
    case Nil => EmptyTree
    case head :: Nil => head
    case _ => gen.mkBlock(stats)
  }

  /** Create a tree representing an assignment <lhs = rhs> */
  def mkAssign(lhs: Tree, rhs: Tree): Tree = lhs match {
    case Apply(fn, args) =>
      Apply(atPos(fn.pos)(Select(fn, nme.update)), args :+ rhs)
    case _ =>
      Assign(lhs, rhs)
  }
}